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Context of the research work: 

 

The field of atom interferometry has rapidly developed since the last 30 years and enable 

precision measurements by mapping the physical quantity of interest to a phase shift determined 

using interferometric techniques [1]. 

Free-fall atom interferometers [2] are extraordinarily sensitive to external forces and find key 

applications as gravimeters, gradiometers, and gyroscopes in applied physics and fundamental 

science [3]. State-of-the-art devices use N uncorrelated atoms and their phase estimation 

uncertainty is lower bounded by the standard quantum limit (SQL): Δ𝜙𝑆𝑄𝐿 = 1/√𝑁, where N 

is the number of atoms. Since N is generally constrained by the experimental apparatus or by 

the onset of unwanted systematic effects due to the high density, the possibility to overcome 

the SQL by engineering specific quantum correlations [5] between the atoms is attracting 

increasing interest [6]. A major breakthrough in the field of Quantum Metrology relies in the 

use of entangled states to fully exploit quantum advantages and ultimately reach the Heisenberg 

limit: Δ𝜙𝐻 = 1/𝑁. 

Quantum-enhanced atom interferometry has mainly focused on atomic clocks [7] and 

magnetometers [8] and so far, free-fall atom interferometers have received less attention [9]. 

These measurement devices have stringent practical requirements. The generation of atomic 

entanglement must be compatible with the splitting of the atomic wave packets in well-defined 

and well-controlled external momentum modes with high efficiencies. Very recently, Bose-

Einstein condensates (BECs) have been pinpointed as ideal candidates [10, 11] and a scheme 

based on the “Delta-kick Squeezing” method, illustrated in Figure 1, has been proposed [12]. 

 

M2-project:  

 

The project aimed to be developed in close interaction with the experimental team with the 

development of analytical and numerical simulations to study the creation of spin-squeezing 

dynamic [13]. The first objective consist on the study of the dynamic of Bose-Einstein 

condensate based on analytical and full-numerical simulations. The goal is to highlight different 

experimental configurations leading to spin-squeezing dynamics [13]. The second objective 

consist on an analytical study of presence or not of spin-squeezing dynamic in the output port 

of the interferometer when experimental imperfections are present.    

 

Prerequisites: Quantum-optics, Quantum-mechanics, cold atoms, knowledge in C or 

Fortran90 or Python or Matlab, a pronounced taste for numerical and analytical calculations. 
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Extension & PhD-project:  

 

You have a taste for theoretical work at the interface with real experiments at the state of the 

art in the field and you would like to take them further with theoretical protocols ? 

 

The PhD candidate will contribute to a breakthrough in the field of Quantum-Enhanced 

Metrology measurement with atom-interferometer with a full simulation of the “Delta-kick 

Squeezing” protocol currently under investigation in a real quantum-gravimeter developed at 

SYRTE.    

 

The candidate will benefit from pre-existing results from the team in the field, as well as long-

standing collaborations with external theoretical and experimental partners. The candidate will 

interact with different experimental team to test her/his protocols on state-of-the-art devices.  

 

 

 
Figure 1 : Concept of the Delta-kick Squeezing and atom-interferometry measurement. Panel a: A 

preliminary quantum-state preparation enables the creation of spin-squeezed state by the combination 

of an atomic lens (b) and three atom-light pulses (c) reproducing optical beam-splitter and mirror 

elements. The generated quantum state is used in a Mach-Zehnder atom-like interferometer. The phase 

accumulated is evaluated by counting the number of atoms at the output port (detection). The quantum-

state evolution is shown in light blue within a quantum-optic representation where  𝐽𝑦 ≡ 𝑥 and 𝐽𝑧 ≡ 𝑝̂. 

The initial input state is an interacting BEC. After dilution and before the first 𝜋/2-pulse generating a 

coherent spin-state (blue disk) an atomic lens consisting in flashing for a short duration an harmonic 

trap is applied to focus the BEC at a later point (b). The atom-atom interaction plays the role of a Kerr 

non-linear medium and deforms the quadrature of the quantum state through the One-Axis-Twisting 

dynamic (OAT) [13]. Panel b: Principal of the atom lens to focus the BEC at a given time in analogy to 

optics. Panel c: Principal of the two-photon transition to imprint a momentum kick to one part of the 

quantum state generating the separation of the two partial-waves in analogy to optics. The quantum state 

can be described by a 2-level system and the quantum superposition can be controlled through the 

interaction between the atoms and the light for a duration 𝜏 with the effective Rabi frequency 𝛺𝑅 . 
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