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Multiloop matter-wave interferometers are essential in quantum sensing to measure the derivatives of
physical quantities in time or space. Because multiloop interferometers require multiple reflections,
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest. Here, we
demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious
paths in a double-loop atom interferometer aimed at measuring rotation rates. We experimentally study the
recombination condition of the spurious matter waves, which is quantitatively supported by a model
accounting for the coherence properties of the atomic source. We finally demonstrate the effectiveness of
the method in building a cold-atom gyroscope with a single-shot acceleration sensitivity suppressed by a
factor of at least 50. Our study will impact the design of multiloop atom interferometers that measure a
single inertial quantity.
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Matter-wave interference is a central concept of quantum
mechanics with a myriad of applications making use of
electrons [1], neutrons [2], or atoms and molecules [3].
Examples of applications range from bacteria characteri-
zation [4] and biomolecular analysis [5], to fundamental
physics tests [6] and accurate inertial sensing [7]. In most
cases, the signal of interest can be detected as it shifts the
phase of a sinusoidal interference fringe pattern of two
partial waves. However, the presence of auxiliary inter-
ferometric loops due to the imperfection of the mirrors
results in a multiple-wave interference, which reduces the
interference contrast and the phase measurement accuracy.
Light-pulse atom interferometers employ a train of laser

pulses that split, deflect, and recombine the atomic waves to
enclose a single loop Mach-Zehnder interferometer, in the
simplest case. Here, the light pulses act as atom optical
beam splitters and mirrors, respectively. Oftentimes, one
may be interested in field derivatives rather than the fields
themselves (e.g., gradients of the gravitational field or
curvature of a magnetic field), or in a selective measure-
ment in a given frequency band. This is realized with
interferometers consisting of several loops [8,9], realized
by multiple deflection of the matter waves with additional
mirrors—a technique analogous to the multipulse magnetic
resonance spectroscopy [10].
The atom optics relies on coherent atom-light inter-

action, whose efficiency is limited by the homogeneity of
the effective Rabi coupling that depends on the local laser
intensity and velocity of the atom. The challenge arises
when the nonzero transmission of the atomic mirrors leads
to leakage of the matter waves, which are redirected by
subsequent mirrors and eventually form undesired addi-
tional interferometer loops, thus degrading the two-wave

nature of the interferometer [11]. Understanding and
controlling the recombination of these spurious paths is
intimately linked to the coherence of the matter-wave
source, and requires a tailored design of the interferometric
sequence and atomic mirrors.
In this Letter, we report on a method which prevents the

recombination of spurious paths in multiloop cold-atom
interferometers using mirrors that transfer an adjustable
momentum to the atom. The high degree of control of this
method, compared to other techniques in matter-wave
interferometry, enables a detailed study of the recombina-
tion of wave packets. We show that the method of
adjustable momentum transfer (AMT) allows for building
a pure-rate gyroscope (i.e., fully sensitive to rotation rate
and insensitive to acceleration), as proposed in Ref. [12].
Our result can be generalized to atom-interferometer
sensors of arbitrary multiloop architectures.
We implement the AMT method in a double-loop atom

interferometer aimed at measuring rotation rates and
described in Refs. [13,14]. In short, we laser cool cesium
atoms in a single internal state jF ¼ 4i to the temperature
of 1.8 μK, and launch them vertically using moving
molasses in an atomic fountain. The atom optics employ
stimulated Raman transitions at 852 nm that couple the
jF ¼ 3i and jF ¼ 4i internal states with two counter-
propagating laser fields of wave vectors k⃗3 and k⃗4,
imparting a momentum ℏk⃗eff ¼ ℏðk⃗3 − k⃗4Þ to the diffracted
part of the wave packet [15]. The interferometric sequence
comprising four Raman laser pulses of π=2; π; π, π=2 Rabi
angles, forms a symmetric double-loop interferometer.
Since the momentum of the atoms is entangled with
their internal state, the accumulated atomic phase differ-
ence is read out from the final population difference of the
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two hyperfine states, as determined by fluorescence detec-
tion [16].
Two pairs of retroreflected Raman beams interact with

the atomic cloud at different height as shown in Fig. 1(a).
The two mirrors are parallel to each other to better than
0.4 μrad (see Ref. [17] for the alignment procedure). The
normal to the mirrors, which sets the direction of the
effective wave vector k⃗eff, is inclined by an angle θ0 ¼ 3.8°
with respect to the horizontal direction x̂ (perpendicular to
gravity), in order to lift the degeneracy between the �ℏkeff
transitions owing to the Doppler effect. The top collimator
can be further inclined by a small adjustable angle
Δθ ≲ 20 mrad, leading to a reduced modulus of the
effective Raman wave vector of the top beam kðTÞeff with
respect to the bottom one, kðBÞeff ≡ keff , without changing its
direction:

kðBÞeff − kðTÞeff ¼ ϵkeff ≈
Δθ2

2
keff : ð1Þ

This scheme, where the two wave vectors are not equal (as
theoretically studied in Ref. [18] in the context of recoil
frequency measurements) allows us to reach the necessary
change in the momentum transfer to prevent the recombi-
nation of spurious paths in multiloop interferometers with
cold-atom sources. Adjusting the momentum transfer could
also be realized by shifting the frequencies of the lasers, as
proposed in Ref. [19] and implemented in Refs. [20–22] to
reduce systematic errors in single-loop gravity sensors.

However, this would require frequency changes of tens of
gigahertz, which makes it impractical, here.
In the traditional double-loop sequence [11,13]

[Fig. 1(b), thin half-transparent lines], the four Raman
laser pulses are separated by time intervals T=2, T, and
T=2, with T ¼ 400 ms. The time symmetry of this
sequence with respect to the apogee of the atomic trajectory
(crossing of the two loops at t ¼ t1 þ T, t1 being the timing
of the first pulse with respect to the launch) leads to a
vanishing sensitivity to constant linear acceleration, which
is required to build a pure-rate gyroscope. However, two
spurious Ramsey-Bordé-like [23] interferometers [thin
dashed lines in Fig. 1(b)] recombine simultaneously with
the main one and, having different inertial sensitivity,
impair the signal of interest. Distinguishing the spurious
interferometers from the main one would require a position-
sensitive detector (along the x̂ direction) and an atomic
source with subrecoil temperature, which would add
complexity to the sensor architecture.
To circumvent this problem, one may apply a small

asymmetric time shift of the mirror pulses (both pulses
delayed or advanced by ΔTa) [11], inducing sufficient
spatial separation of the spurious wave packets while barely
modifying the rotation-rate sensitivity of the main inter-
ferometer. Braking its time symmetry, nonetheless,
imbalances the space-time areas of the two loops, which
causes a sensitivity to constant linear acceleration.
The thick solid trajectory lines in Fig. 1(b) show the

interferometer sequence using AMT as explored in this
Letter. In order to close the main interferometer, the
reduction of the momentum transfer at the π pulses
governed by Eq. (1) is compensated with their shift in
time [see Fig. 1(b)] of

ΔTs ¼
Tϵ

2ð1 − ϵÞ : ð2Þ

The new degree of freedom provided by AMT allows us to
retain the original time symmetry of the main interferom-
eter and to prevent the recombination of the spurious wave
packets, on which we will focus in the following.
In order to sufficiently separate the recombination time

of the spurious interferometers from that of the main one
(see Supplemental Material, Sec. S3 [24]), we shift the
mirror pulses by a fixed time intervalΔT ¼ 40 μs as shown
in Fig. 2(a). We also deliberately enhance the amplitudes in
the spurious branches by changing the Rabi angles of these
pulses from π to π=2, thus making the mirrors half-
transparent. Finally, we introduce a controlled variable
delay of the third pulse, ΔT3 [see Fig. 2(a)], that allows us
to probe the efficiency of the recombination of the spurious
interferometers.
In Fig. 2(b) we present the evolution of the contrast of the

spurious interferometers as we gradually transform the
sequence with increasing value of the angle Δθ. For each

Top
Collimators

Bottom

(a)

Mirrors

(b)

Cooling & 
Launching

xy

z Detection

x

t

FIG. 1. (a) Schematics of the cold-atom gyroscope sensor. The
angular tilt Δθ of the top collimator allows for adjusting the
effective momentum transfer of the π pulses. (b) Space-time
diagram (not to scale) of the time-symmetric four-pulse inter-
ferometric sequence in the original equal-keff (thin half-
transparent lines) and AMT (thick full lines) cases. Red (blue)
color labels F ¼ 3 (F ¼ 4) internal state of the atoms. Solid
(dashed) trajectories correspond to the main (spurious) inter-
ferometers. For equal-keff (AMT) sequence: the vertical dashed
gray (black) lines indicate the timings of the pulses; light- (dark-)
gray areas highlight the two loops of the main interferometer.
Gray ovals mark the spatial separation of the spurious wave
packets at the last pulse in the AMT sequence. For clarity, we
show only the output ports labeled by the F ¼ 4 state.
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angle, we probe the spurious signal by scanning the value
ofΔT3 (blue dots). AtΔθ ¼ 0, we find the maximum of the
contrast, as expected, around ΔT3 ¼ 0 μs. We observe a
reduction of the maximum contrast while increasing Δθ
toward an almost full suppression around Δθ ¼ 12 mrad,
followed by a clear revival and a final decay at large angles.
To connect the observed contrast behavior with the coher-
ence properties of the cold-atom source, we derive the
phase shifts of the bottom (B) and top (T) spurious
interferometers (see Supplemental Material, Sec. S1
[24]) as

ΔΦðBÞ ¼ ΔΦrðr0Þ þ ΔΦvðv0Þ þ ΔΦ0 − ωRTϵ;

ΔΦðTÞ ¼ ΔΦrðr0Þ þ ΔΦvðv0Þ þ ΔΦ0 þ ωRTϵ; ð3Þ

where ωR ≡ ℏk2eff=2m is the two-photon recoil frequency
and

ΔΦrðr0Þ ¼ 2k⃗eff · r⃗0ϵ

ΔΦvðv0Þ ¼ k⃗eff · v⃗0½2ϵðT þ t1Þ − ΔT3�: ð4Þ

We express the phase shifts as a sum of four distinct terms.
The first two terms, ΔΦrðr0Þ and ΔΦvðv0Þ, depend on the
initial (at launch) position r⃗0 ¼ r⃗ðt ¼ 0Þ and velocity v⃗0 ¼
v⃗ðt ¼ 0Þ of a given atom in the reference frame of the
center of mass of the atomic cloud. The third term ΔΦ0
incorporates the inertial contribution due to acceleration
and the common recoil phase shift. The last term constitutes
a relative dephasing of the two spurious interferometers,
which increases with ϵ.
The contrast of the spurious interferometric signal

Cðϵ;ΔT3Þ is given by the (incoherent) sum of the inten-
sities from both interferometers, averaged over the initial
statistical velocity and position distributions of the atomic
source. We assume uncorrelated Gaussian velocity

and position distributions, respectively characterized by
the standard deviations σv and σr, and obtain (see
Supplemental Material, Sec. S2 [24]):

Cðϵ;ΔT3Þ
2C0

¼ j cos ðωRTϵÞje−ð1=2Þ½ΔΦrðσrÞ2þΔΦvðσvÞ2�; ð5Þ

where C0 is the maximum mean contrast. The oscillating
term reflects the recoil-originated dephasing between the
two spurious interferometers, while the exponential
suppression factor highlights the role of the finite spatial
and momentum spread in the cold-atom source.
The effect of the finite velocity spread on the contrast can

be fully eliminated by the proper choice of ΔT3 ¼ 2ϵðT þ
t1Þ [from Eq. (4)], which defines the recombination in
momentum space and therefore yields the maximum of
contrast. This expectation for ΔT3, shown by the dashed
black line in Fig. 2(c), qualitatively matches the data (blue
dots). A quantitative agreement is obtained by accounting
for the initial angular mismatch between the collimators
in both z (vertical) and y (horizontal) directions via
ϵcorr ¼ ½ðΔθ − Δθ0zÞ2 − Δθ20y�=2 [30]. Fitting the data
with ΔT3 ¼ 2ϵcorrðT þ t1Þ [solid red line in Fig. 2(b)]
reveals small angular offsets Δθ0z ¼ −0.68ð5Þ mrad and
Δθ0y ¼ 1.04ð19Þ mrad, which are compatible with the
inaccuracy of the initial manual tuning of the collimator
of about 1 mrad.
In Fig. 2(d) we plot the values of fitted maximum

contrast of the spurious interferometers normalized to
the maximum value among all the datasets, for different
values of ϵcorr. The overall trend, including the zero and the
revival, is well reproduced by the fit (solid red line) with the
model of Eq. (5) accounting for ΔΦv ¼ 0 (recombination
in momentum space), with C0 and σr as free parameters.
The fitted value of σr ¼ 0.51ð2Þ mm sets the realistic scale
for the spatial extent of the atomic cloud. A non-Gaussian

(a) (c) (d)(b)
x

t

FIG. 2. (a) Space-time diagram of the interferometer to introduce the definitions of the fixed ΔT ¼ 40 μs and the variable ΔT3.
(b) Peak-peak contrast of the spurious interferometers (blue dots) as a function of the third pulse delay ΔT3, for a set of angles Δθ, and
Gaussian fits (solid red lines) to the corresponding data. (c) Fitted values ofΔT3 yielding maximum contrast for the probed values ofΔθ.
Dashed black line is the expectation of ΔT3 ¼ 2ϵðT þ t1Þ, solid red line is the fit to the data accounting for initial angular offsets Δθ0z,
Δθ0y. (d) Normalized fitted peak contrast for the probed values of ϵcorr ¼ 1

2
½ðΔθ − Δθ0zÞ2 − Δθ20y�. The solid red line is the fit with

Eq. (5) with σr and C0 as free parameters (see text). Inset: contrast decay for ΔT3 ¼ 0. The solid red line is the expectation for the
measured value of σv and the fitted value of σr.
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actual cloud shape might be the cause of the slight
mismatch around ϵcorr ≃ 1.6 × 10−4.
The inset of Fig. 2(d) shows the contrast decay in the

case of ΔT3 ¼ 0 (where ΔΦv ≠ 0), which is driven by the
finite velocity spread of the source and happens on a much
faster ϵ scale. This behavior does not depend on the specific
value ofΔT ¼ 40 μs, and is thus also applicable to the case
of ΔT ¼ ΔTs [Fig. 1(b)]. The complete suppression of the
signal of the spurious loops in the time-symmetric AMT
sequence therefore happens on a scale of ϵ ≃ 4 × 10−5.
These data are well matched by the expected behavior of
Eq. (5) (solid red line), with the value of σv extracted from
the widths of the peaks in the panel (b) (see Supplemental
Material, Sec. S3 [24]).
We now focus on the main (double-loop) interferometer

in the time-symmetric AMT configuration of Fig. 1(b). The
promised insensitivity to the dc acceleration of this
sequence, in practice, relies on the ability to accurately
meet the condition of Eq. (2). In Fig. 3(a), we probe the
recombination of the main interferometer for the applied
values of Δθ ¼ 10 mrad and 20 mrad by scanning the time
shiftΔTs and recording the peak-peak contrast. We find the
peak centers at 11.6ð1Þ μs and 42.9ð1Þ μs, very close to
their respective expectation of Eq. (2) with ϵ ¼ ϵcorr at
11.2 μs and 42.2 μs.
We choose the AMT arrangement with Δθ ¼ 20 mrad

and ΔTs ¼ 42.9 μs to verify the insensitivity of the main
interferometer to the linear dc acceleration. We induce an
additional acceleration along the keff direction via con-
trolled tilt of the sensor in x–z plane by a small angle β such
that aind ¼ g cos θ0 sin β, and measure the corresponding
phase shift [blue dots in Fig. 3(b)]. The fitted residual linear
slope dΦ=daind ¼ 0.4ð8.5Þ rad=ðms−2Þ [blue line in
Fig. 3(b)] is compatible with zero within the error bar.

For comparison, we perform an identical measurement in the
asymmetric configuration [11,13] where both mirror pulses
are advanced (ΔTa ¼ 40 μs, orange squares) or delayed
(ΔTa ¼ −40 μs, green triangles). For this configuration, we
extract the respective dc-acceleration-sensitivity slopes
of 446ð8Þ rad=ðms−2Þ and −448ð5Þ rad=ðms−2Þ matching
within 5% the expectation of dΦ=daind ¼ 2TΔTakeff . The
ratio of the modulus of the slopes reflects a suppression of
the acceleration-induced phase shift in a single measurement
using the symmetric AMT configuration, as compared to the
asymmetric one, by at least the factor of 50.
We finally consider the impact of the AMT technique on

the phase shift of the gyroscope sensor, which is given by
(see Supplemental Material, Sec. S4 [24])

ΔΦ ¼ 1

2
k⃗effðg⃗ × Ω⃗ÞT3

�
1 −

2ϵ

3

�
þ Δω0

2Tϵ
ð1 − ϵÞ : ð6Þ

The first term accounts for a correction to the gyroscope
scale factor, as can be derived from the reduction of the
physical (Sagnac) area of the interferometer, with Ω⃗ being
the rotation rate of the Earth. The second term (called
hereafter clock shift) represents the sensitivity to the
detuning (Δω0) of the relative Raman laser frequencies
from the resonance condition of the Raman transition at the
apogee point.
We measured the clock shift and confirmed the expected

behavior of Eq. (6) (see Supplemental Material, Sec. S4
[24]). By alternating measurements with �keff , we could
demonstrate a rejection of this clock shift by at least 2
orders of magnitude, yielding a residual sensitivity for
Δθ ¼ 20 mrad compatible with zero and below
10 mrad=kHz. The study of the correction to the gyroscope
scale factor [first term of Eq. (6)] goes beyond the scope of
this Letter.
To conclude, we have demonstrated the method of

adjustable momentum transfer in multiloop atom interfer-
ometers, that provides a controlled suppression of the
spurious interferometric signals originating from the finite
efficiency of atomic mirrors. The observed variation of the
contrast of the spurious interferometers, quantitatively
supported by our model, revealed a fractional imbalance
in momentum transfer of ϵ ≃ 4 × 10−5 to completely
suppress the spurious signals, as given by the finite
coherence of our atom source. In addition, we discovered
a remarkable configuration (ωRTϵ ¼ π=2), where the
spurious interferometers are in antiphase due to their
different recoil sensitivity. The AMT method allowed us
to demonstrate a double-loop gyroscope with a highly
suppressed sensitivity to constant linear acceleration. This
holds particular interest for applications where the fluctua-
tions of the rotation rate of the ground need to be
discriminated from the linear translations, as for example,
in the field of rotational seismology [31].

(a) (b)

FIG. 3. (a) Contrast of the main interferometer in the AMT
configuration as a function of symmetric time shift ΔTs, for two
values of the angleΔθ. The solid blue and dashed orange lines are
empiric Gaussian fits to the data. The vertical dashed lines mark
the expected center positions. (b) Phase shift as a function of
induced acceleration (see text), in the AMT case with
Δθ ¼ 20 mrad and ΔTs ¼ 42.9 μs (blue dots), and in the
asymmetric case with ΔTa ¼ �40 μs (orange squares and green
triangles). Solid blue, dashed orange, and dash-dotted green lines
are linear fits to the data.
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Our results pave the way for the design of sensors with
atomic sources of increased coherence or with more than
two interferometric loops, where the problems associated
with spurious paths are enhanced. More generally, our
work shows the possibility of tuning the sensitivity of
multiloop atom interferometers to a unique, chosen, physi-
cal quantity, which enables to extend the scope of atom
interferometry to new domains. This is crucial for multi-
loop atom interferometers used as gravity gradiometers
[9,32] and gyroscopes [11,13,33], or proposed for gravi-
tational wave detection [34–37] or for measuring space-
time curvature [38].
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