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Fluctuations of the Earth’s gravitational field are a major noise source for ground-based experiments
investigating general-relativistic phenomena such as gravitational waves (GWs). Mass density variations
caused by local seismic or atmospheric perturbations determine spurious differential displacements of
the free-falling test masses—called gravity gradient noise (GGN)—which mimics GWeffects. This GGN is
expected to become dominant in the infrasound domain and must be tackled for the future realization of
observatories exploring GWs at low frequency. GGN will be studied with the MIGA experiment, a
demonstrator for low-frequency GW detection based on atom interferometry currently being constructed at
the low-noise underground Laboratoire Souterrain à Bas Bruit (LSBB) in France. MIGA will provide
precise measurements of local gravity, probed by a network of three free-falling atom test masses separated
by up to 150 m. We model the effect of GGN for MIGA and use seismic and atmospheric data recorded at
LSBB to characterize their impact on future measurements. We show that the antenna will be able to
characterize GGN using dedicated data analysis methods.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) [1] by
the LIGO interferometer [2] unveiled a new vantage point
to study the Universe through the observation of phenom-
ena hidden to electromagnetic detectors such as merging
black holes [3], and later gave rise to multimessenger
astronomy when the localization of a binary neutron star
inspiral by the LIGO [2] and VIRGO [4] association lead to
the combined electromagnetic and gravitational observa-
tion of the event [5,6]. These novel possibilities define the
field of GW astronomy. Whereas existing GW detectors
will keep observing events in their sensitivity window
(from a few tens of Hz to 1 kHz [7]), important scientific
arguments propose extending the detection bandwidth to
lower frequency regimes; a wealth of sources are expected
in the infrasound band [8] (from 10 mHz to 1 Hz) and
tracking signals at these frequencies will improve the
parameter estimation for events later entering the detection
bandwidth of current GW detectors or enable their precise
localization in the sky for optical observations [9,10]. The
main problem with extending the sensitivity bandwidth of
present GW detectors at low frequency is posed by seismic
noise [7] and gravity gradient noise (GGN). This effect,

also called Newtonian noise, is produced by density
variations within the medium surrounding the detector
and causes spurious differential displacements of the free-
falling test masses [11,12].
One solution is to develop space-based detectors to

exploit high-quality geodetic motion provided by drag-free
satellites; this is the case of the laser interferometers eLISA
[13] and DECIGO [14], as well as several proposals relying
on ultracold atomic sensors [15], in the form of both atom
interferometers (AIs) [16,17] and atomic clocks [18]. Other
approaches rely on improved technologies on Earth [19] to
reduce the impact of low-frequency noise sources by
improving the mechanical decoupling of the test masses
from the environment via enhanced suspensions [19] or by
opting for freely falling probes, which are possible using
AIs [20]. Such solutions mitigate the problems created by
seismic noise, but do not alter the effect of GGN.
It has been shown [21] that the impact of GGN can be

strongly reduced by averaging the signals of several distant
atom-interferometric gradiometers. Such configurations,
which require precise GGN models, will be tested
with the MIGA experiment [22], a demonstrator for low-
frequency GW detection based on atom interferometry
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currently being constructed at the low-noise underground
Laboratoire Souterrain à Bas Bruit (LSBB) in France.
MIGA will provide precise measurements of the local
gravity on a baseline up to 150 m using a network of atom
gradiometers. In this article, wemodel the effect of GGNon
MIGA and study possible measurement protocols to
validate such models with future data from the antenna.
The article is organized as follows. Section II intro-

duces the sensitivity to GW for a gradiometer based on
atom interferometry. We then present projections of the
equivalent strain induced by local gravitational field
fluctuations using seismic (Sec. III) and atmospheric
(Sec. IV) data measured at the site where MIGA is being
built. In Sec. V we then show that MIGA could observe
cumulative effects induced by GGN and test the validity of
the models used in this article.

II. GGN AND GRAVITY-GRADIOMETRY
BASED ON AI

A. Strain limitations from GGN

In this section, we consider a single gradiometer using
two free-falling atom test masses and calculate the strain
sensitivity limitation induced by the differential acceler-
ation of the test masses. We consider two correlated AIs
placed at positions Xi;j along the x axis, created by Bragg
diffraction on the standing wave obtained by the retrore-
flection of an interrogating laser (Fig. 1). A three-pulse
sequence (π=2-π-π=2) applied to the two atomic ensem-
bles along the x direction produces the interferometric
signal, which is read out as a population unbalance, and
depends on the phase difference Δφlas between the two
counterpropagating beams. Considering a large momen-
tum transfer diffraction, i.e., 2n photons coherently
exchanged during the diffraction process, the output
atomic phase ΔϕxðXi; tÞ of the interferometer at position
Xi and time t is

ΔϕxðXi; tÞ ¼ n
Z

∞

−∞
ΔφlasðXi; τÞg0ðτ − tÞdτ þ ϵðXi; tÞ;

ð1Þ

where g0 is the time derivative of the sensitivity function
of the three-pulse AI [23] and ϵðXi; tÞ is the detection

noise related to the projection of the atomic wave
function during the measurement process. Taking into
account the effects of laser frequency noise δνðτÞ, the
vibration of the retroreflecting mirror δxmirðτÞ, the GW
strain variation hðτÞ, and the fluctuation of the mean
trajectory of the atoms along the laser beam direction
induced by the fluctuating local gravitational field
δxatðXi; τÞ, the last equation can be written as [21]

ΔϕxðXi; tÞ ¼
Z

∞

−∞
2nkL

!"
δνðτÞ
ν

þ hðτÞ
2

#
ðLT − XiÞ

þ δxmirðτÞ − δxatðXi; τÞ
$
g0ðτ − tÞdτ

þ ϵðXi; tÞ; ð2Þ

where kL ¼ 2πν
c is the wave number of the interrogation

laser. By simultaneously interrogating two AIs with the
same laser (Fig. 1), one can cancel, to first order, the
motion of the retroreflecting mirror. The resulting differ-
ential phase ψðXi; Xj; tÞ is

ψðXi; Xj; tÞ ¼ ΔϕxðXi; tÞ − ΔϕxðXj; tÞ

¼
Z

∞

−∞
2nkL

!"
δνðτÞ
ν

þ hðτÞ
2

#
dij

þ δxatðXj; τÞ − δxatðXi; τÞ
$
g0ðτ − tÞdτ

þ ϵðXi; tÞ − ϵðXj; tÞ: ð3Þ

For the sake of clarity we will now neglect the laser
frequency noise δνðtÞ: for MIGA this contribution is
expected to be well below the initial sensitivity of the
detector [22]. Further, for higher sensitivity configura-
tions, a detector geometry with two orthogonal arms can
be used to cancel out the effects of laser frequency noise
while preserving sensitivity to (þ) polarized GWs. We
can write the power spectral density (PSD) of the differ-
ential interferometric phase as

Sψðdij;ωÞ ¼ ð2nkLÞ2
!
d2ij

ShðωÞ
4

þ SΔxðdij;ωÞ
$
jωGðωÞj2

þ 2SϵðωÞ; ð4Þ

given that the detection noise is spatially uncorrelated.
The term GðωÞ represents the Fourier transform of
the sensitivity function of the interferometer to phase
variations [23],

jωGðωÞj ¼ 4 sin2
"
ωT
2

#
; ð5Þ

where T is the time interval between two successive pulses
of the interferometer.
In Eq. (4) the term SΔxðdij;ωÞ is the PSD of the

differential displacement of the atom test masses with
respect to the interrogation laser,

FIG. 1. Gravity gradiometer realized with two AIs placed at
Xi;j, separated by a distance dij, and coherently manipulated by a
common laser retroreflected by a mirror placed at position LT .
The specific configuration of the MIGA antenna will use a
distance of 150 m, an interrogation wavelength of 780 nm linked
to the use 87Rb atoms, and a cycling time of 2 Hz.
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SΔxðdij;ωÞ ¼
SΔaxðdij;ωÞ

ω4
; ð6Þ

where SΔaxðdij;ωÞ is the PSD of the difference of the
local gravitational field between the points Xi and Xj

projected along the gradiometer direction, i.e., the GGN.
This perturbation introduces an atomic phase variation that
is indistinguishable from the signal produced by a GW,
shown in Eq. (4), and constitutes a limit for the detector that
sums up with detection noise.
To quantify and compare the possibility to detect GWs

over various noise sources, taking the GW signal as the
signal of interest in Eq. (4) and dividing it by the other
terms, we obtain the signal-to-noise ratio (SNR) of the
detector. Setting the limit of detectability for an SNR of 1,
we define the strain sensitivity of the gradiometer as the
sum

ShðωÞ ¼
4SΔaxðdij;ωÞ

ω4d2ij
þ SϵðωÞ
2ð2nkÞ2d2ij sin4ðωT2 Þ

: ð7Þ

B. Spatial correlation of GGN

GGN originates from a series of different mechanisms
[11], which are associated with different spatial correlation
properties. We express GGN as a function of the correlation
of the gravitational field variations δax between points Xi
and Xj as

SΔaxðdij;ωÞ ¼ SfδaxðXjÞ − δaxðXiÞgðωÞ
¼ Ff½δaxðXjÞ − δaxðXiÞ&
⊗ ½δa'xðXjÞ − δa'xðXiÞ&gðωÞ; ð8Þ

where Sf:g, Ff:g, and ⊗ denote the PSD, Fourier trans-
form, and convolution operators, respectively. The last
equation can be written as

SΔaxðdij;ωÞ ¼ 2Cð0;ωÞ − Cðdij;ωÞ − Cð−dij;ωÞ; ð9Þ

where Cðdij;ωÞ is the Fourier transform of the two-point
spatial correlation function of the gravitational field,

Cðdij;ωÞ ¼ FfδaxðXjÞ ⊗ δa'xðXiÞgðωÞ
¼ FfδaxðXjÞgðωÞ × Ffδa'xðXiÞgðωÞ: ð10Þ

In the following, we will focus on the two contributions
previously identified as the main limiting effects for GW
detectors linked to density variations in the surrounding
medium resulting from seismic activity [24,25] (Sec. III)
and perturbations of the atmospheric pressure [24,26]
(Sec. IV). For both contributions, we will calculate the
different gravity correlation functions and project the
impact of the associated GGN in terms of the strain

sensitivity using Eq. (7). This study is carried out for the
configuration of the MIGA gravity antenna [22], which will
generate gradiometric measurements from a network of
three AIs regularly spaced on a baseline of 150 m.

III. SEISMIC GGN

The MIGA experiment is now under construction in
southern France at the LSBB, an underground facility
located away from major human activity and characterized
by very low seismic noise. The seismic conditions within
the laboratory are continuously monitored using a network
of six broadband STS2 seismometers [27]. Figure 2 shows
typical seismic spectra along the vertical axis, recorded by
the station located at the center of the infrastructure (“RAS”
station; see Ref. [27]). The data are compared to Peterson’s
model [28], which is usually taken as a reference to assess
the seismic properties of a given site.

FIG. 2. Vertical acceleration spectra at LSBB compared
to the high- and low-noise Peterson models [28], with the
10th, 50th, and 90th percentiles of the histogram represented
by white lines. Top: The spectrum recorded during a quiet
month (August 2011). Bottom: The spectrum recorded during
a noisy month (February 2011).
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During quiet periods the seismic background activity at
LSBB is close to the low Peterson model half of the time.
During noisier periods, typically during winter, the seismic
background noise is increased with a frequency signature
that depends on sea and ocean conditions. In the infrasound
band, the sea and ocean motion accounts for most of the
microseismic activity that generates the continuous vertical
oscillations of the Earth [29] that propagate as surface
seismic waves (Love and Rayleigh waves). Love waves are
pure shear waves that do not produce density variations
[30] and thus do not produce GGN in an isotropic and
homogeneous medium. Therefore, we confine our study to
the case of Rayleigh waves and consider the total seismic
field as an incoherent sum of monochromatic Rayleigh
waves propagating isotropically in an isotropic and homo-
geneous medium over the different angular directions ϕ in
the horizontal plane (see Fig. 3).
At an underground depth h > 0, the gravity potential

perturbation δUðr⃗0; tÞ induced by Rayleigh waves propa-
gating in the angular directions ϕ is [11]

δUðr⃗0; tÞ ¼ 2πGρ0
ξzðωÞ

qPz − kR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qPz =qSz

p eiðk⃗R·r⃗0−ωtÞ

×
"
−2e−hqPz þ

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qPz =qSz

q #
e−hkR

#
; ð11Þ

where k⃗R is the wave vector, ξzðωÞ is the vertical seismic
displacement amplitude, ρ0 is the average medium density,
and G is the gravitational constant. Note that kP and kS are
the wave vectors of the compressional (P-wave) and shear
(S-wave) waves, where we have qPz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R − k2P

p
and

qSz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R − k2S

p
.

Assuming a linear dispersion with P-wave speed α,
S-wave speed β, and Rayleigh wave speed cR, the gravity

perturbation of Eq. (11) determines the longitudinal accel-
eration on a test mass at r⃗0 as

δaxðr⃗0; tÞ ¼ −∇⃗δUðr⃗0; tÞ:e⃗x
¼ 2πGρ0γξzðωÞeiðk⃗R·r⃗0−ωtÞ

×½e−hkR þ bðe−hqPz − e−hkRÞ&i cosϕ; ð12Þ

where γ and bare dimensionless factors depending on the
wave velocity ratios cR=α and cR=β, which themselves
depend upon the mechanical properties of the propagating
medium:

γ ¼

&
1−c2R=α

2

1−c2R=β
2

'1
4 − 1

&
1−c2R=α

2

1−c2R=β
2

'1
4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2R=α

2
p ; ð13Þ

b¼ 2

1 −
&
1−c2R=α

2

1−c2R=β
2

'1
4

: ð14Þ

For a test mass placed at r⃗0 ¼ Xe⃗x − he⃗z, Eq. (12) can be
written as

δaxðX; tÞ ¼ κRðkRÞξzðωÞe−iωteikRX cosϕi cosϕ; ð15Þ

with

κRðkRÞ ≔ 2πGρ0γ½e−hkR þ bðe−hqPz − e−hkRÞ&: ð16Þ

The spatial correlation of the seismic GGN for an under-
ground gradiometer of baseline dij ¼ Xj − Xi can then
be obtained from Eq. (10), averaging over all different
directions ϕ,

CRðdij;ωÞ ¼ κ2RðkRÞSξzðωÞhcos
2ϕeikRdij cosϕiϕ

¼ 1

2
κ2RðkRÞSξzðωÞ½J0ðkRdijÞ − J2ðkRdijÞ&;

ð17Þ

with Jn is the nth Bessel function of the first kind. Using
Eq. (9) we obtain the associated GGN,

SΔaxðdij;ωÞ ¼ κ2RðkRÞSξzðωÞχ
R
1 ðkR; dijÞ; ð18Þ

where χR1 ðkR; dijÞ gathers all correlation effects contribut-
ing to the GGN:

χR1 ðkR; dijÞ ¼ 1 − J0ðkRdijÞ þ J2ðkRdijÞ: ð19Þ

For short distances or low frequencies (kRdij ≪ 1), Eq. (19)
is approximately

FIG. 3. Rayleigh wave modeling: angle and axis definition. k⃗R
is the wave vector of the incident Rayleigh wave, ϕ is the
azimuthal angle of the wave, h is the depth of the detector, r⃗0 is
the position where the gravity perturbation is calculated, and Xi
and Xj are the positions of the extremities of the gradiometer
along the X axis.
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χR1 ðkR; dijÞ≃
3

8
k2Rd

2
ij: ð20Þ

Taken with Eq. (7), this means that the strain sensitivity
limitations from GGN are independent of the gradiometer
length: when the detector length is small compared to the
wavelength of the seismic wave, both the GW and GGN
signals appear as gradients; changing the length of the
detector does not help to separate them. In the case of
MIGA, the maximal length of the gradiometer will be 150 m
and the Rayleigh wave speed of the medium surrounding the
LSBB is cR ≃2.4 km=s [31], which means that the approxi-
mation (20) is valid for f ≪ f0 ¼ cR

2πdij
¼ 2.5 Hz. At higher

detection frequencies, or for a longer detector, the complete
expression in Eq. (19) must be used.
Figure 4 shows the equivalent strain induced by seismic

GGN calculated from Eq. (18). For this projection we used
data from the “RAS” seismic station, considering a depth
of h ¼ 300 m and using the propagation medium para-
meters that were previously measured at LSBB [32]:
α≃4.66 km=s, β≃2.61 km=s, and ρ0 ¼ 2500 kg=m3.
To take into account the variability of seismic conditions
shown in Fig. 2, the projections are done for the accel-
eration spectra corresponding to the 90th percentile of a
noisy month and the 10th percentile of a quiet month.
We note that the strain limitation from seismic GGN is

below the initial projected shot noise sensitivity of MIGA
(light green curve) that comes from the use of standard
AI techniques such as two-photon transitions and a
1 mrad=

ffiffiffiffiffiffi
Hz

p
detection noise [22]. With an upgraded

version of the detector, using the large momentum transfer
(LMT) of 2 × 100 photon transitions and an enhanced
detection noise of 0.1 mrad=

ffiffiffiffiffiffi
Hz

p
, we see in Fig. 4 that

seismic GGN is barely detectable in the mHz range.
Nevertheless, tests of GGN models with this improved
detector—referred to in the following as iMIGA—will be
possible considering long-term integration of the antenna
data that will be described in Sec. V. The upgrade towards
the iMIGA configuration should be possible on a time scale
of a few years: it relies on LMT performances that were
already demonstrated [33] and on an increase of atom flux
to improve the detection noise by 1 order of magnitude with
respect to the state of the art [34].
The seismic GGN model presented here relies on the

assumption that the movement of the ground in the infra-
sound band can be described by a superposition of plane
Rayleigh waves propagating in an isotropic and homo-
geneous medium. The importance of sea and ocean con-
ditions on the local seismic activity, illustrated by the
histograms in Fig. 2, reinforce the “Rayleigh dominating”
hypothesis. However, previous studies [32] have shown a
significant anisotropy in the karstic mountain range where
MIGA will be operating and therefore other types of
seismic waves could also contribute to the overall GGN.
The measurements of the iMIGA configuration could help
to improve such models.

IV. INFRASOUND GGN

We now consider the gravity gradient noise induced by
adiabatic pressure variations propagating as sound waves in
the atmosphere. We thus consider that relative density and
pressure variations δρ=ρ0 and δp=p0 within the atmosphere
are linked by the adiabatic index γ,

γ
δρðr⃗; tÞ

ρ0
¼ δpðr⃗; tÞ

p0

: ð21Þ

The gravity potential perturbation δ3Uðr⃗0; r⃗; tÞ at r⃗0
induced by a single acoustic plane wave with wave vector
k⃗ propagating in an infinitesimal volume d3r⃗ centred at r⃗ is
then

δ3Uðr⃗0; r⃗; tÞ ¼ −
Gρ0
γp0

δpðωÞ e
iðk⃗:r⃗−ωtÞ

jr⃗ − r⃗0j
d3r⃗: ð22Þ

It must be noted that atmospheric density perturbations are
not limited to the phenomena described by Eq. (21); we
limit our study to “stationary” perturbations and discard
transient perturbations induced by shock waves or air-
borne objects. Furthermore, given the average depth of the
MIGA detector (about 300 m), gravity perturbations from
atmospheric temperature fluctuations are believed to be
much smaller [11,35]. Nevertheless a new formalism valid
for the frequency window of interest here (10 mHz–1 Hz)
would be needed to rule out this contribution definitively.

10-4 10-2 10 0

10-20

10-15

10-10

FIG. 4. The seismic GGN projection at LSBB is shown for the
10th percentile during a quiet month (blue curve) and the 90th
percentile during a noisy month (red curve). The low-frequency
behaviors of the two curves (shown as dashed lines) are
extrapolated with a slope of −3.3 in accordance with the high-
and low-noise Peterson models plotted with dashed black lines
for comparison. The detection noises for MIGA in its initial and
improved configurations, calculated for 2T ¼ 0.5 s, are shown as
dashed and plain green lines, respectively.
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We now consider that acoustic perturbations inside the
atmosphere are described by an isotropic superposition
of acoustic plane waves, and that each wave propagating
along the direction (θ,ϕ) with wave vector k⃗I and velocity
vs ¼ 343 m=s is totally reflected at the Earth’s surface (see
Fig. 5). To obtain the total gravity perturbation δUðr⃗0; tÞ
induced at a point situated underground by such a wave, the
contributions of the incident and reflected waves given by
Eq. (22) must be integrated over the whole hemisphere. The
result can be found in Ref. [11],

δUðr⃗0; tÞ ¼ −4π
Gρ0
γp0

eiðk⃗ϱ·ϱ⃗0−ωtÞ
δpðωÞ
k2I

e−hkI sin θ; ð23Þ

where ϱ⃗0 is the projection of r⃗0 onto the horizontal plane.
This gravity perturbation yields the acceleration:

δa⃗ðr⃗0; tÞ ¼ −
4πGρ0
γp0

eiðk⃗ϱ·ϱ⃗0−ωtÞ

×
δpðωÞ
kI

e−hkI sin θ sin θ

0

B@
i cosϕ

i sinϕ

−1

1

CA: ð24Þ

The acceleration created along the gradiometer direction at
position r⃗0 ¼ Xe⃗x − he⃗z is given by Eq. (25):

δaxðX; tÞ ¼ κIðkIÞδpðωÞe−iωteikIX sin θ cosϕ

× e−hkI sin θ sin θi cosϕ; ð25Þ

where κIðkIÞ ¼ 4πGρ0
γp0kI

. The spatial correlation function of
the atmospheric GGN over the gradiometer can then be
obtained from Eq. (10) by averaging over all of the different
(θ, ϕ) directions (θ ∈½0; π2& and ϕ ∈½0; 2π&),

CIðdijÞ ¼ κ2I ðkIÞSδpðωÞ
× heikIdij sin θ cosϕe−2hkI sin θsin2θcos2ϕiθ;ϕ: ð26Þ

From Eq. (9), the infrasound GGN is then

SΔaxðdij;ωÞ ¼ κ2I ðkIÞSδpðωÞχI1ðkI; dijÞ; ð27Þ

where χI1ðkI; dijÞ gathers all correlation effects contributing
to the GGN,

χI1ðkI; dijÞ ¼ h2ð1 − cosðkIdij sin θ cosϕÞÞ
× e−2hkI sin θ sin2 θ cos2 ϕiθ;ϕ: ð28Þ

For kIdij ≪ 1 and 2hkI ≪ 1, a low-frequency approxima-
tion can be obtained:

χI1ðkI; dijÞ≃
"
3

8

#
2

k2I d
2
ij: ð29Þ

For the parameters of MIGA, this approximation stands
for f ¼ vs=2πdij ≪ 0.1 Hz. In contradiction with the
seismic case, this means that around its maximum sensi-
tivity (f ≃2 Hz), the full expression Eq. (28) has to be used
and the strain limitation induced by atmospheric GGN will
depend on the distance between the test masses.
Using Eq. (27), we project the strain limitation induced

by atmospheric GGN on future measurements by MIGA.
To determine the local pressure spectrum, we conducted an
on-site atmospheric pressure measurement campaign. We
used an MB3 D microbarometer from Seismo Wave [36],
able to resolve 1.75 mPa RMS in the 0.02–4 Hz window,
with a self-noise at least 10 dB below Bowman’s low-noise
model [37]. The sensor was installed at about 500 m above
the galleries of the LSBB and close to the future installation
zone of MIGA inside the laboratory (see Fig. 6). The
measurements were conducted during winter, covering a
series of different weather conditions. To filter out wind-
generated pressure noise [38] that can increase pressure
variations by several orders of magnitude, we used a simple
wind noise attenuator composed of a set of four tubes
(1.5 m in length) pointing in the four directions. Figure 7
shows the amplitude spectral density of pressure variations
as histograms for two 12-hour periods: a calm period
with no wind and a noisier period associated with a light
wind of about 5 m=s. A projection of the equivalent
strain induced by infrasound GGN corresponding to these
measurements is presented in Fig. 8. Under 0.02 Hz, the
projection is performed using an extrapolation of the
measurements using a pressure noise model derived from

FIG. 5. Soundwavemodeling: angle and axis definition. k⃗I is the
wave vector of the incident planewave, with k⃗ϱ being its projection
onto the horizontal plane, θ and ϕ are the incidence and azimuthal
angle of the wave, h is the depth of the detector, r⃗0 is the position
where the gravity perturbation is calculated, with ϱ⃗0 being its
projection onto the horizontal plane, andXi andXj are the positions
of the extremities of the gradiometer along the X axis.
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the International Monitoring System stations [39]. We note
that with the iMIGA configuration the infrasound GGN in
noisy weather conditions starts to be detectable below
100 mHz.
Improvements upon MIGA could be used to develop

more accurate infrasound GGN models that will be
required for the future realization of low-frequency GW
detectors. In this regard, we would like to draw the
attention of the reader to the limitations of the current
model presented here: the projection uses a pressure
noise recorded with a single station which potentially
includes a strong contribution that is noncoherent on the
scale of a large detector, and thus cannot be modeled by
plane waves. Such contributions would need to be esti-
mated using multiple measurement stations in an antenna
configuration like that of, for example, Matoza et al. [40];
it could then be accurately accounted for in the projec-
tion model.

V. TESTING GGN MODELS WITH MIGA

In the previous sections we have shown that enhanced
versions of MIGA could enable GGN spectral analysis.
However, due to SNR limitations, this method will be
mainly limited to studies of atmospheric GGN, for frequen-
cies under 100 mHz. A large fraction of the projected GGN
power spectral density remains under the detection limit set
by atom shot noise. Such background noise below the
sensitivity threshold can contribute to measurable variations
of the atomic phase after integration over an extended period
of time. In this section, we present this data analysis method

FIG. 6. Configuration of the pressure measurements at LSBB:
an MB3 D microbarometer (white star) was installed on the
surface about 500 m above the galleries of the LSBB (green lines)
and close to the future installation zone of MIGA (red box). Inset:
Schematic of the wind noise filter. The microbarometer (cylinder
with a diameter of 11 cm) is placed at the center and the filtering
pipes are 1.5 m long and 15 mm in diameter.

FIG. 7. Histograms of the outside pressure variations 500 m
above the future MIGA galleries for two weather conditions (an
average wind velocity of 5 m=s average for the top plot, and no
wind for the bottom plot), with the 10th, 50th, and 90th
percentiles (white curves) and Bowman’s low, middle, and high
models (dashed black lines).

10-4 10-2 100

10-20

10-15

10-10

FIG. 8. MIGA strain sensitivity to infrasound GGN, with data
taken from the Bowman model [37] (dashed black) and measured
on site at LSBB (10th percentile of a calm period in blue, and
90th percentile of a windy period in red) with a low-frequency
extrapolation such that Sðδp;ωÞ ¼ S0ω−2.2 in accordance with
low-frequency results reported in Ref. [39] (dashed blue and red
lines). The detection noises for MIGA in its initial and improved
configurations, calculated for 2T ¼ 0.5 s, are reported respec-
tively in dashed and plain green lines.
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and calculate the Allan variance [41] of the averaged atomic
phase from GGN.
With the notations introduced in Sec. II, the gradiometer

configuration gives a differential interferometric phase,

ψðXi; Xj; tÞ ¼ ΔϕxðXi; tÞ − ΔϕxðXj; tÞ

¼ n
Z

þ∞

−∞
g0ðτ − tÞðΔφlasðXi; τÞ

− ΔφlasðXj; τÞÞdτ: ð30Þ

Considering that the gradiometer is operated sequentially
with a cycling time Tc and that we average m consecutive
measurements, we can obtain from Ref. [23] the Allan
variance of the differential interferometric phase averaged
over a time mTc,

σ2ψðmTcÞ¼
n2

2m2

Z
þ∞

0

4sin4ðmωTc=2Þ
sin2ðωTc=2Þ

jωGðωÞj2SΓðωÞ
dω
2π

;

ð31Þ

where SΓðωÞ is the PSD of the differential laser phase noise
ΔφlasðXi; τÞ − ΔφlasðXj; τÞ. Considering that this noise is
coming from the acceleration of the atoms induced by GGN
yields SΓðωÞ ¼ ð2kLω2 Þ2SΔaxðωÞ, the Allan variance can be
expressed as

σ2ψðmTcÞ ¼
Z

þ∞

0
HmðωÞSΔaxðωÞ

dω
2π

; ð32Þ

where Hm is the transfer function from GGN to the
averaged differential atomic phase:

HmðωÞ ¼
8k2Ln

2

m2

sin4ðmωTc=2Þ
sin2ðωTc=2Þ

jGðωÞj2

ω2
: ð33Þ

Figure 9 shows the GGN power spectral density SΔax
calculated for the largest gradiometer (dij ¼ 150 m) avail-
able in MIGA. This PSD is obtained from the data and
projection models presented in Secs. III and IV. We observe
that under 100 mHz, the GGN grows rapidly as f−2.2 and
f−4.6 for atmospheric and seismic contributions, respectively.
From Eq. (32) we then plot the Allan variance of the

averaged atomic phase from GGN as a function of the
integration time mTc (see Fig. 10). Such calculations are
done for the iMIGA configuration considering the con-
tributions of atmospheric and seismic GGN and the
detection limit set by atom shot noise. Remarkably, we
observe that fluctuations of the atomic phase induced by
atmospheric GGN in noisy weather conditions (purple
curve) will be observable by averaging measurements over
only a few seconds. Resolving fluctuations due to seismic
activity would require averaging for longer periods, of the

order of a few tens of seconds; the long-term stability
commonly achieved by cold atom experiments makes this
entirely within reach. Looking at the low-frequency
approximation (ω ≪ 1=mTc) of the transfer function
[Eq. (33)], that is,

Hm ¼ 2k2Ln
2m2T2

cT4ω2; ð34Þ

10-4 10-3 10-2 10-1 100

10-35

10-30

10-25

10-20

FIG. 9. Projections of the differential acceleration induced by
GGN, calculated using infrasound and seismic data and their low-
frequency extrapolations. The seismic 10th percentile during a
quiet month (90th during a noisy month) is shown in blue (red),
and the infrasound 10th percentile during a calm period (90th
percentile during a windy period) is shown in yellow (purple).

10 0 10 1 10 2

10-4

10-3

10-2

10-1

10 0

FIG. 10. Allan standard deviation σψ ðτmÞ vs the measuring time
mTc. The cycle time is taken equal to the interrogation time:
2T ¼ Tc ¼ 0.5 s. The calculation adopts the GGN acceleration
spectra in Fig. 9: the seismic 10th percentile during a quiet month
(90th during a noisy month) is shown as a dashed round-pointed
blue line (dot-dashed round-pointed red line), and the infrasound
10th percentile during a calm period (90th percentile during a
windy period) is shown as a dashed yellow line (dot-dashed
purple line). The plain green line represents the detection noise
for iMIGA.
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we can get an intuitive understanding of why the Allan
variance of the atomic phase from GGN grows rapidly as a
function of the integration time: at low frequency, the
weight of the low-frequency components of SΔax in the
integral is proportional to m2 and σψ is dominated by those
contributions as SΔax grows faster than ω−2.
Integrating data would give access to GGN signals from

atom gradiometry measurements. The Allan variance of
the averaged atomic phase from GGN could be compared
with the projected values obtained from simultaneous
measurements of atmospheric pressure or local acceler-
ation, which would allow to test the models presented in
Secs. III and IV. Remarkably, comparing the Allan
variance of the different gradiometric signals of MIGA
could also validate some properties of the models without
the need for extra seismic or atmospheric measurements.
As the integration parameter m increases, the low-
frequency components of SΔax become dominant in the
sum of Eq. (32) and the approximations of Eqs. (20) and
(29) become valid. This means that the averaged atomic
phase σψ of each gradiometer will tend to be proportional
to its length. This effect was numerically tested (see
Fig. 11) by calculating the ratio of the Allan standard
deviations of the averaged atomic phase from GGN for the
two gradiometers available in MIGA (with baselines of
150 and 75 m). After ten cycles, the ratio converges to the
expected value of 0.5 by less than one per thousand.

VI. CONCLUSION

In this paper we have modeled the effect of the local
gravitational field fluctuations on the MIGA underground
AI and shown that the antenna will allow a study of these
fluctuations. We projected the limitation of the strain
sensitivity from seismic and atmospheric GGN using
environmental data recorded at the LSBB low-noise labo-
ratory, where MIGA is located. We have shown that the
dominant contribution linked to ambient pressure variations
outside the LSBB facility could become directly measur-
able for characteristic frequencies under 100 mHz. We also
demonstrated that the integration of the antenna data on
time scales of the order of a few tens of seconds could
enable access to GGN signals with strong SNRs—data
integration made possible thanks to the intrinsic long-term
stability of cold atom experiments. This last method could
refine current GGN models by comparing the measured
Allan variance of the averaged atomic phase with its
expected value from the projection of external seismic
and pressure measurements, or by comparing the Allan
variance of the different MIGA gradiometers. MIGA could
provide relevant GGN characterization for state-of-the-art
GW detectors, both in construction (KAGRA [42]) and
planned (Einstein Telescope [43]), in relation to optimal
site choice and measurement protocol for background
GGN. It will constitute a study case for future sub-Hz
GW detectors based on AI networks for the reduction of
GGN [21].
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FIG. 11. Ratio of the Allan standard deviations of the averaged
atomic phase for a data set that would be simultaneously acquired
from the two gradiometers available in MIGA (baselines 150 and
75 m). The color coding and line types are the same as in Fig. 10.
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