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Stability of a trapped-atom clock on a chip
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We present a compact atomic clock interrogating ultracold 87Rb magnetically trapped on an atom chip. Very
long coherence times sustained by spin self-rephasing allow us to interrogate the atomic transition with 85%
contrast at 5-s Ramsey time. The clock exhibits a fractional frequency stability of 5.8 × 10−13 at 1 s and is likely to
integrate into the 10−15 range in less than a day. A detailed analysis of seven noise sources explains the measured
frequency stability. Fluctuations in the atom temperature (0.4 nK shot-to-shot) and in the offset magnetic field
(5 × 10−6 relative fluctuations shot-to-shot) are the main noise sources together with the local oscillator, which
is degraded by the 30% duty cycle. The analysis suggests technical improvements to be implemented in a future
second generation setup . The results demonstrate the remarkable degree of technical control that can be reached
in an atom chip experiment.
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I. INTRODUCTION

Atomic clocks are behind many everyday tasks and numer-
ous fundamental science tests. Their performance has made a
big leap through the discovery of laser cooling [1–3] giving
one the ability to control the atom position on the millimeter
scale. It has led to the development of atomic fountain
clocks [4,5] which have reached a stability limited only by
fundamental physics properties, i.e., quantum projection noise
and Fourier-limited linewidth [6]. While these laboratory-size
setups are today’s primary standards, mobile applications
such as telecommunication, satellite-aided navigation [7] or
spacecraft navigation [8] call for smaller instruments with liter-
scale volume. In this context, it is natural to consider trapped
atoms. The trap overcomes gravity and thermal expansion
and thereby enables further gain on the interrogation time.
It makes interrogation time independent of apparatus size.
Typical storage times of neutral atoms range from a few
seconds to minutes [9,10]. Thus a trapped-atom clock with
long interrogation times could measure energy differences in
the mHz range in one single shot. Hence, if trap-induced
fluctuations can be kept low, trapped atoms could not only
define time with this resolution, but could also be adapted
to measure other physical quantities like electromagnetic
fields, accelerations or rotations with very high sensitivity.
A founding step towards very long interrogation of trapped
neutral atoms was made in our group through the discovery of
spin self-rephasing [11] which sustains several tens of seconds
coherence time [11–13]. This rivals trapped-ion clocks, the
best of which has shown 65-s interrogation time and a stability
of 2 × 10−14 at 1 s [14,15].

It is to be compared to compact clocks using thermal
vapor and buffer gas [16–18] or laser cooled atoms [19–22].
Among these the record stability is 1.6 × 10−13 at 1 s [17].
Clocks with neutral atoms trapped in an optical lattice have
reached impressive stabilities down to the 10−18 range [23,24]
but their interrogation time is so far limited by the local
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oscillator. Research into making such clocks transportable is
ongoing [25,26]. We describe the realization of a compact
clock using neutral atoms trapped on an atom chip and analyze
trap-induced fluctuations.

Our “trapped-atom clock on a chip” (TACC) employs laser
cooling and evaporative cooling to reach ultracold tempera-
tures where neutral atoms can be held in a magnetic trap.
Realizing a 5-s Ramsey time, we obtain 100-mHz linewidth
and 85% contrast on the hyperfine transition of 87Rb. We
measure the fractional frequency stability as 5.8 × 10−13τ−1/2.
It is reproduced by analyzing several noise contributions,
in particular atom number, temperature, and magnetic field
fluctuations. The compact setup is realized through the atom
chip technology [27], which builds on the vast knowledge of
microfabrication. The use of atom chips is also widespread
for the study of Bose-Einstein condensates [9,28], degenerate
Fermi gases [29], and gases in low dimensions [30,31]. Other
experiments strive for the realization of quantum information
processors [32–34]. The high sensitivity and micron-scale po-
sition control have been used for probing static magnetic [35]
and electric [36] fields as well as microwaves [37]. Creating
atom interferometers [38] on atom chips is equally appealing.
Here, an on-chip high stability atomic clock not only provides
an excellent candidate for mobile timing applications, it also
takes a pioneering role among this broad range of atom chip
experiments, demonstrating that experimental parameters can
be mastered to the fundamental physics limit.

This paper is organized as follows: We first describe the
atomic levels and the experimental setup. Then we give the
evaluation of the clock stability and an analysis of all major
noise sources.

II. ATOMIC LEVELS

We interrogate the hyperfine transition of 87Rb (Fig. 1).
A two-photon drive couples the magnetically trappable states
|1〉 ≡ |F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = 1〉, whose
transition frequency exhibits a minimum at a magnetic
field near Bm ≈ 3.229 G [39,40]. This second-order depen-
dence strongly reduces the clock frequency sensitivity to
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FIG. 1. (Color online) Level scheme of the 87Rb ground state.
The two magnetically trappable clock states |F = 1,mF = −1〉 and
|F = 2,mF = 1〉 are coupled via a two-photon, microwave and
radiofrequency transition, where the microwave is tuned 500 kHz
above the |1, − 1〉 → |2,0〉 transition.

magnetic field fluctuations. It assures that atoms with different
trajectories within the trap still experience similar Zeeman
shifts. Furthermore, by tuning the offset magnetic field, the
inhomogeneity from the negative collisional shift [40] can
be compensated to give a quasi-position-invariant overall
shift [41]. Under these conditions of strongly reduced inhomo-
geneity we have shown that spin self-rephasing can overcome
dephasing and that coherence times of 58 ± 12 s [11] can be
reached. It confirms the possibility to create a high stability
clock [42].

III. EXPERIMENTAL SETUP

The experimental setup, details of which are given in [43],
is similar to compact atom chip experiments reported previ-
ously [44,45]. All experimental steps, laser cooling, evapo-
rative cooling, interrogation, and detection take place in an
∼(5 cm)3 glass cell where one cell wall is replaced by the
atom chip (Fig. 2). In this first-generation setup, a 25-l/s

FIG. 2. (Color online) (a) The implemented atom chip. One
identifies the Z-shaped coplanar waveguide which serves for atom
trapping and transport of the microwave interrogation signal. The
outer dimensions are 38 × 45.5 mm2. (b) The chip constitutes one of
the facets of the vacuum cell facilitating electrical contact. The cell
is surrounded by a 10 × 10 × 15 cm3 cage of Helmholtz coils and a
30-cm diameter optical table holding all optical beam expanders. The
cell is evacuated via standard UHV equipment.

TABLE I. Timing sequence of one experimental cycle. The total
cycle time is 16 s.

Operation Duration

MOT 6.85 s
Compressed MOT 20 ms
Optical molasses 5 ms
Optical pumping 1 ms
Magnetic trapping and compression 230 ms
RF evaporation 3 s
Magnetic decompression 700 ms
First Ramsey pulse 77.65 ms
Ramsey time 5 s
Second Ramsey pulse 77.65 ms
Time of flight (|1〉, |2〉) (5.5, 8.5) ms
Detection 20 μs

ion pump is connected via standard vacuum components. It
evacuates the cell to a pressure of ∼1 × 10−9 mbar. The cell is
surrounded by a 10 × 10 × 15 cm3 cage of Helmholtz coils.
A 30-cm diameter optical table holds the coil cage as well as
all beam expanders necessary for cooling and detection and is
surrounded by two layers of magnetic shielding.

The timing sequence (Table I) starts with a mirror MOT [44]
loading ∼3 × 106 atoms in ∼7 s from the background vapor.
The MOT magnetic field is generated by one of the coils and a
U-shaped copper structure placed behind the atom chip [46].
Compressing the MOT followed by 5 ms optical molasses
cools the atoms to ∼20 μK. The cloud is then optically
pumped to the |1〉 state and transferred to the magnetic
trap. It is gradually compressed to perform RF evaporation,
which takes ∼3 s. A 0.7-s decompression ramp transfers the
atoms to the final interrogation trap with trap frequencies
(ωx,ωy,ωz) = 2π × (2.7,92,74) Hz located 350 μm below the
surface. It is formed by two currents on the chip and two
currents in two pairs of Helmholtz coils. The currents are
supplied by home-built current supplies with relative stability
<10−5 at 3 A [47]. The final atom number is N = 2 − 4 × 104

and their temperature T ∼ 80 nK. The density is thus with n̄ ≈
1.5 × 1011 atoms/cm3 so low that the onset of Bose-Einstein
condensation would occur at 5 nK. With kBT /�ωx,y,z > 20
the ensemble can be treated by the Maxwell-Boltzmann
distribution. The trap lifetime γ −1 = 6.9 s is limited by
background gas collisions. The clock transition is interro-
gated via two-photon (microwave + radiofrequency) coupling,
where the microwave is detuned 500 kHz above the |1〉 to
|F = 2,mF = 0〉 transition (Fig. 1). The microwave is coupled
to a three-wire coplanar waveguide on the atom chip [43,45].
The interaction of the atoms with the waveguide evanescent
field allows one to reach single-photon Rabi frequencies of a
few kHz with moderate power ∼0 dBm. Since the microwave
is not radiated, interference from reflections, that can lead to
field zeros and time varying phase at the atom position, is
avoided. Thereby, the waveguide avoids the use of a bulky
microwave cavity. The microwave signal of fixed frequency
νMW ∼ 6.8 GHz is generated by a home-built synthesizer [48]
which multiplies a 100-MHz reference signal derived from
an active hydrogen maser [49] to the microwave frequency
without degradation of the maser phase noise. The actual
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phase noise is detailed in Sec. V B. The RF signal of variable
frequency νRF ∼ 2 MHz comes from a commercial DDS which
supplies a “standard” wire parallel to the waveguide. The
two-photon Rabi frequency is about � = 3.2 Hz making a
π/2 pulse last τp = 77.65 ms � 2π/ωz. The pulse duration
is chosen so that any Rabi frequency inhomogeneity, which
was characterized in [50], is averaged out and Rabi oscillations
show 99.5% contrast. Two pulses enclose a Ramsey time of
TR = 5 s. Detection is performed via absorption imaging.
A strongly saturating beam crosses the atom cloud and is
imaged onto a back illuminated, high quantum efficiency
CCD camera with frame transfer (Andor iKon M 934-BRDD).
Illumination (20 μs) without and with repump light, 5.5 ms and
8.5 ms after trap release, probes the F = 2 and F = 1 atoms
independently. Between these two, a transverse laser beam
blows away the F = 2 atoms. Numerical frame re-composition
generates the respective reference images and largely reduces
the effect of optical fringes [51]. Calculation of the optical
density and correction for the high saturation [52] give access
to the atom column density. The so found two-dimensional
(2D) atom distributions are fitted by Gaussians to extract
the number of atoms in each state N1,2. The transition
probability is calculated as P = N2/(N1 + N2) accounting for
total atom number fluctuations. The actual detection noise is
discussed in Sec. V A. The total time of one experimental cycle
is Tc = 16 s.

IV. STABILITY MEASUREMENT

Prior to any stability measurement we record the typical
Ramsey fringes. We repeat the experimental cycle while
scanning νLO = νMW + νRF over ∼3 fringes. Doing so for
various Ramsey times TR allows one to identify the central
fringe corresponding to the atomic frequency νat. Figure 3
shows typical fringes for TR = 5 s, where each point is a
single shot. One recognizes the Fourier limited linewidth
of 100 mHz equivalent to ∼1011 quality factor. The 85%
contrast is remarkable. A sinusoidal fit gives the slope at the
fringe half-height dP/dν = 13.4/Hz, which is used in the
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FIG. 3. (Color online) Typical Ramsey fringes recorded at TR =
5 s while scanning the local oscillator detuning. Each point corre-
sponds to a single experimental realization. One identifies the Fourier
limited linewdith of 100 mHz and the very good contrast of 85%.
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FIG. 4. (Color online) Relative frequency deviation when repeat-
ing the clock measurement over 18 h, (top) raw data, (bottom)
after correction by the simultaneously detected total atom number.
The blue dots represent single shots; red dots show an average
of 10 shots.

following stability evaluation to convert the detected transition
probability into frequency.

Evaluation of the clock stability implies repeating the
experimental cycle several thousand times. The clock is free
running, i.e., we measure the transition probability at each
cycle, but we do not feedback to the interrogation frequency
νLO. Only an alternation in successive shots from a small
fixed negative to positive detuning, �mod/(2π ) = ±50 mHz,
probes the left and right half-height of the central fringe. The
difference in P between two shots gives the variation of the
central frequency independent from long-term detection or
microwave power drifts. In the longest run, we have repeated
the frequency measurement over 18 h.

The measured frequency data is traced in Fig. 4 versus time.
Besides shot-to-shot fluctuations one identifies significant
long-term variations. Correction of the data with the atom
number, by a procedure we will detail in Sec. V C 1, results
in substantial improvement. We analyze the data by the Allan
standard deviation which is defined as [53]

σ 2
y (τ ) ≡ 1

2

�L/2l	−1∑
k=1

(ȳk+1 − ȳk)2. (1)

Here L is the total number of data points and the ȳk are
averages over packets of 2l successive data points with l ∈
{0,1, . . . �log2 L	} and τ = 2lTc. Figure 5 shows the Allan
standard deviation of the uncorrected and corrected data.
For 0 � l � 9 the points and their error bars are plotted as
calculated with the software STABLE32 [54]. This software
uses Eq. (1) to find the points. The error bars are calculated
as the 5%–95% confidence interval based on the appropriate
χ2 distribution. The software stops output at l = �log2 L	 − 2
since there are too few differences ȳk+1 − ȳk to give a statistical
error bar. Instead we directly plot all differences for l = 10
and 11.

The Allan standard deviation shows the significant im-
provement brought by the atom number correction. The un-
corrected data starts at τ = Tc = 16 s with σy = 1.9 × 10−13
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FIG. 5. (Color online) Allan standard deviation of the measured
clock frequency with (blue circles) and without (red diamonds) atom
number correction. For integration times smaller than 104 s, the points
and error bars are calculated using the software STABLE32. Above
104 s, the individual differences between successive packets of 1024
and 2048 measurements are given. The N -corrected data follows
initially 5.8 × 10−13τ−1/2 (blue dashed line). The quantum projection
noise and the local oscillator noise are given for reference.

shot-to-shot. For the N -corrected data, the shot-to-shot sta-
bility is σy = 1.5 × 10−13. Up to τ ≈ 100 s the corrected
frequency fluctuations follow a white noise behavior of
σy(τ ) = 5.8 × 10−13τ−1/2. At τ ≈ 1000 s, the fluctuations are
above the τ−1/2 behavior but decrease again at τ > 5000 s. For
τ > 104 s, three of the four individual differences are below
10−14. This lets us expect that a longer stability evaluation
would indeed confirm a stability in the 10−15 range with
sufficient statistical significance. The “shoulder” above the
white noise behavior is characteristic for an oscillation at a
few 103-s half-periods. Indeed, this oscillation is visible in the
raw data in Fig. 4. Its cause is yet to be identified through
simultaneous tracking of many experimental parameters—a
task which goes beyond the scope of this paper.

Table II gives a list of identified shot-to-shot fluctuations
that contribute to the clock frequency noise. Treating them as
statistically independent and summing their squares gives a

TABLE II. List of identified contributions to the clock
(in)stability. Atom temperature fluctuations dominate followed by
magnetic field fluctuations and local oscillator noise. The quadratic
sum of all contributions explains the measured stability.

Relative frequency stability (10−13) Shot-to-shot At 1 s

Measured, without correction 2.0 7.2
Measured, after N correction 1.5 5.8
Atom temperature 1.0 3.9
Magnetic field 0.7 2.6
Local oscillator 0.7 2.7
Quantum projection 0.4 1.5
N correction 0.4 1.5
Atom loss 0.3 1.1
Detection 0.3 1.1
Total estimate 1.5 6.0

fractional frequency fluctuation of 1.5 × 10−13 shot-to-shot or
6.0 × 10−13 at 1 s, corresponding to the measured stability. We
have thus identified all major noise sources building a solid
basis for future improvements. In the following we discuss
each noise contribution in detail.

V. NOISE ANALYSIS

In a passive atomic clock, an electromagnetic signal
generated by an external local oscillator (LO) interacts with an
atomic transition. The atomic transition frequency νat is probed
by means of spectroscopy. The detected atomic excitation
probability P is either used to correct the LO online such
that νLO = νat, or, as applied here, the LO is left free running
and the measured differences (νLO − νat)(t) are recorded for
post-treatment. The so calibrated LO signal is the useful clock
output.

When concerned with the stability of the output frequency,
we have to analyze the noise of each element within this
feedback loop, i.e., as below.

(A.) Noise from imperfect detection.
(B.) Folded-in fluctuations of the LO frequency known as

Dick effect.
(C.) Fluctuations of the atomic transition frequency induced

by interactions with the environment or between the atoms.
We begin by describing the most intuitive contribution (A.

detection noise) and finish by the most subtle (C. fluctuations
of the atomic frequency).

A. Detection and quantum projection noise

The clock frequency is deduced from absorption imaging
the atoms in each clock state as described in Sec. III. N1 and
N2 are obtained by fitting Gaussians to the atom distribution,
considering a square region of interest of ∼3 × 3 cloud widths.

Photon shot noise and optical fringes may lead to atom
number fluctuations of standard deviation σdet. These fluctu-
ations add to the true atom number. Analyzing blank images,
we confirm that σ 2

det increases as the number of pixels in the
region of interest and that optical fringes have been efficiently
suppressed [51]. This scaling has led to the choice of short
times of flight where the atoms occupy fewer pixels [55].
Supposing the same σdet for both states, we find for the
transition probability noise σP,det = σdet/(

√
2N ) with N =

N1 + N2.
Another P degradation may occur if the Rabi frequency of

the first pulse fluctuates or if the detection efficiency varies
between the |1〉 and |2〉 detection. The latter may arise from
fluctuations of the detection laser frequency on the time scale of
the 3-ms difference in time of flight. Both fluctuations induce a
direct error σP,Rf+lf on P independent from the atom number.

Quantum projection noise is a third cause for fluctuations
in P . This fundamental noise arises from the fact that the
detection projects the atomic superposition state onto the
base states. Before detection, the atom is in a near-equal
superposition of |1〉 and |2〉. The projection then can result
in either base state with equal probability giving σQPN = 1/2
for one atom. Running the clock with N (nonentangled)
atoms is equivalent to N successive measurement resulting
in σP,QPN = 1/(2

√
N ) shot-to-shot.
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FIG. 6. (Color online) Characterization of the detection noise.
Only a single π/2 pulse is applied and P = N2/N detected. The
shot-to-shot Allan deviation is plotted as a function of the total atom
number. We fit the data with the quadratic sum of the detection noise
σdet/(

√
2N ), the quantum projection noise 1/(2

√
N ), and the Rabi

frequency and laser frequency noise σP,Rf+lf . The fit gives σdet = 59
atoms and σP,Rf+lf < 10−4.

We quantify the above three noise types from an inde-
pendent measurement: Only the first π/2 pulse is applied
and P is immediately detected. The measurement is repeated
for various atom numbers and σP (N ) is extracted. Figure 6
shows the measured σP shot-to-shot versus N . Considering
the noise sources as statistically independent, we fit the data
by σ 2

P = σ 2
det/(2N2) + 1/(4N ) + σ 2

P,RF+lf and find σdet = 59
atoms and σP,RF+lf < 10−4. σdet is equivalent to an average
of 2.2 atoms/pixel for our very typical absorption imaging
system. The low σRF+lf proves an excellent passive microwave
power stability < 2.5 × 10−4, which may be of use in other
experiments, in particular microwave dressing [56,57].

During the stability measurement of Fig. 4 about 20 000
atoms are detected, which is equivalent to σy,QPN = 0.4 ×
10−13 shot-to-shot. The detection region of interest is slightly
bigger than for the above characterization, so that σdet = 69
atoms, corresponding to σy,det = σdet(νatN )−1|dP/dν|−1 =
σdet√
2N

1
νat13.4 = 0.3 × 10−13 shot-to-shot. In both we have used

dP/dν as measured in Fig. 3.

B. Local oscillator noise

The experimental cycle probes νat − νLO only during the
Ramsey time. Atom preparation and detection cause dead time.
Repeating the experimental cycle then constitutes periodic
sampling of the LO frequency and its fluctuations. This, as is
well known from numerical data acquisition, leads to aliasing.
It folds high Fourier frequency LO noise close to multiples of
the sampling frequency 1/Tc back to low frequency variations,
which degrade the clock stability. Thus even high Fourier
frequency noise can degrade the clock signal. The degradation
is all the more important as the dead time is long and
the duty cycle d = TR/Tc is low. This stability degradation
σy,Dick is known as the Dick effect [58]. It is best calculated
using the sensitivity function g(t) [59]: During dead time,
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FIG. 7. (Color online) Phase noise power spectral density of the
local oscillator. The frequency multiplication chain and the 100-MHz
reference signal are characterized separately. The beat between two
quasi-identical chains is performed at 6.8 GHz (red). The beat of
the reference signal against a cryogenic sapphire oscillator is taken
at 100 MHz and scaled to 6.8 GHz (black). The noise of the
reference signal dominates in the low frequency part, where our
clock is sensitive. Both results are above the intrinsic noise of the
measurement system (blue).

g = 0 whereas during TR , when the atomic coherence |ψ〉 =
(|1〉 + eiφ |2〉)/√2 is fully established g = 1. During the first
Ramsey pulse, when the coherence builds up, g increases as
sin �t for a square pulse and decreases symmetrically for the
second pulse [60]. Then the interrogation outcome is

δν =
∫ Tc/2
−Tc/2 (νat(t) − νLO(t))g(t) dt∫ Tc/2

−Tc/2 g(t) dt
, (2)

with

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

a sin �(TR/2 + τp + t) −τp − TR

2 � t � − TR

2
a sin �τp − TR

2 � t < TR

2
a sin �( TR

2 + τp − t) TR

2 � t � TR

2 + τp

0 otherwise.
(3)

Typically �τp = π/2 and, for operation at the fringe half-
height, a = sin �modTR = 1. Because of the periodicity of
repeated clock measurements, it is convenient to work in
Fourier space with

gl = 1

Tc

∫ Tc/2

−Tc/2
g(t) cos(2πl t/Tc)dt. (4)

Using the power spectral density of the LO frequency noise
S

f
y (f ) (see Fig. 7), the contribution to the clock stability

becomes the quadratic sum over all harmonics [59],

σ 2
y,Dick(τ ) = 1

τ

∞∑
l=1

(
gl

g0

)2

Sf
y (l/TC). (5)

Here we have assumed νat constant in time; its fluctuations
are treated in the next section. The coefficients (gl/g0)2 are
shown as points in Fig. 8 for our conditions. The weight of the
first few harmonics is clearly the strongest, rapidly decaying
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FIG. 8. (Color online) (black) Same data as Fig. 7 now expressed
as fractional frequency fluctuations Sy = f 2Sφ/ν2

MW. (Red) Fourier
coefficients of the sensitivity function (gl/g0)2 for our conditions
(Tc = 16 s, TR = 5 s and τp = 77.65 ms). Multiplication of the two
gives the stability degradation known as Dick effect.

over six decades in the range 1/Tc ≈ 0.1 Hz to 1/τp ≈ 10 Hz.
Above ∼10 Hz the gl are negligible.

To measure S
f
y (f ) we divide our LO into two principal

components: the 100-MHz reference signal derived from
the hydrogen maser and the frequency multiplication chain
generating the 6.8-GHz interrogation signal. We characterize
each independently by measuring the phase noise spectrum
Sφ(f ). The fractional frequency noise S

f
y (f ) is obtained from

simple differentiation as S
f
y (f ) = f 2Sφ(f )/ν2

MW [59]. The
frequency noise of the RF signal can be neglected as its relative
contribution is 3 orders of magnitude smaller.

We characterize the frequency multiplication chain by
comparing it to a second similar model also constructed
in-house. The two chains are locked to a common 100-MHz
reference and their phase difference at 6.834 GHz is measured
as a dc signal using a phase detector (Miteq DB0218LW2)
and a FFT spectrum analyzer (SRS760). The measured Sφ(f )
is divided by 2 assuming equal noise contributions from the
two chains. It is shown in Fig. 7. It features a 1/f behavior
up to f = 10 Hz and reaches a phase flicker floor of −115 dB
rad2/Hz at 1 kHz. The peak at f = 200 Hz is due to the phase
lock of a 100-MHz quartz inside the chain to the reference
signal. As we will see in the following, its contribution to the
Dick effect is negligible.

The 100-MHz reference signal is generated by a
100-MHz quartz locked to a 5-MHz quartz locked with 40
mHz bandwidth to an active hydrogen maser (VCH-1003M).
We measure this reference signal against a 100-MHz signal
derived from a cryogenic sapphire oscillator (CSO) [61,62].
Now the mixer is M/A-COM PD-121. The CSO is itself locked
to the reference signal but with a time constant of ∼1000 s [63].
This being much longer than our cycle time, we can, for our
purposes, consider the two as free running. The CSO is known
from prior analysis [64] to be at least 10 dB lower in phase
noise than the reference signal for Fourier frequencies higher
than 0.1 Hz. Thus the measured noise can be attributed to
the reference signal for the region of the spectrum f > 1/Tc

where our clock is sensitive. The phase noise spectrum is
shown in Fig. 7. For comparison it was scaled to 6.8 GHz by

adding 37 dB. Several maxima characteristic of the several
phase locks in the systems can be identified. At low Fourier
frequencies, the reference signal noise is clearly above the
chain noise. For all frequencies, both are well above the noise
floor of our measurement system. The noise of the reference
signal being dominant in the range 1/Tc to 1/τp, where our
clock is sensitive, we neglect the chain noise in the following.

Using Eq. (5), we estimate the Dick effect contribution
as σy,Dick = 2.7 × 10−13τ−1/2. This represents the second
biggest contribution to the noise budget (Table II). It is due
to the important dead time and the long cycle time which folds
in the LO noise spectrum where it is strongest. Improvement is
possible, first of all, through reduction of the dead time which
is currently dominated by the ∼7-s MOT loading phase and
the 3-s evaporative cooling. Options for faster loading include
pre-cooling in a 2D MOT [65] or a single-cell fast pressure
modulation [66]. Utilization of a better local oscillator like
the cryogenic sapphire oscillator seems obvious but defies
the compact design. Alternatively, generation of low phase
noise microwaves from an ultrastable laser and femtosecond
comb has been demonstrated by several groups [67–69] and
ongoing projects aim at miniaturization of such systems [70].
If a quartz local oscillator remains the preferred choice,
possibly motivated by cost, one long Ramsey time must be
divided into several short interrogation intervals interlaced by
nondestructive detection [71–73].

C. Fluctuations of the atomic frequency

1. Atom number fluctuation

Having characterized the fluctuations of the LO frequency,
we now turn to fluctuations of the atomic frequency. We begin
by atom number fluctuations. Due to the trap confinement
and the ultracold temperature, the atom density is 4 orders of
magnitude higher than what is typically found in a fountain
clock. Thus the effect of atom-atom interactions on the
atomic frequency must be taken into account even though
87Rb presents a substantially lower collisional shift than the
standard 133Cs. Indeed, when plotting the measured clock
frequency against the detected atom number N = N1 + N2,
which fluctuates by 2%–3% shot-to-shot, we find a strong
correlation (Fig. 9). The distribution is compatible with a linear
fit with slope k = −2.70(7) μHz/atom. In order to confirm
this value with a theoretical estimate we use the mean-field
approach and the s-wave scattering lengths aij which depend
on the atomic states only [40]:

�νC(
r) = 2�

m
n(
r)[(a22 − a11) + (2a12 − a11 − a22)θ ],

(6)

where n(
r) is the position-dependent density and a11 =
100.44a0, a22 = 95.47a0, and a12 = 98.09a0 are the scattering
lengths with a0 = 0.529 × 10−10 m [40]. We assume perfect
π/2 pulses and so θ ≡ (N1 − N2)/N = 0. Integrating over the
Maxwell-Boltzmann density distribution we get

�νC = N
−�(a11 − a22)

√
mωxωyωz

4(πkBT )3/2
. (7)
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FIG. 9. (Color online) Correlation between the detected atom
number and the clock frequency for the data of Fig. 4. Fitting with
a linear regression gives k = −2.70(7) μHz/atom, which allows one
to correct the clock frequency at each shot and yields substantial
stability improvement.

We must consider that the atom number decays during the
TR = 5 s since the trap lifetime is γ −1 = 6.9 s. We replace N

by its temporal average,

N = 1

TR

∫ TR

0
Nie

−γ tdt = Ni

1 − e−γ TR

γ TR

= Nf

eγTR − 1

γ TR

≈ 1.47 Nf , (8)

where Ni and Nf are the initial and final atom numbers,
respectively. Note that Nf is the detected atom number.
Using T = 80 nK, which is compatible with an independent
measurement, we recover the experimental collisional shift of
k = −2.7 μHz/(detected atom). It is equivalent to an overall
collisional shift of �νC = −54 mHz for Nf = 20 000.

Using k and the number of atoms detected at each shot we
can correct the clock frequency for fluctuations. The corrected
frequency is given in Fig. 4 showing a noticeable improvement
in the short-term and long-term stability. The Allan deviation
indicates a clock stability of 5.8 × 10−13τ−1/2 at short term
as compared to 7.2 × 10−13τ−1/2 for the uncorrected data. At
long term the improvement is even more pronounced. This
demonstrates the efficiency of the N correction. Furthermore,
the experimentally found k shows perfect agreement with our
theoretical prediction so that the theoretical coefficient can in
the future be used from the first shot on without the need for
post-treatment.

While we have demonstrated the efficiency of the atom
number correction, the procedure has imperfections for two
reasons: The first, of technical origin, are fluctuations in
the atom number detectivity as evaluated in Sec. V A. The
second arises from the fact that atom loss from the trap
is a statistical process. For the first, we get σy,correction =√

2|k|σdet/νat = 0.4 × 10−13 shot-to-shot. This value is well
below the measured clock stability, but may become important
when other noise sources are eliminated. It can be improved
by reducing the atom density and thus k or by better detection,
in particular at shorter time of flight where the camera region

of interest can be smaller. The second cause, the statistical
nature of atom loss, translates into fluctuations that in principle
cannot be corrected. The final atom number Nf at the end of
the Ramsey time is known from the detection, but the initial
atom number Ni can only be retraced with a statistical error. To
estimate this contribution we first consider the decay from the
initial atom number Ni . At time t , the probability for a given
atom to still be trapped is e−γ t and the probability to have left
the trap is 1 − e−γ t . Given Ni , the probability p to have Nt

atoms at t is proportional to e−Ntγ t (1 − e−γ t )Ni−Nt and to the
number of possible combinations:

p(Nt given Ni) = Ni!

Nt !(Ni − Nt )!
e−Ntγ t (1 − e−γ t )Ni−Nt .

(9)
The sum of this binomial distribution over all 0 � Nt � Ni

is by definition normalized. We are interested in the opposite
case: Since we detect Nf at t = TR , we search the probability
of Nt given Nf .

p(Nt given Nf ) = ANt !

Nf !(Nt − Nf )!

× e−Nf γ (TR−t)(1 − e−γ (TR−t))Nt−Nf . (10)

The combinatorics are as in Eq. (9) when replacing Nt → Nf

and Ni → Nt , but now normalization sums over 0 � Nt < ∞.
Here it is convenient to approximate the binomial distribution
by the normal distribution,

p(Nt given Nf ) ≈ A√
2πη

e−(Nf −Nte
−γ (TR−t))2/(2η), (11)

with η = Nte
−γ (TR−t)(1 − e−γ (TR−t)) and hence A = e−γ (TR−t).

Then, the mean of Nt is

〈Nt 〉 = (Nf + 1)eγ (TR−t) − 1 ≈ Nf eγ (TR−t), (12)

and its statistical error,

σNt
=

√
(1 − eγ (TR−t))(2 − (Nf + 2)eγ (TR−t))

≈
√

Nf (eγ (TR−t) − 1)eγ (TR−t). (13)

Setting t = 0, we get σNi
= 210. Integrating σNt

over TR gives
σN = 113 ≈ σNi

/2 and a frequency fluctuation of σy,losses =
0.3 × 10−13 shot-to-shot. This can be improved by increasing
the trap lifetime well beyond the Ramsey time, which for our
setup implies better vacuum with lower background pressure.
Alternatively one can perform a nondestructive measurement
of the initial atom number [74]. Assuming an error of 80
atoms on such a detection would decrease the frequency noise
to σy,losses = 0.1 × 10−13 shot-to-shot.

2. Magnetic field and atom temperature fluctuations

We have analyzed the effect of atom number fluctuations.
Two other parameters strongly affect the atomic frequency: the
atom temperature and the magnetic field. We show that their
influence can be evaluated by measuring the clock stability
for different magnetic fields at the trap center. We begin by
modeling the dependence of the clock frequency.

Our clock operates near the magic field Bm ≈ 3.229 G for
which the transition frequency has a minimum of -4497.31 Hz

012106-7



SZMUK, DUGRAIN, MAINEULT, REICHEL, AND ROSENBUSCH PHYSICAL REVIEW A 92, 012106 (2015)

with respect to the field free transition,

�νB(
r) = b(B(
r) − Bm)2, (14)

with b ≈ 431 Hz/G2. For atoms trapped in a harmonic
potential in the presence of gravity, the Zeeman shift becomes
position dependent,

�νB(
r) = bm2

μ2
B

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2 − 2gz + δB

μB

m

)2

,

(15)
with δB ≡ B(
r = 0) − Bm and g the gravitational acceler-
ation [41]. Using the Maxwell-Boltzmann distribution the
ensemble averaged Zeeman shift is

�νB = b

μ2
B

(
4g2mkBT

ω2
z

+ 15k2
BT 2

+ 6μBδBkBT + δB2μ2
B

)
. (16)

Differentiation with respect to δB leads to the effective magic
field,

δBB
0 = −3kBT

μB

, (17)

where the ensemble averaged frequency is independent from
magnetic field fluctuations. For T = 80 nK, δBB

0 = −3.6 mG
whose absolute value almost coincides with the magnetic

field inhomogeneity across the cloud, (B(
r)2 − B
2
)1/2 =√

6kBT /μB = 2.92 mG. δBB
0 is close to the field of maximum

contrast δBC
0 ≈ −40 mG such that the fringe contrast is still

85% (Fig. 10).
If δB �= δBB

0 is chosen the clock frequency fluctuations due
to magnetic field fluctuations are

σy,B = 2b

νat

∣∣δBB
0 − δB

∣∣σB. (18)

We will use this dependence to measure σB .
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FIG. 10. (Color online) Fringe contrast (top) and differential
Zeeman shift (bottom) of the clock frequency with respect to the
frequency minimum for various magnetic fields. δB = 0 indicates the
magic field of 3.229 G. The contrast maximum is offset by −40 mG.

Temperature fluctuations affect the range of magnetic fields
probed by the atoms and the atom density, i.e., the collisional
shift. Differentiation of both with respect to temperature also
leads to an extremum, where the clock frequency is insensitive
to temperature fluctuations. The extremum puts a concurrent
condition on the magnetic field with

δBT
0 = −

15kBT + 2g2m

ω2
z

3μB

− �(a11 − a22)(eγTR − 1)
√

mNf μBωxωyωz

16π3/2b(kBT )5/2γ TR

. (19)

For our conditions, δBB
0 = −3.6 mG and δBT

0 = −79 mG
are not identical but close and centered around δBC

0 . We will
see in the following that a compromise can be found where the
combined effect of magnetic field and temperature fluctuations
is minimized. A “doubly magic” field cannot be found as
always δBT

0 < δBB
0 , but lower T reduces their difference. If

δB �= δBT
0 is chosen, the clock frequency fluctuations due to

temperature fluctuations are

σy,T = 6bkB

μBνat

∣∣δBT
0 − δB

∣∣σT , (20)

thus varying δB allows to measure σT , too.
We determine σB and σT experimentally by repeating

several stability measurements for different δB over a range
of 200 mG where the contrast is above 70%. The shot-to-shot
stability is shown in Fig. 11. One identifies a clear minimum
of the instability at δB ≈ −35 mG, which coincides with δBC

0
and is a compromise between the two optimal points δBT

0 and
δBB

0 . This means that both magnetic field and temperature
fluctuations are present with roughly equal weight. We model
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FIG. 11. (Color online) Shot-to-shot clock stability for various
magnetic fields. Error bars are smaller than the point size. One
observes a clear optimum at δB = −35 mG. Fitting with the
quadratic sum of all identified noise contributions allows one to
quantify the atom temperature fluctuations (0.4 nK shot-to-shot)
and magnetic field fluctuations (16 μG shot-to-shot). The individual
contributions are shown as dashed lines. Two sweet spots exist
where the temperature dependence and the magnetic field dependence
vanish.
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the data with a quadratic sum of all so far discussed noise
sources. Most of them give a constant offset; the slight
variation due to the contrast variation shown in Fig. 10 is
negligible. σy,B and σy,T are fitted by adjusting σB and σT . We
find shot-to-shot temperature fluctuations of σT = 0.44 nK
or 0.55% relative to 80 nK. The shot-to-shot magnetic field
fluctuations are σB = 16 μG or 5 × 10−6 in relative units. The
values demonstrate our exceptional control of the experimental
apparatus. Because the ambient magnetic field varies by <10
mG and the lowest magnetic shielding factor is 3950, we
attribute σB to the instability of our current supplies. Indeed, it
is compatible with the measured relative current stability [47].
The atom temperature fluctuations are small compared to a
typical experiment using evaporative cooling. This may again
be due to the exceptional magnetic field stability, since the
atom temperature is determined by the magnetic field at the
trap bottom during evaporation and the subsequent opening
of the magnetic trap. At all stages, the current control is the
most crucial. Using Eqs. (18) and (20), the temperature and
magnetic field fluctuations translate into a frequency noise
of σy,T = 1.0 × 10−13 and σy,B = 0.7 × 10−13 shot-to-shot,
respectively. The comparison in Table II shows that these
are the main sources of frequency instability together with
the Dick effect. Therefore, improving the magnetic field and
temperature noise is of paramount importance. The atom
temperature can in principle be extracted from the absorption
images, which we take at each shot. Analysis of the data set
of Fig. 4 gives shot-to-shot fluctuations of σT /T = 2 − 4%,
which is much bigger than the 0.55% deduced above. We
therefore conclude that the determination of the cloud width is
overshadowed by a significant statistical error. Nevertheless,
it needs to be investigated, whether better detection and/or
imaging at long time of flight, may reduce this error. The
magnetic field stability may be improved by refined power
supplies, the use of multiwire traps [75], microwave dress-
ing [57] or ultimately the use of atom chips with permanent

magnetic material [76–78]. If the magnetic field fluctuations
can be reduced, the temperature fluctuations may also reduce.
Small σB would also allow one to operate nearer δBT

0 .

VI. CONCLUSION

We have built and characterized a compact atomic clock
using magnetically trapped atoms on an atom chip. The clock
stability reaches 5.8 × 10−13 at 1 s and is likely to integrate
into the 10−15 range in less than a day. This is similar to the
performance of the best compact atomic microwave clocks
under development. It furthermore demonstrates the high
degree of technical control that can be reached with atom chip
experiments. After correction for atom number fluctuations,
variations of the atom temperature and magnetic field are the
dominant causes of the clock instability together with the local
oscillator noise. The magnetic field stability may be improved
by additional current sensing and feedback and ultimately by
the use of permanent magnetic materials. This would allow
one to operate nearer the second sweet spot where the clock
frequency is independent from temperature fluctuations. The
local oscillator noise takes an important role, because the clock
duty cycle is <30%. We are now in the process of designing a
second version of this clock, incorporating fast atom loading
and nondestructive atom detection. We thereby expect to
reduce several noise contributions to below 1 × 10−13τ−1/2.
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operation of the maser and the CSO. This work was supported
within the European Metrology Research Programme (EMRP)
under the project IND14. The EMRP is jointly funded by
the EMRP participating countries within EURAMET and the
European Union.

[1] C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).
[2] S. Chu, Rev. Mod. Phys. 70, 685 (1998).
[3] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).
[4] M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe, Phys. Rev.

Lett. 63, 612 (1989).
[5] A. Clairon, C. Salomon, S. Guellati, and W. Phillips, Europhys.

Lett. 16, 165 (1991).
[6] G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann,

S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82,
4619 (1999).

[7] J. M. Dow, R. Neilan, and C. Rizos, Geodes. 83, 191 (2009).
[8] T. Ely, J. Seubert, J. Prestage, and R. Tjoelker, in 23rd Meeting

on AAS/AIAA Spaceflight Mechanics 2013, Kauai, HI, United
States (AIAA, Reston, VA, 2013).

[9] H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and
C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).

[10] D. Harber, J. McGuirk, J. Obrecht, and E. Cornell, J. Low Temp.
Phys. 133, 229 (2003).

[11] C. Deutsch, F. Ramirez-Martinez, C. Lacroûte, F. Reinhard,
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