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Atomic multiwave interferometer in an optical lattice
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A multiwave atom interferometer using multiple Wannier-Stark states is experimentally realized in a vertical
optical lattice. Atoms are coherently driven by stimulated Raman transitions into a superposition of several
adjacent lattice sites, in which they evolve at multiples of Bloch frequency in the same internal state to form an
interference pattern. We observe coherent evolution for more than 500 Bloch periods. The noise analysis shows
that the phase resolution of this interferometer is detection noise limited. This multiwave interferometer could
be a potential instrument for gravimetry and short-range forces measurement.
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I. INTRODUCTION

In the past decade, matter wave interferometers with
impressive sensitivities have been developed, opening up
new perspectives in high precision measurements and tests
of fundamental physics [1,2]. Atom interferometers (AI)
with cold atoms and well-controlled laser pulses, such as
Mach-Zehnder [3] and Ramsey-Bordé [4] AI, have been
realized and demonstrated to be powerful tools for inertial
sensors and precision measurements [5–10]. These two types
of interferometers are typical examples of two-wave AI.
Other types of AI based on multiple waves have also been
proposed [11] and demonstrated [12–17]. Multiwave atom
interferometers exhibit sharper fringe patterns [12], which
enables one to improve the resolution compared to those of
the corresponding two-wave interferometers.

For example, multiwave interferometers with trapped atoms
in optical lattices have been studied [18–20], employing
Bloch oscillations. Manipulation of cold atoms trapped in
optical lattices indeed provides an attractive system for
metrology [21–24], simulation of solid state physics [25–28],
and quantum information processes [29]. Precisely monitoring
Bloch oscillations of cold atoms trapped in optical lattice has
proven to be a useful tool for gravity measurements [30,31]
and fine structure constant determination [23,32,33]. Also,
several schemes based on lattice trapped atoms were proposed
to measure short-range forces such as the Casimir-Polder force
and to realize tests of Newtonian inverse-square law between
an atom and a massive surface [34–38], and it would be
interesting to use such a multiwave interferometer as a sensitive
sensor in these experiments.

In this paper, we describe an experimental demonstration of
a time domain atomic multiwave interferometer. In our exper-
iment, 87Rb atoms trapped in a shallow vertical optical lattice
are manipulated using Raman transitions [39,40]. A couple of
such Raman laser pulses coherently drive transitions between
Wannier-Stark (WS) states, allowing tunneling of atoms
between neighboring sites of the optical lattice [Fig. 1(a)].
Between these two pulses, atoms are in a superposition of
WS states. Each WS state is a partial matter wave, which
evolves with a phase of φm = 2πmνBt (m is well index
representing different wave components, νB = magλl/2h is
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the Bloch frequency, where ma is the atom mass, g is the
gravitational acceleration, and λl is the lattice wavelength).
These waves rephase at every Bloch period TB = 1/νB , which
gives rise to a periodic interference pattern. This multiwave
interferometry phenomenon is similar to that described in [18],
where Bloch oscillations are interpreted as periodic rephasing
of the many WS components of a pure quasimomentum. In
our multiwave interferometer, Raman transitions are used as
a state labeling tool changing both the internal and external
state of the atoms, allowing for an efficient detection based
on the internal state populations [39–41], and not on the
external state (position or momentum) [23,27,28,31]. This
method gives interference fringes without any modulation of
the lattice depth. Furthermore, atoms are in the same internal
state during the whole interference evolution process; this
makes the interferometric phase insensitive to light shifts
induced by the trapping and Raman lasers, which means
that this kind of multiwave interferometer could improve the
potential measurement accuracy of the Bloch frequency.

II. THEORETICAL SIMULATION

In our system, we consider 87Rb atoms trapped in a vertical
one-dimensional (1D) optical lattice far detuned from the
atomic resonance. The laser-cooled atoms loaded into the lat-
tice experience a periodic potential Ĥl = U0[1 − cos(2kl ẑ)]/2,
which is superimposed to the gravitational potential Ĥg =
−magẑ. U0 and kl represent the lattice depth and wave number,
respectively. The external eigenstates of the Hamiltonian
Ĥtotal = Ĥl + Ĥg are given by the WS ladder of states |Wm〉
well known from the solid state physics [42]. The quantum
number m is the well index which labels the different lattice
sites in the vertical direction. As shown in Fig. 1(b), the
energy difference corresponding to the increment of potential
energy between two neighboring wells is hνB . Considering the
two internal hyperfine states |g〉 = |52S1/2, F = 1,mF = 0〉
and |e〉 = |52S1/2,F = 2,mF = 0〉, the two WS-ladder-like
configurations corresponding to states |g,Wm〉 and |e,Wm〉 are
shown in Fig. 1(b).

The spread of the atomic wave function |Wm〉 depends on
the lattice depth [43]. In the case of a shallow depth (U0 < 5Er ,
where Er is the recoil energy defined by Er/h̄ = h̄k2

l /2ma =
2π × 8 kHz), the wave function can extend across a significant
number of wells [43,44]. This delocalization allows resonant
Raman transition induced tunneling between different lattice
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FIG. 1. (Color online) (a) Experimental sequence of the multiwave atom interferometer. (b)–(d) Evolution of two-level atoms with
Wannier-Stark ladder states in a multiwave interferometer, where (b) represents the interaction with the first Raman pulse, (c) the free evolution
after the blow-away pulse, and (d) the interaction with the last Raman pulse. νB is the Bloch frequency, νHFS is the hyperfine transition frequency
between |g〉 = |5 2S1/2,F = 1,mF = 0〉, and |e〉 = |5 2S1/2,F = 2,mF = 0〉.

wells [36]. These transitions can be coherently driven by two-
photon stimulated Raman transitions using counterpropagat-
ing vertical Raman beams, which can induce Rabi oscillations
between |g,Wm〉 and |e,Wm′ 〉 either in the same well (m = m′)
or in neighboring wells (m �= m′). The Rabi frequency [36] is
given by ��m = �U0=0〈Wm|e−ikeff ẑ|Wm+�m〉, where �U0=0

is the two-photon Rabi frequency in free fall, and keff =
kR1 + kR2 ≈ 4π/λRaman is the effective wave number with
λRaman ≈ 780 nm. The Raman transitions change both the
internal and external states, which can be observed by using a
state selective detection technique.

We apply short Raman pulses with full laser power. In
this case, the width (a few kHz) of the Raman pulse in the
frequency domain is larger than νB (∼568 Hz), which enables
the spectrum to cover WS-state transitions between several
adjacent sites. Atoms are initially in |e,Wm〉. A first Raman
pulse of duration τ transfers the atoms to different adjacent
lattice sites with different �m [Fig. 1(b)]. A blow-away pulse
is then used to clear the residual atoms in |e,Wm〉 states
[Fig. 1(c)]. Each state |g,Wm′ 〉 evolves with its own frequency
separated from the others by multiples of νB . The atomic state
during the free evolution is

|ψ(t)〉 =
(

M∑
m=−M

Am
2

)−1/2

ei(φ1
R+2πνHFSt)

×
M∑

m=−M

AmeimωBt |g,m〉, (1)

where φ1
R = φR1 − φR2 is the phase imprinted by the first

Raman pulse, and Am is the transition probability amplitude for
each �m transition. When atoms are superimposed in different
WS states, the wave function |ψ(t)〉 evolves as a multimode
matter wave [18]. After an evolution time T , a second Raman
pulse identical to the first one is used to recombine the atoms
[Fig. 1(d)]. In the limit of small excitation ��mτ � π , Am is
approximately proportional to ��m, and the final state is

|ψ〉 = Cei(φ1
R+2πνHFST )

M∑
m=−M

AmeimωBT

×
(

M∑
m′=−M

eiφ2
RAm′ |e,m + m′〉 + Bm|g,m〉

)
, (2)

where C is a constant, φ2
R is the phase of the second

Raman pulse, and Bm represents the probability amplitude of
the remaining atoms staying in |g,m〉 due to the imperfect
Raman transitions. The modulus square of the probability
amplitude |ce|2 = ∑2M

m′′=−2M |〈e,Wm′′ |ψ〉|2 (where the new
index indicator m′′ covers every possible site after the two
Raman pulses) can be written as

|ce|2 = C2

⎛
⎝ 2M∑

m=0

∣∣∣∣∣
2M−|m|∑
m′=0

AM−m′Am+m′−Meim′ωBT

∣∣∣∣∣
2

+
−1∑

m=−2M

∣∣∣∣∣
2M−|m|∑
m′=0

Am′−MAM+m−m′e−im′ωBT

∣∣∣∣∣
2
⎞
⎠ . (3)

We notice that |ce|2 shows interferences with a period of
2π/ωB = 2h/(magλl). This kind of periodic interference
pattern is similar to the classical optical Fabry-Pérot interfer-
ometer. From previous work of that experiment [38–40], the
coupling Am is transition dependent, as the Rabi frequency de-
pends on m. The theoretical interferometry pattern |ce|2/|A0|4
is shown in Fig. 2, where the number of lattice sites M is set to
2 and the coupling is |A±2|2 : |A±1|2 : |A0|2 = 1 : 2 : 3. Two
neighboring peaks in Fig. 2 are separated by the Bloch period

FIG. 2. (Color online) The theoretical atomic multiwave interfer-
ence patterns with M = 2 and |A±2|2 : |A±1|2 : |A0|2 = 1 : 2 : 3.
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TB = 2π/ωB , which shows that such an atomic multiwave
interferometer provides a method for measuring the Bloch
frequency in a lattice.

III. EXPERIMENTS AND RESULTS

The experimental setup has already been described in
[39,40]. A vertically retroreflected single mode and frequency
doubled Nd: YVO4 laser (λl = 532 nm, P = 8 W, and beam
waist ∼700 μm on the atoms) is used to create the 1D optical
lattice holding the atoms in the vertical direction. In order to
confine the atoms in the horizontal direction, a well focused
red detuned Yb fiber laser (λI = 1064 nm, P 	 2 W, beam
waist ∼180 μm localized on the atoms) is superimposed to
the lattice providing a transverse dipole trap. Atoms are loaded
into the mixed trap from a far red detuned molasses, and ∼105

atoms with a temperature of 2 μK are distributed in thousands
of adjacent sites in the fundamental Wannier-Stark band.
The Raman transitions are driven by two counterpropagating
beams at 780 nm circularly polarized, red detuned of 3 GHz
from the D2 resonant transition, and well aligned along the
vertical direction. The Raman beams are collimated with an
e−2 diameter of 5 mm and a total power (PR1 + PR2) of 6 mW,
which can drive a transition corresponding to �m = +8νB

with a Rabi frequency of 500 Hz at a well depth of 1.6Er . At the
end of the 3D-MOT, the atoms in all the Zeeman sublevels of
the |5 2S1/2,F = 2〉 state are depumped to |5 2S1/2,F = 1〉 and
then optically pumped to state |5 2S1/2,F = 1,mF = 0〉 with
95% efficiency. We then use a microwave π pulse to transfer
the atoms to the aimed state of |5 2S1/2,F = 2,mF = 0〉. After
the state preparation, the atoms are ready to interact with the
Raman pulses to realize the multiwave interferometer. Finally,
a time-of-flight fluorescence state selective detection is applied
to determine the populations in the two hyperfine states after
the release of the atoms from the trap.

To demonstrate the multiwave atom interferometer in the
lattice, a first Raman pulse with a duration of 200 μs is
used to transfer the atoms to state |5 2S1/2,F = 1,mF = 0〉
into a superposition of multiple adjacent lattice sites. The
coupling strength corresponding to transitions to different
lattice sites depends on the lattice depths U0 and on the
Raman frequency νHFS + δ, where the detuning δ can be tuned
at zero or at a multiple of νB . After optimizations of the
experimental parameters, the Raman frequency and the lattice
depth are chosen as νHFS + 8νB and 1.6Er , respectively, and
the fraction of Raman excitation is limited to 20%. After the
first Raman pulse, a blow-away pulse is used to clear the
remaining atoms in the upper hyperfine state |5 2S1/2,F = 2〉.
The second Raman pulse identical to the first one is employed
after a time delay T to recombine the atoms. By scanning
T , a multiwave atomic interferometry pattern with a contrast
of 19% is obtained as shown in Fig. 3(a), which exhibits
the expected period TB = 1/νB . We studied the evolution of
the fringe contrast when increasing the integration time T as
shown in Fig. 3(b). We observe a rather linear decay of the
contrast with T due to some decoherence in the evolution
process. For example, when we set T = 850 ms, we observe
coherent evolution for more than 500 Bloch periods, but the
contrast decreases to 6%.

FIG. 3. (Color online) (a) A typical multiwave atomic interfer-
ometry pattern obtained in the lattice with ten times average. (b) The
contrast decreases when increasing the integration time T .

The periodic feature of the multiwave atomic interferometry
pattern provides a method for measuring the Bloch frequency.
A straightforward way to get the Bloch frequency is to fit the
pattern directly to find the separation between the neighboring
peaks. A least-square fitting of the fringe with Lorentzian
function gives a value of TB = 1.759(1) ms [Fig. 3(a)],
corresponding to a Bloch frequency of νB = 568.5(3) Hz,
which is consistent with [41]. We can also get the Bloch
frequency by calculating the fast Fourier transform (FFT) of
the fringes with long time data accumulation. We record the
fringe data by scanning T from 22 to 200 ms with a step of
0.1 ms. The FFT of this scan is shown in Fig. 4. The second
harmonic frequency component given by the FFT data is found
to be 1136.74(5) Hz, corresponding to νB = 568.37(3) Hz,
which is consistent with the result of the least-square fitting
method and [41]. The uncertainties of νB given here are the
statistical error.

The relative resolution of Bloch frequency for the atomic
multiwave interferometer is given by δνB/νB = δT /T =

FIG. 4. (Color online) The FFT of fringes obtained from the
pattern data by scanning T from 22 to 200 ms.
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FIG. 5. (Color online) The Allan standard deviation of the Bloch
frequency measurements by the atomic multiwave interferometer.
The inset is the short term (at 1 s) sensitivity vs the integration time
T . These data are obtained for T = 0.27 s, Tt = 0.3 s, T = 0.47 s,
Tt = 0.5 s, and T = 0.9 s, Tt = 1 s, where Tt is the total trapping
time.

δPe/(kNBTB), where k = dPe/dT is the slope near the
middle of the fringe sides, δPe is the transition probability
noise, and NB is the number of fringes. In order to get
the optimized sensitivity, the probability Pe is recorded
continuously at mid-fringe, and the resolution of the Bloch
frequency measurement can be given by δνB/νB = δPe/(kT ).
An efficient way to increase the sensitivity is to use a
larger evolution time T . However, when increasing T , the
contrast decreases due to decoherence [Fig. 3(b)], leading to
a decrease of signal-to-noise ratio. Moreover, an increase of
T necessitates a longer trapping time Tt , leading to a loss
of atoms [41] and to the increase of the fluctuations of Pe

as the experiment is detection noise limited. The short-term
sensitivity (at 1 s) for different T is shown in the inset of
Fig. 5, where the sensitivity remains quite constant for T larger
than 270 ms. This points out the balance between the three
main parameters in these measurements: When the trapping
time gets longer, NB is increased, while k decreases and δPe

increases. The optimized parameter T = 270 ms is selected.

From consecutive measurements of the transition probability
at mid-fringe, we estimate the short-term sensitivity on the
measurement of Bloch frequency, as illustrated by the red
points in Fig. 5. The δνB/νB can reach a resolution of
1.5 × 10−4 at 1 s, and it decreases to 2.6 × 10−5 after 550 s of
integration time. This gives a sensitivity on the gravitational
acceleration measurement at a level of 10−5. We plotted as
well the equivalent resolution deduced from the detection noise
(gray squares in Fig. 5), showing that the measurements are
detection noise limited: Only about 4 × 104 atoms are left after
the first Raman pulse and the blow-away beam due to the low
coupling efficiency of the transitions. The signal-to-noise ratio
is thus greatly reduced by this loss of atoms, which limits the
resolution of the interferometer [41]. Due to this limitation, the
short-term sensitivity of the multiwave interferometer at 1 s is
about one order less than the Ramsey-Raman and Accordion
interferometer previously demonstrated in [41].

IV. CONCLUSION

In conclusion, we have experimentally demonstrated an
atomic multiwave interferometer with stimulated Raman
transitions and trapped atoms, which provides a method for the
measurement of Bloch frequency in a shallow optical lattice.
The resolution on νB measurement is presently detection noise
limited due to the low atom number (N ∼ 4 × 104), and this
resolution could be improved by increasing the atom number in
the mixed trap. As atoms are in the same internal state, this kind
of multiwave interferometer is theoretically insensitive to light
shifts, and it could be a potential scientific tool for precision
measurements, such as for short-range forces measurement or
as a gravimeter.
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