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We present a treatment of the nonlinear matter-wave propagation inspired by optical methods, which in-
cludes interaction effects within the atom-optics equivalent of the aberrationless approximation. The atom-
optical ABCD-matrix formalism, considered so far for noninteracting clouds, is extended perturbatively beyond
the linear regime of propagation. This approach, applied to discuss the stability of a matter-wave resonator
involving a free-falling sample, agrees very well with the predictions of the full nonlinear paraxial wave
equation. An alternative optical treatment of interaction effects, based on the aberrationless approximation and

suitable for cylindrical paraxial beams of uniform linear density, is also adapted for matter waves.
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I. INTRODUCTION

Light and matter fields are governed by similar equations
of motion [1]. Both photons and atoms interact in a sym-
metrical manner: atom-atom interactions are mediated
through photons, while photon-photon interactions are medi-
ated through atoms. Before the advent of Bose-Einstein con-
densation, two groups realized independently that atomic in-
teractions give rise to a cubic nonlinearity in the propagation
equation analogous to that induced by the Kerr effect [2,3].
Following this analogy, the field of nonlinear atom optics
emerged in the last decade, leading to the experimental veri-
fication with matter waves of several well-known nonlinear
optical phenomena': the four-wave mixing [4], the formation
of solitons [5-8] and of vortices [9,10], the super-radiance
[11], and the coherent amplification [12]. The nonlinear
propagation of matter waves has been the object of extensive
experimental [13,14] and theoretical work, among which the
time-dependent Thomas-Fermi approximation [15], the
variational approach [16], and the method of moments [17].
These treatments have been used successfully to obtain ana-
Iytical expressions in good agreement with the exact solution
of the three-dimensional (3D) nonlinear Schrodinger equa-
tion (NLSE).

There exists, for cylindrical wave packets propagating in
the paraxial regime, a very elegant method to handle this
equation which has been used in optics to treat self-focusing
effects [18,19]. It relies on the “aberrationless approxima-
tion,” assuming that the nonlinearity is sufficiently weak as
to preserve the shape of a fundamental Gaussian mode, and it
involves a generalized complex radius of curvature. This
treatment is equally relevant for the paraxial propagation of
cylindrical matter waves, and it is presented in this context in
Appendix A. Unfortunately, the assumptions required—such
as the constant longitudinal velocity and the paraxial

1Many other optical phenomena have also been verified with mat-
ter waves. A short list includes interferences [43] and diffraction
phenomena [3,54], the temporal Talbot effect [55], and the influence
of spatial phase fluctuations on interferometry [56]. New effects
arise also with rotating condensates [57].
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propagation—Ilimit the scope of this approach, which ap-
pears as too stringent to describe the matter-wave propaga-
tion in most experiments.

This motivates the presentation of a different analytical
method to obtain approximate solutions for the NLSE in a
more general propagation regime. This is the central contri-
bution of this paper, which exposes a perturbative matrix
analysis especially well suited to discuss the stability of a
matter-wave resonator. With a Hamiltonian quadratic in po-
sition and momentum operators, and in the absence of
atomic interactions, the Schrodinger equation admits a basis
of Gaussian solutions. Their evolution is easily obtained
through a time-dependent matrix denoted “ABCD” [1,20], in
analogy with the propagation of optical rays in optics [21]. In
the aberrationless approximation, it is possible to extend this
treatment to include perturbatively interaction effects and ob-
tain the propagation of a fundamental Gaussian mode with a
modified ABCD matrix. As an illustration of this method, the
stability of a matter-wave resonator is analyzed thanks to this
ABCD matrix, which encapsulates the divergence resulting
from the mean-field potential. An ABCD-matrix approach
was already used in [13] to characterize the divergence of a
weakly output coupled atom laser beam due to interactions
with the source condensate. The present treatment is sensibly
different, since it is not restricted to the paraxial regime and
since it addresses rather self-interaction effects in the beam
propagation. An ABCD matrix, including self-focusing ef-
fects, is computed in Sec. IV, and used to model the propa-
gation of an atomic sample in a matter-wave resonator. Self-
focusing is also discussed through an alternative method
exposed in Appendix A.

Our approach is indeed mainly inspired from previous
theoretical developments in optics, which aimed at treating
the wave propagation in a Kerr medium through such a ma-
trix formalism [18]. An approach of the nonlinearity based
on the resulting frequency-dependent diffraction [22] suc-
cessfully explained the asymmetric profile of atomic and mo-
lecular intracavity resonances [23], as well as the dynamics
of Gaussian modes in ring and two-isotope lasers [24,25].
Later, a second-order polynomial determined by a least-
squares fit of the wave intensity profile was considered to
model the Kerr effect [26]. In this paper, we explore the

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.79.043613

F. IMPENS AND CH. J. BORDE

quantum-mechanical counterpart of this strategy: mean-field
interactions are modeled thanks to a second-order polyno-
mial, determined perturbatively from the wave function, and
which can be interpreted in optical terms.

II. LENSING POTENTIAL

One considers the propagation of a zero-temperature con-
densate in a uniform gravity field and in the mean-field ap-
proximation. The corresponding Hamiltonian reads

A2

H="—+mgz+g|bE0]. (1)
gy 1s the coupling constant related to the s-wave scattering
length a and to the number of atoms N by g,=4mN#h’a/m.
Our purpose is to approximate the mean-field potential
g/|¢(x,1)|? by an operator leading to an easily solvable wave
equation and as close as possible to the interaction potential.
A second-order polynomial in the position and momentum
operators is a suitable choice, since it allows one to obtain
Gaussian solutions to the propagation equation. These solu-
tions are approximate, but they lead nonetheless to a satis-
factory description of the propagation of diluted atomic wave
packets and of their stability in resonators, which are the

A A2
issues addressed in this paper. We note HO=%+mgz as the
interaction-free Hamiltonian and

H(E,p,1) = Hy + P/(E,p,1) (2)

as the quadratic Hamiltonian accounting for interactions ef-
fects.

The strategy exposed in this paper consists of picking up,
among the possible polynomials P, the element which mini-
mizes an appropriate distance measure to the mean-field po-
tential. In geometric terms, this polynomial appears as the
projection of the mean-field potential onto the vector space
spanned by second-order polynomials in position and mo-
mentum. This potential will be referred to as the “lensing
potential,” denomination which will be justified in Sec. IV.
We define a distance analogous to the error function used in
[26], which involves the polynomial P and the quantum state
| (1)) resulting from the nonlinear evolution

E(P(1),

(1)) = f d*r|(r|P(F,9.1)|p(1)) — )| p(r,1)[*plr,0)|*.
(3)

The minimization of the distance E(P(z),|¢(1))) for the lens-
ing potential P,(r) implies that the function E is stationary
toward any second-order polynomial coefficient at the point

(P((1),](1))):
VpE(P (1),

(1)) =0,

We have noted Vp as the gradient associated with the coef-
ficients of a second-order polynomial, and 7, as the initial
time from which we compute the evolution of the wave
function—we assume that ¢(r,1) is known. The determina-
tion of the lensing potential associated with self-interactions
in the beam indeed requires previous knowledge of the

Vo ot=t,. (4)
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wave-function evolution. This difficulty did not arise in other
optical treatments of atomic interaction effects [13,27,28], in
which the atomic beam propagation was mainly affected by
interactions with a different sample of well-known wave
function. This is typically the case for a weakly output
coupled continuous atom laser beam, in which the diverging
lens effect results from the source condensate. We propose to
circumvent this self-determination problem thanks to a per-
turbative treatment. Such approach is legitimate for the di-
luted matter waves involved in usual atom interferometers.
The first-order lensing polynomial and the corresponding
Hamiltonian H"(1)=Hy+P\"(¢,p,7) are determined from
the linear evolution, according to

VEP (1), e M0 1)) =0, Y 1=10 ()

Higher-order lensing effects can be computed iteratively. For
instance, the second-order lensing polynomial PEZ)(I) satisfies
at any instant t=1,

t

VPE(Pg”(z),Tlexp —ilk f di'[Hy+ PV(£,p,1)]
11

><|¢(l‘0)>) =0,

where we have used the usual time-ordering operator 7 [29].

III. OPTICAL PROPAGATION OF MATTER WAVES: THE
ABCD THEOREM

This section gives a remainder on a general result—called
the ABCD theorem—concerning the propagation of matter
waves in a time-dependent quadratic potential, which is the
atomic counterpart of the ray matrix formalism frequently
used in optics [21]. It shows that the evolution of a Gaussian
wave function under a Hamiltonian quadratic in position and
momentum is similar to the propagation of a Gaussian mode
of the electric field in a linear optical system. A detailed
description of this theoretical result of atom optics is given in
Refs. [20,30].

One considers a time-dependent quadratic Hamiltonian
such as

Pa(N P 1
—+

koS A A L A 1,-’.‘, A
Hy+ P/(F,p,1) = - Epa(t) -F— Erﬁ(t) P

- %’f‘y(t) F—mg(t) - £ +£() - p+h(7).

(6)

a(t), B(1), y(t), and &(r) are 3 X 3 matrices’; f(r) and g(z) are

three-dimensional vectors; h(f) is a scalar; and " stands for
the transposition. Here we use this Hamiltonian to approxi-
mate nonlinear Hamiltonian (1). Hamiltonian (6) is indeed
appropriate for describing several physical effects [31,32].

28(f)=—a(1) to ensure the Hamiltonian Hermiticity.
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A. ABCD propagation of a Gaussian wave function

The propagation of a Gaussian wave packet in such a
Hamiltonian can be described simply as follows. Let ¢(r,7)
be an atomic wave packet initially given by

1

o TM/21) (11 e) VX (61 o)+ 1) (k=1 )
\“” | det X()|

¢(r7 tO) =
(7

The 3 X3 complex matrices X, and Y, represent the initial
width of the wave packet in position and momentum, respec-
tively: Xo=iD(Ax(ty),Ay(ty) , Az(2y)) and Y,
=D(Ap(ty),Apy(ty) . Ap (), with D standing for a diagonal
matrix. The vectors r.y and p.o give the initial average posi-
tion and momentum. The ABCD theorem for matter waves
states that at any time =1, the wave packet ¢(r,r) satisfies

(i/ﬁ)s(l,fosr(-o,l)co) _
¢ IR (e=r )Y Xt e+l (rr )

(r,f)=—r/—
¢ V|det X|

S(t,t9,r,0,P.0) is the classical action evaluated between ¢ and
to of a pointlike particle which motion follows the classical
Hamiltonian H(r,p,t) and with respective initial position
and momentum r.y,p.o. The width matrices in position X,
and momentum Y, and the average position and momentum
r.,p, at time ¢ are determined through the same 6 X6
ABCD matrix:

fa (A(r,ro> B(t,t0>> lr"" <§<mo>>
+ 9
0

1 =
_pct C(l,[()) D(I’IO) _pc ¢(t, t())
m m

(X) <A(mo> B(l,fo))<xo>

Yt - C(t’t(]) D(tst(J) YU .

The ABCD matrix—noted compactly as M(z,t,)—and the
vectors &, ¢ can be expressed formally as [32]

~ ’ ,aW)BWU
M(t,t)) =T exp[ftodt<7’(f') ') } , (8)

§(t,to))_j’ Lo (f(t’)>
<¢<r,r0> =) AMEON G ) ®)

0

Although the former expressions seem rather involved, in all
cases of practical interest, the ABCD&¢ parameters can be
determined analytically or at least by efficient numerical
methods.

B. Interpretation of the ABCD propagation and aberrationless
approximation

The phase-space propagation provides a relevant insight
into the transformation operated by the ABCD matrix. Con-
sider the Wigner distribution of a single-particle density op-
erator evolving under Hamiltonian (6). The Wigner distribu-
tion at time ¢ is related to the distribution at time 7, by the
following map:
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— 1~
W(r,p,t) = W| D(r - ¢) - ZB(p - mae)

_méa-a+K@—m¢mﬁ,

where the matrices A,B,C,D and vectors &,¢ are again
evaluated at the couple of instants (¢,7,). The action of the
evolution operator onto the Wigner distribution is thus ame-
nable to a time-dependent linear map. The fact that ABCD
matrices are symplectic [20] implies that this map is unitary:
such evolution preserves the global phase-space volume, and
the quality factor of an atomic beam in the sense of [33].

In photon as in atom optics, the aberrationless approxima-
tion consists of assumption that Gaussian function (7) is a
self-similar solution of the propagation equation in spite of
the nonlinearity, the evolution of which is given by the
ABCD propagation. The propagation is thus described
through a map which preserves the phase-space density. This
is an approximation, since for atomic or light beams evolv-
ing in nonlinear media, the phase-space density indeed
changes during the propagation. Nonetheless, the aberration-
less approximation is reasonable for sufficiently diluted
clouds, subject to a weak mean-field interaction term, for
which an initially Gaussian wave function will not couple
significantly to higher-order modes. Furthermore, this ap-
proximation in atom optics is entirely analogous to the
aberration-free treatment realized in nonlinear optics, the
predictions of which concerning the width evolution of a
light beam have been verified experimentally [34]. One can
thus expect that the aberrationless approximation will consti-
tute a good description of the propagation in atom optics as
well. Indeed, the validity of the aberrationless approximation
will be confirmed in Sec. V D on the example of a gravita-
tional atomic resonator: its predictions on the sample size
evolution are in good agreement with those of a paraxial
treatment of the wave-function propagation which does not
assume the preservation of a Gaussian shape.

IV. ABCD MATRIX OF A FREE-FALLING INTERACTING
ATOMIC CLOUD

Let us apply the method discussed above to describe the
propagation of a free-falling Gaussian atomic wave packet.
In the aberrationless approximation, such a wave packet is
simply determined by the parameters ABCDEg and by the
phase associated with the action. In view of the resonator
stability analysis, we will focus on the computation of the
ABCD matrix in presence of the mean-field potential. We
consider only the leading-order nonlinear corrections, asso-
ciated with the first-order lensing polynomial PE”(r,p,t).

This section begins with the determination of this poten-
tial defined by Eq. (5). A formal expression of the atom-
optical ABCD matrix, taking into account this lensing poten-
tial, is obtained. An infinitesimal expansion of this
expression shows that the mean-field interactions effectively
play the role of a divergent lens: the atom-optical ABCD
matrix of the free-falling cloud evolution is similar to the
optical ABCD matrix associated with the propagation of a
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light ray through a series of infinitesimal divergent lenses. In
our case, the propagation axis is the time, and the infinitesi-
mal lenses correspond to the action of the mean-field poten-
tial in infinitesimal time slices.

A. Determination of the lensing potential

We assume that the condensate, evolving in Hamiltonian
(1), is initially at rest and described by a Gaussian wave
function

304 252 _ 25 2 25 2
¢(x,y,z,t0) — e~ 12wig=y /2wy0—z /2wzo. (10)
\WixoWyoW:0
It is easy to show that when one considers the interaction-
free evolution, the widths are given at time =1, by

h2
Wi = \/Wi20+ 2 2 (t_to)2 (11)
mWig
for i=x,y,z. This result can be easily retrieved by consider-
ing the initial width matrices X=iD(w,q,w,,w,) and Y,
:%D(l /Wy, 11wy, 1/w) for the wave function, and apply-
ing the free ABCD matrix [20]

(A(t,to) B(1,10) ) (1 - t0>

C(r,t)) D(1,t9)) \0 1 )’

The square of the free-evolving wave function thus reads
312

2, 2 2, 2 2, 2
|¢(0)(l’, l)|2 — e—(x = X)Wy = V) /wy,—(z - Zep) /wz['
WitWyW

We use this expression to determine the first-order lensing
polynomial PE”(r,p,t). Since this operator acts on Gaussian
wave functions, differentiation is equivalent to the multipli-
cation by a position coordinate, so the action of the momen-
tum operator is indeed equivalent to that of the position op-
erator up to a multiplicative constant. One can thus, without
any loss of generality, search for a lensing polynomial
P}l)(r,t) involving only the position operator. With this
choice, error function (3) minimized by the polynomial P
becomes simply

E(P(0),]¢V(0))) = J &r| 6 (e, ) P(P(r,1) - g ¢ (r,0)*).

Expanding the polynomial Pgl)(r,t) around the central posi-
tion r,, a parity argument shows that the linear terms vanish:

P(r,0) = g lco(t) = et)(x = xe)? = (D (Y = yer)?
- c.(D(z=2z.)7].

By definition of the lensing polynomial, error function (11)
must be stationary with respect to each coefficient c, . o(7),
which leads to

7
cot) = 0’
1
)= 12
C Vs ( ) 2w£,y,ZfV(t) ( )
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V(t) = (2 W)Slzwxzwytht'

Only the quadratic term intervenes in the ABCD matrix: the
coefficient ¢ (¢) merely adds a global additional phase to the
wave function, which does not change the subsequent stabil-
ity analysis.

B. Formal expression of the effective ABCD matrix

We can readily express the ABCD matrix associated with

the evolution under H(s). Writing this Hamiltonian in the
form of Eq. (6), and using formal expression (8) of the
ABCD matrix as a time-ordered series, one obtains

© o [a) B(r’)>
(1 — '
M (l,l(),X())—T eXp[ftodt(y(t’) 5(1") :| . (13)

In contrast to the usual linear ABCD matrices, this matrix
now depends on the input vector through the initial position
width matrix X,.> A brief inspection of Eq. (6) and of the

Hamiltonian A (),

)
AV () = ;’—m +mgZ+ glco(t) — e (1) (£ = x.)* = (VT = y.)*

- cz(t)(f_zct)z]’ (14)

shows that the matrices in the exponential read a(r)=&r)
=0, B()=1, and y(1)=2D(c,(1), ¢,(1),c.(1)). Using Eq. (12),
one readily obtains the elements of the quadratic matrix vy:

81 1
1) = ——
m Wir(WxtWthzt)

Vil (15)

for i=x,y,z, with the widths w,
significant simplification arises because y(t) is diagonal: one
needs only to compute the exponential of three 2 X 2 matri-

ces associated with the orthogonal directions 0,,0,,0.. The
ABCD matrix is simply the tensor product of those:

MY(t,10.X))= ® T ftdt'< 0 1)
D) = ex
00 1=X,y,2 P 1, yii(t) 0

0

(16)

C. Propagation in a series of infinitesimal lenses

An infinitesimal expansion of Eq. (16) shows that the evo-
lution between ¢ and 7+dt is described by the ABCD matrix:

1 dt)
. (17)

MYt +dt,1,X z(
( o v(nydt 1

It can be rewritten as a product of two ABCD matrices:

3The Hamiltonian H")(¢) and the lensing polynomial P;l)(r,t) de-
pend of course also on X, but we do not mention this dependence
explicitly to alleviate the notations.
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0 1dar\( 1 0
MY (t+dt1,X) = 0 1 \yar 1) (18)

If these were 2 X2 matrices, in the optical formalism, the
first matrix would be associated with the propagation of a ray
on the length dr and the second matrix, of the form

(1 0) .
—dt/if 1)’ (19)

would model a lens of infinitesimal curvature dt/f. One can
thus consider, by analogy, that this second 6 X 6 matrix real-
izes an atom-optical lens whose curvature is the infinitesimal
3 X3 matrix D(y,,(t), ¥y,(t), v..(t))dt. Furthermore, one can
exploit the fact that it is a tensor product: if one considers
each direction O,,0,,0, separately, the propagation
amounts—as in optics—to a product of 2 X2 matrices,
which makes the analogy with a lens even more transparent.
The resulting 6 X6 ABCD matrix is simply given by the
tensor product of those. Transverse degrees of freedom are,
nonetheless, coupled to each other through the lensing poten-
tial. It is worth noticing that the focal lengths f,f,.f, have
here the dimension of a time, and are negative if one consid-
ers repulsive interactions: the quadratic potential P;l)(r,p,t)
acts as a series of diverging lenses associated with each in-
finitesimal time slice.

D. Expression of the nonlinear ABCD matrix with the Magnus
expansion

Because of the time-dependence of the Hamiltonian

HY(¢), the time-ordered exponential in Eq. (16) cannot, in
general, be expressed analytically. Fortunately, a useful ex-
pression is provided by the Magnus expansion [35]:

t
M(l)(t,to,X0)= ® explj dthi(tl)
1

i=x,y.z 0

LM
+ Ef d[lf dtz[Nl(tl),Nz(tZ)]
0 0

1
Yi(t) 0

where ®,_, , . denotes again a tensor product. This expansion
has the advantage of preserving the unitarity of the evolution
operator: at any order, the operator obtained by truncating
the series in the exponential is unitary. The Magnus expan-
sion can be considered as the continuous generalization of
the Baker-Hausdorff formula [36] giving the exponential of a
sum of two operators A and B as a function of a series of
commutators along exp(A+B)
=exp A exp B exp([A,B]/2)---. The Magnus expansion has
been successfully applied in solving various physical prob-
lems, among which are differential equations in classical and
quantum mechanics [37], spectral line broadening [38],
nuclear magnetic resonance [39], multiple photon absorption
[40] and strong field effects in saturation spectroscopy [41].

The first-order term €),(z,1,) in the argument of the expo-
nential can be expressed as

+] with N,-(t):( ) (20)
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! 0 7
Ql(t,t0)=f dt’N(t')=(<y>T 0)’ (21)

with the duration 7=r—¢; and the average quadratic diagonal
matrix (y);=1/7f ;Odt'yii(t). Exact expressions for (), are
given in Eq. (C1) of Appendix C for a cylindrical conden-
sate. Without this symmetry, the matrix elements (7);; cannot
be evaluated analytically to our knowledge, but are nonethe-
less accessible with efficient numerical methods.* The first-
order ABCD matrix M(ll)(t,IO,XO)=eQI(”’0> reads’

(,)_< cosh((9)'?7)  (»™" sinh(<71/27)>
U i) coshi()!7)
(22)

As expected, this main contribution of the Magnus expansion
is independent of the ordering of the successive infinitesimal
lenses, and can be interpreted as the ABCD matrix of a thick
lens with finite curvature. This expression is similar to the
paraxial ABCD matrix obtained in [13] to describe the inter-
actions between an atom laser and a condensate of known
wave function.

In the following developments, we use mainly this first-
order contribution to the Magnus expansion. In order to jus-
tify this approximation, we have performed a second-order
computation of the ABCD matrix MV(z,1,,X,) in Appendix
B. This second-order correction is weighted by the small
parameter e=(7/7.)*, depending on the ratio of the duration
T=t—1y to a time scale 7., which reads for a spherical cloud
of radius wy as

<7,.=
7'71( 7

One checks that the first-order expansion is valid for an ar-
bitrary long time (7,— ) as interaction effects vanish (a
—0). Considering a sample of initial radius wy=10 wm, and
using the s-wave scattering length a=5.7 nm of the ¥’Rb
[13], one obtains 7,=0.31 s. The convergence of the Magnus
series is indeed guaranteed when the following inequality is
satisfied [36]:

N, = f t dt'|N@")| < In(2). (24)

0

Our second-order computation gives an additional heuristic
indication of convergence for a flight duration 7<<7,.

V. STABILITY ANALYSIS OF A MATTER-WAVE
RESONATOR

In this section, we apply the method of the ABCD matrix
to discuss the propagation of an atomic sample with mean-

“In the short expansion limit considered later where |t—z|
<mwl.2(t0)/ fi, the average quantities (7y;;) can be approximated by
the instantaneous value of the quadratic coefficient ;; at the center
of the considered time interval.

SFor repulsive interactions, all the eigenvalues of the matrix y are
positive, and by convention its square root has also positive
eigenvalues.
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field repulsive interactions in a matter-wave resonator [42].
The considered resonator involves a series of focusing
atomic mirrors. In this system, there is a competition be-
tween the transverse sample confinement provided by the
mirrors and the expansion induced by the repulsive interac-
tions, which determines the maximum size of the sample
during its propagation. In order to keep the sample within the
resonator, its transverse size must stay smaller than the di-
ameter of the laser beams realizing the atomic mirrors. If this
criterion is met during the successive bounces, the resonator
is considered as stable. The ABCD-matrix method developed
previously, giving an easy derivation of the sample width
evolution, is well suited to discuss this issue. One assumes
an initial Gaussian profile for the sample wave function. The
atomic wave propagation in between the mirrors is treated in
the aberrationless approximation, and described by nonlinear
ABCD matrix (22) accounting for self-interaction effects.
The evolution of the sample width obtained with this method
is compared to the behavior expected from a nonperturbative
paraxial approach.

A. Resonator description

The considered matter-wave resonator is based on the
levitation of a free-falling two-level atomic sample by peri-
odic vertical Raman light pulses. This proposal is described
in detail in Ref. [42], but we recall here its main features for
the sake of clarity. In the absence of light field, the atomic
sample propagates in Hamiltonian (1). We consider an el-
ementary sequence which consists of a pair of two succes-
sive short vertical Raman 7 pulses [43]. Each pulse is per-
formed by two counterpropagating laser beams of respective
frequencies w,, and g, and wave vectors k,,=kz and
kgown=—kz equal in norm to a very good approximation and
of opposite orientation. The first Raman pulse propagates
upward with an effective vertical wave vector Kk, ;=2kz and
corresponds to laser frequencies w,,=w; and ®qoun=w;. The
second one propagates downward with an effective vertical
wave vector k,,=—-2kz and with the laser frequencies w,,
=w; and wy,y,=wy4. The frequencies w34 are adjusted so
that both Raman pulses have the same effective frequency
W, =|®yy— Ogowl, satisfying the resonance condition [42] w,
=Wy~ 0= 0y~ 3= wp,—2hk*/mhi. The intermediate level
involved during the Raman pulses [of energy E=#(w,+,)]
is taken sufficiently far-detuned from the other atomic energy
levels to make spontaneous emission negligible.6 After adia-
batic elimination of the intermediate level, the action of the
Raman pulses can be modeled by the effective dipolar
Hamiltonian

Hgip(1) = = 10, (r,0)cos(w,1 = K, 5 - B)(|b)al + |a)b]).
(25)

Each pair of pulses acts as an atomic mirror, bringing back
the atoms in their initial internal state a, and providing them

%In practice, a detuning on the order of the gigahertz—
experimentally compatible with 7 pulse of duration shorter than the
millisecond [58]—is sufficient to discard spontaneous emission.
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Total Energy
E =f(p)
A

Momentum p
>
2hk

-2hk 0

FIG. 1. (Color online) Evolution of the atomic sample in the
energy-momentum picture. The total energy includes the kinetic,
gravitational, and internal energies. The atoms are initially at rest
(p=0), at the altitude z,, and in the lower state a. The starting point
is thus at the intersection of the paraboloid (a,z() and of the vertical
axis (p=0). In between the pulses, the motion of the atomic sample
in the gravity field is conservative: it corresponds to a leftward
horizontal trajectory of the representative point.

with a net momentum transfer of Ap=4#Kk. The atomic mo-
tion is sketched in Fig. 1 in the energy-momentum picture.

This sequence can be repeated many times. If the period T
in between two successive atomic mirrors is set to

4hk
T:=T,= m—g, (26)

the acceleration provided by the Raman pulses compensates
on average that of gravity: the cloud levitates and evolves
inside a matter-wave resonator [42]. An analogous system
has been realized experimentally recently [44].

B. Focusing with atomic mirrors

Matter-wave focusing can be obtained, in principle, with
laser waves of quadratic intensity profile [45,46] or alterna-
tively of spherical wave front [42]. We concentrate on the
focusing obtained with an electric field of quadratic intensity
profile [46], the discussion of which is less technical. The
Rabi frequency considered for the Raman pulses of the reso-
nator depends quadratically on the distance to the propaga-
tion axis 0.,

2,2
Qpu(x,y,2.0) = (1 - )#)Qo(t). (27)

las

These Raman pulses generate a quadratic position-dependent
light-shift proportional to the field intensity and thus to the
square of Rabi frequency (27). After the pulse, the atomic
wave function initially in the form of Eq. (7) is thus multi-
plied by a factor yielding the input-output relation

"Close to the propagation axis, this quadratic profile can be repro-
duced to a good approximation with Raman pulses of Gaussian
intensity profile.
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. 2, 2 2 )
Yo, 1) = 2K R IMiaseiboy, (1), (28)

with ¢ as a constant phase added at the condensate center
r,=(0,0,zy) during the pulse. The outgoing wave function
can thus be put again in the form of Eq. (7) if one replaces p
with p1=p0+2hk, and Xo, YO with

Y S P [
Y, D(=1/f,—= 1£,0) I;/\Y,

I,,0; are the 3X3 identity matrix and null matrix,
D(-1/f,=1/f,0) is, as previously, a 3 X3 diagonal matrix.
The focal time is

2
_ MWy

=" (30)

Equation (29) shows that the pulse acts as a lens in the trans-
verse directions O, O,.

The strength of the focusing which can be achieved with
such atomic mirrors’ is indeed limited by the quasiunifor-
mity required for the Rabi frequency on the condensate sur-
face, in order to perform an efficient population transfer with
the Raman 7 pulse. Considering a cigar-shaped cloud of
small width w along the O,,0, axes, one may require that
the Rabi frequency difference between the border and the
center of the cloud satisfies |Q(w,,0,z,)—Q(2)|/|Qq(2)|
= €. This yields readily a lower bound on the focal time f:

2
mw_

2he

f= (31)
With a reasonable bound of e=1072, a cylindrical cloud of
8Rb atoms of transverse size w, =10 um, one obtains
minimum focusing times of f=6.7 s. A back-on-the-
envelope computation of the reflection coefficient shows that
the losses resulting from such an inhomogeneity of the Rabi
frequency are on the order of 1072

C. Resonator stability analysis

We now investigate the nonlinear ABCD propagation of a
cigar-shaped sample in the resonator. As a specific example,
we consider a cloud of ’Rb atoms taken in the two internal
levels |a)=|5S,,,,F=1) and |b)=|5S,,,, F=2). In between the
Raman mirrors, the whole sample is expected to propagate in
the ground state |a). We consider a sample of N=103 atoms,
of initial dimensions w,=w,=w,=10 um and w,=100 wm,
and we use the s-wave scattering length a=5.7 nm of the
rubidium. We investigate the evolution of this sample during
a thousand bounces and for various mirror focal times. Keep-
ing a significant atomic population inside a matter-wave
resonator during such a big number of reflections is challeng-
ing, but not impossible in principle given the high population

8The absence of focusing in the direction of laser beam propaga-
tion O, is not critical since it does not drive the cloud out of the
beam.

“The considered atomic mirrors consist indeed not of a single, but
of a double Raman pulse. This does not change the qualitative dis-
cussion of this paragraph.
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transfer which has been achieved experimentally with Ra-
man pulses [47].'° One obtains the value 7y,=1.5 ms for the
period between the Raman mirrors. This time scale is much
shorter than the duration 7.=0,3 s found for the validity of
the first-order Magnus expansion associated with a spherical
cloud of radius wy=10 wm. This shows that the ABCD ma-
trix of the cigar-shaped condensate is well approximated by
the leading order [Eq. (22)] of the Magnus expansion.'' Fur-
thermore, the free-propagation time 7 is also much shorter
than the time scale 7,=mw?/% associated with the free ex-
pansion of the transverse width, so that one can safely ap-
proximate the average quadratic coefficient () with the in-
stantaneous value ()= YWar 2, Wyras Werya)-

To compute the evolution of the transverse and longitudi-
nal sample widths, one proceeds as follows. As in Sec. IV A,
one starts with initial width matrices Xo=iD(w o, Wy, W)
and Y0=%D(l/wx0,l/ Wy, 1/w,) and computes interacting
ABCD matrix (22) as a function of these initial widths. Dur-
ing the first cycle, one multiplies the corresponding vector
(Xp,Y,) successively with nonlinear ABCD matrix (22) and
with mirror ABCD matrix (29). The new width matrices
(X,,Y;) are obtained, from which one can infer the nonlinear
ABCD matrix for the next propagation stage. The iteration of
these algebraic operations is a straightforward numerical
task. The results, depicted in Fig. 2, show that the transverse
width oscillates with an amplitude and a period which both
increase with the mirror focal time. The maximum sample
sizes are w,=25 um and w,=60 um for the respective focal
times f=20 s and f=100 s. Considering, for instance, a la-
ser beam of waist w=100 wm in the experiment, one sees
that with those focal times the atomic cloud remains within
the light beam and is thus efficiently confined transversally
in the resonator. As expected, the use of Raman mirrors with
a stronger curvature allows one to shrink the transverse size
of the stabilized cloud. Figure 3 shows the evolution of the
maximum sample transverse size as a function of the mirror
focal time. The extended ABCD-matrix analysis presented in
this paper allows thus to determine efficiently the minimum
amount of focusing required to keep the sample within the
diameter of the considered Raman lasers. In that respect it
can be used to optimize the trade-off, exposed in the previ-
ous paragraph, between strongly focusing or highly reflect-
ing atomic mirrors.

OWe treat the wave propagation in the resonator as if the atomic
cloud was entirely reflected on the successive atomic mirrors. In-
deed, even if resonant Raman pulses can perform a population
transfer with an efficiency close to 99% [47], the residual losses
become significant after a big number of bounces in a real experi-
ment. This results in a gradual decrease of the mean-field interac-
tions, which could be accounted for in a more sophisticated model.
Our point here is simply to illustrate the nonlinear ABCD method
on a thought experiment, and we thus adopted a simplified approach
with perfect atomic mirrors.

"'We have computed the time scale 7, determining the validity of
the first-order Magnus term for spherical wave packets only. None-
theless, a basic dimensional analysis shows that for a cigar-shaped
cloud, the time scale determining the validity of the first-order Mag-
nus term is bounded below by the time 7, given by Eq. (23) and
computed by setting w, equal to the smallest cigar dimension.
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FIG. 2. (Color online) Evolution of the transverse and longitu-
dinal widths of the sample (wm) during the successive bounces in
the cavity (numbered from 1 to 1000), for the mirror focal times
/=20 s (curve exhibiting the shortest oscillation period, blue on-
line), f=50 s (curve exhibiting an intermediate oscillation period,
green online), and f=100 s (curve exhibiting the slowest oscilla-
tion period, red online). The dashed line represents the evolution of
the transverse width in the absence of focusing with the Raman
Mirrors.

D. Comparison with the predictions of the
nonlinear paraxial equation

As shown in Appendix A, the propagation of an atomic
beam with a longitudinal momentum much greater than the
transverse momenta can be alternatively described by a
paraxial wave equation of form (A2). Furthermore, if the
linear density of the atomic beam is uniform, the nonlinear
coefficient intervening in this paraxial equation is a constant.
As in nonlinear optics [48] and in two-dimensional (2D) con-
densates [49], this equation induces a universal behavior in
paraxial atomic beams [50]: the transverse width oscillates
with a frequency independent from the strength of the inter-
action. The width oscillations, depicted in Fig. 2, indeed al-
low one to confront the results of our method, which uses a
nonparaxial wave equation treated in the aberrationless ap-
proximation, to the predictions of the full nonlinear paraxial
equation with a uniform nonlinear coefficient. We stress that
this second approach leaves the nonlinear term as such and
does not assume that the Gaussian shape of the atomic beam
is preserved. In this sense it is more exact than the radius-of-
curvature method used in Appendix A. It is also approxi-

1 1 1
0 10 20 30 40 50 60 70 80 90 100
Mirror focal time (s)

FIG. 3. (Color online) Maximum sample transverse width (wm)
during the evolution in the resonator as a function of the Raman
mirror focal time (s). We have considered the first 1000 bounces to
determine this maximum.
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mate, since the atomic beam is neither paraxial nor of uni-
form linear density. Nevertheless, it is remarkable that both
treatments agree very well on the oscillation period of the
width.

To apply the paraxial description, one models the action
of the successive mirrors on the transverse wave function

with an average potential. The lens operated by each Raman

. . . . . 2
mirror, of focal time f, imprints a phase factor of pimI2hf)r

[see Egs. (28) and (30)]. The series of lenses, separated by
the duration 7T, thus mimics the following effective qua-
dratic potential:

m

Vi ens = 2ﬁ2T0fr2. (32)

Let us consider the nonlinear contribution, given by a contact
term of the form V, ;(r)=g|s(2)P ¢, (r)*¢. (r), with
i(z) as the longitudinal wave function [Eq. (A1) of Appen-
dix A]. The term g;|¢;(z)|* appears as an effective nonlinear
coupling coefficient for the transverse wave function depend-
ing on the altitude z. Adding this nonlinear contribution to
Eq. (A1), one obtains a 2D nonlinear Schrodinger equation
(NLSE):

ﬁ2
ihdgp, (x,y,0) = {— g(f?zx + )+ g (Pl

m

+
20T of

r2:| l//L(-x»yvg)' (33)

{ is a parameter defined in Eq. (A1) equivalent to the propa-
gation time, a is the scattering length, and r*=x?+y?. Setting
K :%, one can recast this equation in the same form as in
[48] where the propagation of a light wave in a quadratic
graded index medium was considered:

1
2iKdgp, = [_ ‘9%"' (87Ta|¢u|2)|‘h|2 + Kz(fi)’g} .

(34)

We now make the assumption that the variations in the non-
linear coefficient 87ra|yy({)[* with ¢ are sufficiently smooth
to have a negligible impact on the period of the sample width
oscillations. This assumption seems reasonable for the con-
sidered cigar-shaped cloud, which has a slow longitudinal
expansion in comparison with the oscillation period (see Fig.
2). This hypothesis is indeed validated a posteriori, since it
leads to predictions in excellent agreement with the results of
the ABCD method discussed above. Once the nonlinear co-
efficient is approximated with a constant, one can readily
apply the results derived in [48,50], which show that Eq. (34)
yields transverse oscillations of universal frequency

2
=/='
ST

The results obtained from the perturbative ABCD approach
are confronted with this prediction in Fig. 4. The agreement
improves as the mirror focal time increases, and it is in fact
already good (4%) for a focal time of f=3 s and attains
0.7% for a focal time of f=50 s. As discussed above, focal

(35)

Wy
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times shorter than f=20 s seem incompatible with the re-
flection coefficient desired for the atomic mirrors. The dis-
agreement observed below f=3 s may be attributed to a
failure of the paraxial approximation to describe the propa-
gation of the sample in our system.

VI. CONCLUSION

This paper exposed a treatment of the nonlinear
Schrddinger equation involving theoretical tools from optics
and atom optics. The ABCD propagation method for matter
waves has been extended beyond the linear regime thanks to
a perturbative analysis relying on an atom-optical aberration-
less approximation. We have derived approximate analytical
expressions for the ABCD matrix of an interacting atomic
cloud thanks to a Magnus expansion. This matrix analysis
has been applied to discuss the propagation of an atomic
sample in a perfect matter-wave resonator. We have shown
that such sample can be efficiently stabilized thanks to fo-
cusing atomic mirrors. We have found that the nonlinear
ABCD propagation reproduces to a good level of accuracy
the universal oscillations expected from the nonlinear
paraxial equation for matter waves [50], which makes it a
promising tool to model future nonlinear atom-optics experi-
ments and a seducing alternative to previous numerical
methods applied to matter-wave resonators [45]. We have
also highlighted another optical method, involving more
stringent assumptions—paraxial propagation, cylindrical
symmetry, and constant longitudinal velocity—and also rely-
ing on the aberrationless approximation. This last method
enables one to address self-interaction effects in the free
propagation through a complex parameter [defined in Eq.
(A13)], which is analogous to a radius of curvature, and the
evolution of which is very simple [Eq. (A14)]. As far as the
beam width is concerned, the effect of self-interactions can
be interpreted as a scaling transformation of the free propa-
gation by a factor depending on the matter-wave flux F [See
Eq. (A15)]. Both approaches are relevant in studying inter-
action effects on the stability of atomic sensors resting on
Bloch oscillations [51], on the sample propagation in coher-
ent interferometers [52]. An interesting continuation of this
work would be to develop a nonlinear ABCD-matrix analysis
beyond the aberrationless approximation.
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APPENDIX A: THE METHOD OF THE NONLINEAR
RADIUS OF CURVATURE

This method addresses the paraxial propagation of a
monochromatic and cylindrical matter-wave beam. It relies
on the introduction of an effective complex radius of curva-

PHYSICAL REVIEW A 79, 043613 (2009)

ture [18,21], whose evolution is especially simple, even for a
self-interacting beam. It was applied successfully by Bé-
langer and Paré [19] to describe self-focusing phenomena of
cylindrical optical beams propagating in the paraxial ap-
proximation, and it works equally well for matter waves
propagating in the same regime. This is typically the case for
an atom laser beam falling into the gravity field, for which
the transverse momentum components become negligible
compared to the vertical momentum after sufficient time
[13].

We consider a monoenergetic wave packet propagating in
the paraxial regime, and evolving in the sum of a longitudi-
nal potential V|(z) and a transverse one V| (x,y,z), which
may also vary slowly with the longitudinal coordinate z. This
appendix begins with a brief remainder on the paraxial equa-
tion for matter waves [28], and on its spherical-wave solu-
tions in the linear case [18]. It is remarkable that such solu-
tions can be extended to the nonlinear propagation [18], at
the cost of certain approximations, and thanks to the intro-
duction of a generalized radius of curvature depending on the
coupling strength. Our treatment of the nonlinear matter-
wave propagation follows step by step the approach of Bé-
langer and Paré [19] for optical waves [19].

1. Paraxial equation for matter waves

Our derivation of the nonlinear paraxial wave equation
follows the treatment done in [28]. The wave function is
factorized into a transverse and a longitudinal component:

Wx,y,2) =, (x,y,2) ().

The longitudinal component obeys a one-dimensional (1D)
time-independent Schrédinger equation,

h: Py
om a2 T Vih=Ey,

which can be solved with the WKB method:

(= i'sz ()
() = p(z)exp P up(u) |.

20

F=[d’r ldrfl“[i(l' 1,2)|* is the atomic flux evaluated through
any infinite transverse plane, the transverse wave function
¥, being normalized to unity, [d*r |, (r,,2)]*=1. p(z)
=v2m[E-V,(z)] is the classical momentum along z, and 7, is
the associated classical turning point verifying p(z,)=0. The
transverse wave function ¢,, assumed to depend slowly
enough on the coordinate z to make its second derivative
negligible, verifies the equation

2
#2254 (7 BV ) [ v =0
m 2m

This equation can be simplified with a variable change in
which the longitudinal coordinate z is replaced by the param-
eter {,
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FIG. 4. (Color online) Period of the transverse width oscillations
(s) in the matter-wave resonator as a function of the Raman mirror
focal time (s). The full and the dashed lines give the oscillation
periods obtained, respectively, through the perturbative ABCD ap-
proach and through the nonlinear paraxial wave equation.

Z
m
{(z) =f dz—, (A1)
5 P
which corresponds to the time needed classicalll}é to propa-

gate from the turning point z, to the coordinate z. ~ The wave
equation becomes

h2
ihd;+ E(ﬁzx +3)) - Vl(x,y,é’)} 1 (xy,0)=0. (A2)

We assume from now on that the transverse potential
V,(x,y,z) has a cylindrical symmetry. If one sets K=m/f
and Vl(x,y,§)=§K2(§)r2, with 72=x?+y?, Eq. (A2) has the
same form as the paraxial equation for the electric field used
in [19]:

[07+2iKd; = KK(Or 1, (x,3,0)=0.  (A3)

It is worth noticing that, as a consequence of our variable
change, the derivative with respect to the longitudinal coor-
dinate z has been replaced by a time derivative with respect

to Z.

2. Spherical-wave solutions to the linear equation

One looks for solutions of Eq. (A3) of the kind

K
¥ (.0 =A(§)e><p[i rz}, (A4)
: 29(9)
with again K=m/#. Such function is a solution if and only if
the parameter g({)—called complex radius of curvature, and
homogenous to a time for matter waves—satisfies the equa-
tion

(A5)

and if the amplitude A({) verifies

Indeed, this parameter appear as proportional to the proper time
experienced by the atom on the classical trajectory determined by
p(z) [59].
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A1
—+—=0.

2ty (A6)

The prime stands for the derivative with respect to {. In the
absence of the transverse potential, i.e., V (x,y,{)=0, an
obvious evolution is obtained with g({)={.

These equations imply a relation between the amplitude
and width of the wave function. We adopt the usual decom-
position for the complex radius of curvature along its imagi-
nary and complex parts:

1 2i

1

- +—.
q R Kw
Assuming that K,({) is real, and combining the imaginary
part of Eq. (A5) with the real part of Eq. (A6), one obtains

2
Wo

wi(Q)’
This relation reflects the conservation of the atomic flux F

along the propagation. With our choice of normalization, the
parameter |A|? is given by

JAQ? =140

2
AP

(A7)

3. Spherical-wave solutions to the nonlinear equation

With several approximations, it is possible to find similar
solutions in the interacting case. Atomic interactions are de-
scribed by the mean-field potential

47h’a

2 with g?: s
m

Vilx,y.0) = gl Pl (x.y.0)

which intervenes in the time-independent equation verified
by . Because we adopt here a different normalization for
the wave function, the nonlinear coupling constant g? differs
from the coupling constant g; used previously: g?: g1/ N. The
mean-field contribution induces the transverse potential

Vl(x’y’ g) = g?| lMl(§)|2[| I#L(xny’ §)|2 - |¢L(O’O’ §)|2]

in the paraxial equation verified by ¢, . In the considered
example, this potential receives no other contribution. The
subsequent analysis requires three important approximations.
First, it uses the aberrationless approximation, which as-
sumes that the wave function follows Gaussian profile (A4)
in spite of the nonlinearity. Second, it assumes that the trans-
verse mean-field potential is well described by a second-
order expansion,

IA(z)Izr2
wi(Q)

The term G({)=g)|#()|* can be seen as the atom-optical
equivalent of a third-order nonlinear permittivity. Third, it
neglects the dependence on G({) toward the altitude, which
is a valid approach if the linear density n;p=mF/p(z) is a

V(.0 = =280 (A8)
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constant."” We assume from now on that the atomic flux F is
constant and that the average longitudinal momentum p(z)
=v2m[E-V,(z)]=py, varies very slowly with z. The param-
eter { can then be expressed simply as {=m(z—zg)/po
Equation (A8) and the normalization of ¢, [Eq. (A7)] give
readily

Kx0) =87
K apgw'(Q)’

Equation (A5) can then be recast as

qg -1 F 4
» t o\ A ) =0
g FAKW()
The quantity F,., called critical flux, reads F,

=mpoh*/ 2g(,)m2. The last equation may be split into its real
and imaginary parts along

(1)’; (L)z_o
R R N\xw?) =

() (7))o

where we have introduced the dimensionless parameter o
=1+F/F.. This system can be uncoupled thanks to the fol-
lowing trick: Eq. (A10) is multiplied by iVo and added to
Eq. (A9). One obtains

(1)’ ,r< 2 ) 1 2;%:( 2 ) ( 2 )2 0
—| +iNo| = | + 5+ —|-ol=—] =0.
rR) TNk TR TR \kw? Kw?

(A9)
and

(A10)

(A1)
This equation can be simply interpreted as
gaL—1=0, (A12)
with the generalized complex radius of curvature
.
1 2Voi
=—+—7. Al3
4gNL R KW ( )
Its very simple evolution
m(z - zp)
an(2) = g (zo) + — (A14)

Pol

gives readily the real radius of curvature R(z) and the width
w(z) for any altitude z. One thus has, as in the linear case, a
simple spherical-wave solution (A4). Indeed, this method al-
lows one to approximate very efficiently the nonlinear propa-
gation of a wave function of initial Gaussian profile. Con-
sider a Gaussian atomic beam of width w(zy) =w at the waist
[R(zo)=+2] situated at the position z, on the propagation
axis. Equations (A13) and (A14) show that the beam width
follows

B This approximation is indeed implicit in the treatment of Bé-
langer and Paré [19], since it is necessary to obtain the nonlinear
paraxial wave equation which is the starting point of their analysis.
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h2
w(z) = \/W(2)+ — 5 0(z-z2)". (A15)

WoPo

The width of a self-interacting atomic beam evolves thus as
an interaction-free beam in which the prgpagation length
from the waist is multiplied by a factor Vo. As far as the
paraxial beam width evolution is concerned, self-interaction
effects thus operate as a sczging transformatiog of the free
propagation with a factor Vvo. The quantity Vvo—1 has the
same sign as the scattering length a, so one checks that Eq.
(A15) leads consistently to a faster expansion for repulsive
interactions and to a slower expansion for attractive ones. As
in optics, this treatment can thus be applied to discuss the
self-focusing for matter waves. It is, however, important to
keep in mind its validity domain and the several hypotheses
required—constant longitudinal velocity, cylindrical symme-
try, paraxial propagation, and Gaussian shape approximation.
Lastly, we point out the independent work of Chen et al. [53]
on this nonlinear radius of curvature.

APPENDIX B: SECOND-ORDER COMPUTATION OF THE
NONLINEAR ABCD MATRIX

1. Expression of the second-order matrix

In this appendix, we discuss the nonlinear corrections to
the ABCD matrix associated with the second-order term of
the Magnus expansion Qz(t,to)z%f;odt,fi(l)dtz[N(tl),N(t2)],
which reads

S(1,10) 0 )

Dat,t0) = ( 0 =S(tt)

S(l‘)=f dtlfldtz[Y(h)—’)’(fz)]- (B1)

This term, arising from the noncommutativity between the
Hamiltonians taken at different times, naturally depends on
the ordering chosen for the successive lenses. Because of the
cloud expansion, lenses are ordered from the most divergent
to the less divergent. To discuss the effect of this second-
order contribution on the wave function, it is useful to com-
pute the exponential

eS(t,IO) 0
) (B2)

exp[ QP (1,10)] = ( 0 St

The action of such matrix onto the position-momentum
width vector (X,Y), defined in Sec. III A, would operate a
squeezing between position and momentum. This squeezing
is indeed a consequence of our aberrationless approximation,
in which the propagation leaves the phase-space volume in-
variant: the expansion of the cloud size must be, in our treat-
ment, compensated for by a reduced momentum dispersion.
One finds consistently that the diagonal matrix elements
Sxx,yy,zz(t)’ involved in Eq. (B2), are positive, which results
from the decrease in the matrix elements 7., ,, . (f) with
time.

The ABCD matrix obtained from a second-order approxi-
mation of the Magnus expansion reads
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sinh Kii(t’to) sinh Kii(t’to)
Kii(t,1o) Kii(t,1)

sinh K;;(t,t sinh K;;(t,1
# cosh Ki(t,t) — Su‘(f,lo)J
K;(t,10) K;(1,1)

cosh K;(t,1y) + S;;(2,1,) (t—1p)
M(zl)(t,lo,X()) = Q@

i=X,y.,2
$%

(B3)

We have introduced the functions K,-i(t,to):\/Sfl-(t,to)+<y,~i>(t—to)2. An analytic expression of (7y;) can be found for cigar-
shaped condensates in Eq. (C1) of Appendix C. The computation of the quantity S;,(¢,7,) is straightforward, but it involves
tedious algebra. Higher-order contributions to ABCD matrix (20) involve various integrations which need to be performed
numerically.

2. Comparison with the first-order matrix

Let us expand matrix (B3) in the short-duration limit. We consider an atomic cloud initially described by a Gaussian wave
function (10) of spherical symmetry, i.e., w,g=wyo=w_o=w,. Such assumption does not change the nature of the discussion,
but it considerably simplifies the algebra: the 3 X 3 matrices (), S(¢), and K(¢) are then proportional to the matrix identity I5
and can be identified to scalars. y(f) can be expressed as a function of two time scales 7,7, involving the sample radius w,
the scattering length a, and fundamental constants:

_ (t—19)>\ "2 mw? w
(1) = 7'22(1 +TO , 71=70, Ty = ﬁﬁ. (B4)
1

The quantity S(7) [Eq. (B1)] can be expressed thanks to a second-order Taylor expansion of (z). Setting 7=¢—¢, and noticing
that y'(¢,)=0, one obtains

574
S(t)=—g—7%75 +0(7), (B5)
which yields for the quantity K(r)
1.3
K(r) = \’<’y>7’<1 5 7'?7‘%) +0(P). (B6)

Using this expansion and that of x— sinh x/x, one can express the second-order matrix M(Zl)(T,XO) as

5 7 sinh((y)"?7) 25 1 sinh((9)'?7)
T e 22 s — a2\ cosh((y) P r) - ——5—
W ~ 675 (N1 7241 ('t
M5 (1.Xp) = M’ (7,X) + +0(7).
2 0 1 0 25 9 . h(< >1/2 ) 5 A i h(< >1/2 )
__(Cosh(ml/gr) _ M) 5 7 sinh(()'"7)
7271 (W27 6775 (N7
(B7)
This expansion shows that the first-order term is a valid approximation as long as
16, 2
Wo mw
<7.=|\—| —/ B8
T (47761) h (B8)

Considering for an instance an initial cloud size of wy=25 um and the ¥’Rb scattering length a=5.7 nm, one obtains 7,
=0,14 s, ,=1,63 s, and 7,=0,31 s. Note that the relevant small parameter €, weighting the relative correction brought by
the second-order term, decreases as e=(7/7.)* when 7/7,—0.

APPENDIX C: ABCD-MATRIX ELEMENTS FOR THE CIGAR-SHAPED CONDENSATE

We evaluate in this appendix various primitives necessary to explicit the nonlinear ABCD matrix to first order in the
Magnus expansion given in Eq. (22). We consider a cigar-shaped cylindrical condensate with a long vertical extension: w,
=w,=w,<w,. We recall the linear evolution of the width given by Eq. (11), i.e., w, = \/wizo+Avizo(t—to)2. We use the
shorthand notation Av, o=/ (mw, ).

We seek to evaluate the average (y),;=1/7f ﬁodtyi,-(t) of the time-dependent coefficients:

Yo Yo
Yol)=——7, v.()=—57,

Wit ztwrt

3/2

with y,=g,/[(27)*m]. These quantities are readily obtained:
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<7rr> = YO|:

2
Avg,

(Avfowgo - 2waAva)arctan A(r) }

+
2 A2 2 2 A2 2 3 A2 o2 2 A2
2wiy(Avzgwiy = WaAvi)ws,  2wi(Avrgwiy — wigAvZ) A (f - 1)

<‘}/zz> = 7()|:

Av?) arctan A(7) }

+
2 2.2 2.2 2.2 2 2\3/2
WZO(AUZOWrO - AUrOWzO)Wzt WIO(AerW10 - WrOAUz()) ! (t - ZO)

A(r) =

22 2 A2
VAU w2 = WipAvZ(t — fo)

(C1)

WrWz
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