

# Towards the development of an autonomous satellite orbit determination process via Inter-Satellite Links (ISLs)

Miltiadis Chatzinikos and Pacôme Delva

Les séminaires temps-fréquence

18 January 2024, Paris, France

SYRTE, Theory and Metrology Group



# **Motivation**

#### Examine the observability and accuracy of the satellite orbit determination problem:

- o using only inter-satellite range measurements and
- $\circ$  in constellations consisting of different number of satellites.

#### considering the impact of:

- the satellite constellation geometry,
- different reference frame definition strategies and
- different parametrization models (Absolute and relative orbital elements).



# **Description of the problem**





# **Description of the problem**

Inter-satellite range measurements



# Absolute and relative orbit determination via ISLs

Satellites motion in the framework of Newtonian mechanics

**PSL** 

SYstèmes de Référence Temps-Espace

**SYR** 

 $\ddot{\boldsymbol{r}}_c = \boldsymbol{N}(\boldsymbol{r}_c; \boldsymbol{\mu}) + \boldsymbol{F}(\boldsymbol{r}_c, \boldsymbol{\nu}_c, t; \boldsymbol{q})$ 

 $\ddot{\boldsymbol{r}}_d = \boldsymbol{N}(\boldsymbol{r}_d; \boldsymbol{\mu}) + \boldsymbol{F}(\boldsymbol{r}_d, \boldsymbol{v}_d, t; \boldsymbol{q})$ 

Relative motion in the ECI frame

 $\delta \ddot{\boldsymbol{r}} = \ddot{\boldsymbol{r}}_d^{ECI} - \ddot{\boldsymbol{r}}_c^{ECI}$ 







Temps-Fréquence, January 18th, 2024, Paris, France

PSL 🕷

SYstèmes de Référence Temps-Espace

SYRT



Temps-Fréquence, January 18th, 2024, Paris, France

## Iterative least-squares adjustment procedure

 $(A^T P A)(x - x_0) = A^T P b$ **Normal Equations and Datum Constraints**  $(H^TWH)(x - x_0) = H^TW(x^{ext} - x_0)$  $x^{ext} = x^{ext}$  $\delta x = (N + H^T W H)^{-1} (U + H^T W H (x^{ext} - x_0))$  $x_0 = x$  $P = \hat{\sigma}_{apost}^2 P$  $\hat{\sigma}_{apost}^2 = \frac{V^T P V}{n - m + k}$  $W = \hat{\sigma}_{apost}^2 W$ **Constrained solution**  $x = x_0 + \delta x$  $C_x = \hat{\sigma}_{apost}^2 (N + H^T W H)^{-1}$ 



1) Spectral Analysis of the NEQ matrix via the SVD strategy:  $N = UDU^T$ U: eigenvectors, D: eigenvalues

2a) Geometrical analysis of the Normal equation matrix:  $C_{\theta} = (E N E^{T})^{-1}$  (Sillard and Boucher 2001), θ: Transformation Parameters, **E**: Inner Constraint matrix

2b) **Geometrical analysis** of the Normal equation matrix



$$\tan(\psi_{\mathbf{Q}}) = \frac{\left\| e_{\mathbf{q}} - p_{\mathbf{q}} \right\|}{\left\| p_{\mathbf{q}} \right\|}$$

 $p_{q} = U(U^{T}U)^{-1}Ue_{q}$ 

Angle between numerical null space and the theoretical null vectors

$$u_{\rm Qi} = E_Q (E_Q^T E_Q)^{-1} E_Q u_{\rm i}$$







## **Relative orbit determination/propagation:**

- Parametrization model:
- Classical orbital element differences
- Eccentricity/Inclination vector seperation
- Nodal Elements
- Relative orbital elements

• Solutions via:

- Analytical formula
- State Transition Matrix
- > Numerical integration

#### • Dynamical model:

- Central gravity field
- $\succ$  J<sub>2</sub>
- Atmospheric Drag
- Reference Frame: RTN (rotating frame)

# **PSL** Relative orbit determination via classical orbital elements



# **Relative orbit determination via Nodal Elements**



SYRTE

vatoire | PSL 🕷

SYstèmes de Référence Temps-Espace

According to D'Amico 2005:

PSL 🖈

**SYRTE** 

SYstèmes de Référence Temps-Espace

$$\delta \boldsymbol{\sigma} = \begin{bmatrix} \delta a \\ \delta \lambda \\ \delta e_x \\ \delta e_y \\ \delta i_x \\ \delta i_y \end{bmatrix} = \begin{bmatrix} \frac{a_d - a_c}{a_c} \\ (u_d - u_c) + (\Omega_d - \Omega_c)\cos(i_c) \\ (u_d - u_c) + (\Omega_d - \Omega_c)\cos(i_c) \\ e_d\cos(\omega_d) - e_c\cos(\omega_c) \\ e_d\sin(\omega_d) - e_c\sin(\omega_c) \\ i_d - i_c \\ (\Omega_d - \Omega_c)\sin(i_c) \end{bmatrix} \qquad \delta a = 0 \qquad x = a_c\delta e \cos(u_c - \varphi) \\ z = a_c\delta i \cos(u_c - \theta) \\ z = a_c\delta i \cos(u_c - \theta)$$



Temps-Fréquence, January 18th, 2024, Paris, France



| Relative orbit determination |                    |                    |               |              |  |
|------------------------------|--------------------|--------------------|---------------|--------------|--|
| Method                       | Orbit type         | Derived from       | Solution      | Perturbation |  |
| Hill's Equations             | Circular           | Kinematic Equation | Linearization | None         |  |
| COE Differences              | Any e <sub>c</sub> | Kinematic Equation | Linearization | None         |  |
| Relative Orb. Elem.          | Near-Circular      | Hill's Equations   | Linearization | None         |  |
| Nodal Elements               | Any e <sub>c</sub> | Kinematic Equation | Exact         | None         |  |



Maximum relative state error between the modeled and the true relative orbit

Intersatellite distance fixed = 600 meters





Maximum relative state error between the modeled and the true relative orbit

Eccentricity of chief orbit fixed = 10<sup>-4</sup>





Maximum relative state error between the modeled and the true relative orbit

Eccentricity of chief orbit fixed = 0,1







PSL 🕷

SYRTE

SYstèmes de Référence Temps-Espace

# **Relative orbit determination via Nodal Elements**

## **J2** Perturbation Case

SYR

**PSL** 

SYstèmes de Référence Temps-Espace

$$\boldsymbol{u}_{J_2}^j = -\frac{3J_2 R_{\oplus}^2 G_e}{2r_j^4} \begin{bmatrix} 1 - 3\sin^2(i_j)\sin^2(\alpha_j + \theta_j)\\ \sin^2(i_j)\sin(2\alpha_j + 2\theta_j)\\ \sin(2i_j)\sin(\alpha_j + \theta_j) \end{bmatrix}$$

New vector  $\boldsymbol{\upsilon}$ 

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \end{bmatrix} = egin{bmatrix} an(rac{i_c}{2})\cos(lpha_c+ heta_c) \ an(rac{i_c}{2})\sin(lpha_c+ heta_c) \end{bmatrix}$$

11 parameters model

$$x' = \begin{bmatrix} o \\ \eta \\ v \end{bmatrix}$$

# **CTE Observability** analysis of the relative orbit determination problem

Inter-satellite distance btw 19292 and 33857 Km



Temps-Fréquence, January 18th, 2024, Paris, France

#### Spectral Analysis of Normal Equation (NEQ) matrix



# Unperturbed relative orbit

J2-perturbed relative orbit

## Geometrical Analysis of Normal Equation (NEQ) matrix



## Unperturbed relative orbit

J2-perturbed relative orbit

## Accuracy assessment of the relative orbit determination problem

## Unperturbed relative orbit

J2-perturbed relative orbit



**Unconstrained Solution** 

Constrained Solution The **u** vector was fixed

Temps-Fréquence, January 18th, 2024, Paris, France

# **CTE Observability** analysis of the relative orbit determination problem

Inter-satellite distance btw 650 and 14003 Km



Temps-Fréquence, January 18<sup>th</sup>, 2024, Paris, France



#### Spectral Analysis of NEQ matrix



# Unperturbed relative orbit

J2-perturbed relative orbit

## Geometrical Analysis of NEQ matrix



## Unperturbed relative orbit

J2-perturbed relative orbit

## Accuracy assessment of the relative orbit determination problem

## Unperturbed relative orbit

J2-perturbed relative orbit



**Unconstrained Solution** 

Constrained Solution The **u** vector was fixed

Temps-Fréquence, January 18th, 2024, Paris, France

# Absolute orbit estimation of satellite constellations via ISLs



Observatoire | PSL

SYstèmes de Référence Temps-Espace

SYRTE "



## Absolute orbit determination/propagation:

- Parametrization model:
- Cartesian System (CRD/VEL)
- > Keplerian Elements



# **Simulator's Features**

# **Cartesian model**

# **Keplerian model**



Initial position and velocity per satellite

$$\boldsymbol{X} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ \vdots \\ \vdots \\ x_{6 \times n} \end{bmatrix} = \begin{bmatrix} a_{t_{0}}^{1} \\ e_{t_{0}}^{1} \\ w_{t_{0}}^{1} \\ \Omega_{t_{0}}^{1} \\ f_{t_{0}}^{1} \\ \vdots \\ a_{t_{0}}^{n} \\ e_{t_{0}}^{n} \\ i_{t_{0}}^{n} \\ w_{t_{0}}^{n} \\ \Omega_{t_{0}}^{n} \\ f_{t_{0}}^{n} \end{bmatrix}$$

6 Keplerian elements per satellite



## **Absolute orbit determination/propagation:**

- Parametrization model:
- Cartesian System (CRD/VEL)
- Keplerian Elements
- Numerical integration:
- n<sup>th</sup> order Runge-Kutta (single-step)
- Adams-Bashforth-Moulton (multi-step)

• Dynamical model:

- Full Gravity potential (Geopotential model: e.g EGM2008)
- Moon, Sun + 8 planets (Planets' Ephemerides: INPOP19a)
- Solar Radiation Pressure (Box-Wind model)
- Atmospheric Drag
- > Earth Tides
- Earth Rotation Parameters: EOP (IERS) 14 CO4 TIME SERIES
- Reference Frame: Inertial (ICRF/GCRS)



$$\delta x = (N + H^T W H)^{-1} [U + H^T W c]$$
  
or  
$$\delta x = (N + Q^T W Q)^{-1} [U + Q^T W c]$$

Addition of constraints to the NEQ System

The ISLANDER module has the option to apply **different types** of datum constraints:

•  $H\delta x = c = H(x^{ext} - x_0)$ 

Constraining of individual CRD/VEL or Keplerian Elements to known values in a number of satellites.

• 
$$Q\delta x = c$$
  $Q = (EE^T)^{-1}E$   $c = Q(x^{ext} - x_0)$ 

Nullification of Helmert transformation parameters wrt. prior info of initial conditions for satellite orbits (minimal constraints).



Our aim is to estimate <u>circular</u> orbits of a number of GENESIS-like satellites derived from Aghouraf and Chang (2023) optimal search:

Altitude: 9000 km, Inclination: 64 deg

| 8250 km, | 57 deg   |
|----------|----------|
| 8250 km, | 67 deg   |
| 9250 km, | 52 deg   |
| 9250 km, | 67 deg   |
| 6000 km, | 95.5 deg |



#### **Tested Scenarios**

- Parametrization model: Cartesian system
- **Used satellite constellation**: 31 GPS satellites or 24 GALILEO

#### **Applied datum constraints**:

- Tight constraints on individual initial coordinates & velocities of all GPS or GALILEO satellites
- Minimal constraints (only for three rotation parameters)

#### Error added to the known position of the GPS or GALILEO satellites: 3 cm



Date & duration of simulated data: 30/08/2018 - 21:00:00, ~12 hours (~1 GPS satellite arc) 03/01/2021 – 00:00:00, ~14 hours (~1 GALILEO satellite arc)

Observation Sampling: 120 sec

Numerical Integration Method: 8<sup>th</sup> order Runge-Kutta (10 sec step)

Noise type: Gaussian random noise ( $\sigma = 1 \text{ cm}$ )

Reference Frame: GCRS

Dynamical Model: Earth's gravity field (20 × 20) Moon + planets' forces Solar Radiation Pressure Earth tides



# **GNSS visibility Model for GENESIS**

According to Montenbruck et al. (2023):

- $\Theta_{EOE} = \arcsin(\text{REarth} + \text{rGNSS})$
- $\Theta_{max} = \arcsin((R_{Earth} + hGENESIS) + rGNSS)$

Visibility of Zenith antenna:

 $\Theta < \Theta_{max}$  and  $r_{GNSS-GENESIS} < sin(\Theta_{max}) r_{GNSS}$ 

Visibility of Nadir antenna:

 $\Theta_{\rm EOE} < \Theta < \Theta_{\rm max}$ 





GENESIS Orbit: altitude **9000** km, inclination **64** deg, eccentricity **0** Reference frame: RTN (rotating) Time-period of data: 12 and 14 hours Sampling rate: 120 sec





GENESIS Orbit: altitude **9000** km, inclination **64** deg, eccentricity **0** Reference frame: RTN (rotating) Time-period of data: 12 and 14 hours Sampling rate: 120 sec



Temps-Fréquence, January 18<sup>th</sup>, 2024, Paris, France



GENESIS Orbit: altitude **6000** km, inclination **95.5** deg, eccentricity **0** Reference frame: RTN (rotating) Time-period of data: 12 and 14 hours Sampling rate: 120 sec



Temps-Fréquence, January 18th, 2024, Paris, France



GENESIS Orbit: altitude 6000 km, inclination 95.5 deg, eccentricity 0 Reference frame: RTN (rotating) Time-period of data: 12 and 14 hours Sampling rate: 120 sec GNSS satellites tracked by GENESIS Elevation and azimuth wrt the **GPS** constellation **GALILEO** constellation **GENESIS** orbit 60 60 40 40 Elevation (deg) Elevation (deg) 20 20 -20-40-40 -60 -60 -80 200 200 250 50 100 150 250 300 350 50 100 150 300 350 Azimuth (deg) Azimuth (deg)





Temps-Fréquence, January 18<sup>th</sup>, 2024, Paris, France



# $C_{\theta} = (E N E^{T})^{-1}$ (Sillard and Boucher 2001)

*θ*: frame parameters, *E*: Jacobian of 7p Helmert transf, *N*: **unconstrained** NEQ matrix



#### **YRTE** With PSL Influence of prior errors in GNSS initial positions and datum definition strategy

Maximum 2-norm of relative state error (estimated minus true orbit) over a fixed simulation period of 24 hours for the GENESIS satellite.

GENESIS Orbit: altitude **9000** km, inclination **64** deg, eccentricity **0** Reference frame: GCRS (inertial) Time-period of data: 12 and 14 hours

Sampling rate: 120 sec



Scenario 3 cm

Impact of datum definition strategy on the absolute orbit determination of GENESIS satellite



$$C_x = \hat{\sigma}_{apost}^2 (N + H^T W H)^{-1}$$

SYRTE

vatoire | PSL 🕷

SYstèmes de Référence Temps-Espace

$$C_{\theta} = (EE^T)^{-1} \mathsf{E} C_{\chi} E^T (EE^T)^{-1}$$

**GPS** Constellation

#### **Galileo Constellation**



Impact of datum definition strategy, on the absolute orbit determination of GENESIS satellite, at the reference frame level.

Temps-Fréquence, January 18th, 2024, Paris, France

Maximum 2-norm of relative state error (estimated minus true orbit) over a fixed simulation period of 24 hours for the GENESIS satellite.

GENESIS Orbit: Altitude: 9000 km, Inclination: 64 deg

| 8250 km, | 57 deg   |
|----------|----------|
| 8250 km, | 67 deg   |
| 9250 km, | 52 deg   |
| 9250 km, | 67 deg   |
| 6000 km, | 95.5 deg |
|          |          |

Reference frame: GCRS (inertial) Time-period of data: 12 and 14 hours Sampling rate: 120 sec Datum definition strategy: Partial inner constraints on the rotation parameters



Scenario 3 cm

#### Impact of GENESIS orbit on the absolute orbit determination

Assessment of estimated orbit at RF realization level

$$C_x = \hat{\sigma}_{apost}^2 (N + H^T W H)^{-1}$$

**PSL** 

vatoire

SYstèmes de Référence Temps-Espace

**SYR** 

.

$$C_{\theta} = (EE^T)^{-1} \mathsf{E} C_{\chi} E^T (EE^T)^{-1}$$

#### **GPS** Constellation

**Galileo Constellation** 



Absolute orbit determination: Impact of GENESIS orbit at the reference frame level.

Simulation of measurements: Box-wind model

Orbit determination: Cannonball model

PSL 🕷

GENESIS Orbit: Altitude: 9000 km, Inclination: 64 deg 8250 km, 57 deg 6000 km, 95.5 deg

Reference frame: GCRS (inertial) Time-period of data: 12 and 14 hours Sampling rate: 120 sec Datum definition strategy: Partial inner constraints on the rotation parameters

Maximum 2-norm of relative state error (estimated minus true orbit) over a fixed simulation period of 24 hours for the GENESIS satellite.



#### Scenario **3 cm**

Impact of SRP on the GENESIS absolute orbit determination.

Assessment of estimated orbit at RF realization level

$$C_x = \hat{\sigma}_{apost}^2 (N + H^T W H)^{-1} \qquad \blacksquare \qquad C_\theta = (EE^T)^{-1} \mathsf{E} C_x E^T (EE^T)^{-1}$$

#### **GPS** Constellation



GENESIS absolute orbit determination: Impact of SRP mismodeling at the reference frame level.

**PSL** 

vatoire |

SYstèmes de Référence Temps-Espace

**SYRTE** 



#### Summary

#### **Relative orbit determination:**

- The precision of the relative orbit determination problem depends on the assumptions made to derive the relevant analytical or not equations (shape of chief orbit and linearisation order).
- The rank deficiency of the relative orbit determination problem depends on the kinematic and dynamical model.

#### Absolute orbit determination:

- The rank deficiency of the absolute orbit determination problem is equal to 3 (3 orientation reference frame parameters) for both models.
- The datum definition strategy has one of the biggest impacts on the final solution (estimated parameters or internal precision).
- The partial inner constraints provide the best solution and they have the smalest dependency on the satellite constellation.
- The tight constraints (Cartesian or Keplerian model ) alter the geometry of the constellation.



SYstèmes de Référence Temps-Espace

Merci!