
Active Control of Laser Wavefronts in Atom Interferometers

A. Trimeche, M. Langlois, S. Merlet, and F. Pereira Dos Santos*

LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités,
UPMC Univ. Paris 06, 61 Avenue de l’Observatoire, 75014 Paris, France

(Received 16 August 2016; revised manuscript received 9 December 2016; published 23 March 2017)

Wavefront aberrations are identified as a major limitation in quantum sensors. They are today the main
contribution in the uncertainty budget of the best cold-atom interferometers based on two-photon laser
beam splitters and constitute an important limit for their long-term stability, impeding these instruments
from reaching their full potential. Moreover, they will also remain a major obstacle in future experiments
based on large-momentum beam splitters. In this article, we tackle this issue by using a deformable mirror
to control actively the laser wavefronts in atom interferometry. In particular, we demonstrate in an
experimental proof of principle the efficient correction of wavefront aberrations in an atomic gravimeter.

DOI: 10.1103/PhysRevApplied.7.034016

I. INTRODUCTION

Inertial sensors based on atom interferometry [1], such as
gravimeters and gradiometers [2–6] or gyroscopes [7,8],
are subject today to intense developments, owing to their
large range of applications, in geophysics, navigation,
space science, and high-precision measurements in funda-
mental physics [9–11]. In light-pulse atom interferometers
[12], the final phase shift depends on the acceleration and
the rotation of the experimental setup with respect to the
inertial reference frame defined by the atoms in free fall.
The inertial force is then derived from the measurement of
the relative displacement of these atoms compared to the
lasers’ equiphases. Distortions of these equiphases thus
induce parasitic phase shifts which bias the measurement.
This effect is linked to the residual ballistic motion of the
atoms in the laser beam profile during their free fall as
displayed on the left in Fig. 1. Wavefront aberrations are
identified and measured on atom interferometers [13–15] as
the major source of bias uncertainty and long-term insta-
bility in the best light-pulse atom interferometers used as
inertial sensors, such as high-precision gravimeters [3,4]
and gyroscopes [8,16,17]. This is also true for next-
generation experiments, such as those based on large-
momentum beam splitters [18], as well as in future space
projects [19].
The influence of wavefront aberrations can, in principle,

be limited, if not suppressed, by performing atom inter-
ferometry inside a cavity, such as in Ref. [20], which allows
for spatial mode selection and filtering. Yet, the require-
ment of operating the interferometer with large laser waists,
of the order of a centimeter radius size, in a compact cavity
puts severe constraints on the realization and alignment for
stable operation and for avoiding the coupling of unwanted

transverse modes, which otherwise induce large wavefront
aberrations [21].
In astronomy, wavefront distortions and their fluctua-

tions due to atmospheric turbulence also impose severe
limits to the resolution of large-area telescopes. To over-
come this problem, deformable mirrors (DMs) have been
proposed [22] and developed [23] for the efficient real-time
correction of wavefront aberrations. They are based on
different technologies such as the nine-actuator deformable
electrostatic membrane using continuous voltage distribu-
tion [24], 35-actuator bimorph deformable mirror com-
posed of two disks of lead magnesium niobate [25], and
thin polymer membrane with permanent magnets and
microcoils [26]. DMs are already used to correct wavefront
aberrations of laser beams, potentially in a closed loop [27],
and, for instance, with a thermally deformable mirror [28],
in various fields such as ophthalmology, optical beam
interferometry, and femtosecond pulse shaping. DMs can
also be used for tailoring the shape of the cavity eigenm-
odes [29] and, thus, selecting the coupled transverse modes.
Last, it enables one to generate flat-top laser beams [30],
which are of interest for light pulse atom interferometry.
Here, a DM is used to control the laser wavefront in an

atom interferometer. We demonstrate its ability and effi-
ciency to correct the wavefront aberrations in a proof-of-
principle experiment realized with an atomic gravimeter.

II. DESCRIPTION OF THE EXPERIMENT

The sensor head of the gravimeter is described in
Ref. [31]. The laser system, which is realized using two
extended cavity laser diodes, and a typical measurement
sequence are detailed in Ref. [32]. In this compact
experimental setup, atoms are loaded directly from a
background 87Rb vapor, trapped in a three-dimensional
magneto-optical trap (MOT), and further cooled down to
2 μK before being dropped in free fall by switching off the*franck.pereira@obspm.fr
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cooling lasers. The interferometer is obtained by pulsing
counterpropagating laser beams in the vertical direction.

Two copropagating vertical laser beams, of wave vectors ~k1
and ~k2, are first overlapped and delivered to the atoms
through a single collimator. The counterpropagating beams
are obtained by a reflection on a mirror. Because of the
Doppler shift induced by the free fall of the atoms, only two
counterpropagating beams will drive the stimulated Raman
transitions according to the two-photon resonance condi-
tion. A three-Raman-pulse sequence π

2
− π − π

2
allows one

to split, deflect, and recombine the atomic wave packets,
thus realizing a Mach-Zehnder–type interferometer.
With this geometry, the atomic phase shift at the output
of the interferometer is given by [33] ΔΦ ¼
ϕ1 − 2ϕ2 þ ϕ3, where ϕi is the phase difference between
the two Raman lasers, at the position ~zi of the center of
mass of the wave packet, at the time of the ith Raman pulse.

For an ideal plane wavefront, ϕp
i ¼ ~keff~zi, which leads to

ΔΦp ¼ −~keff~gT2, where ~keff ¼ ~k1 − ~k2 is the effective
wave vector, ~g the acceleration of Earth’s gravity, and T
the free-evolution time between two consecutive Raman
pulses. Such atomic accelerometers are thus sensitive to the

relative acceleration between the free-falling atoms and
the retroreflecting mirror, which sets the phase reference for
the Raman lasers. Any deviation of the phase regarding to
ϕp
i might lead to a bias on the gravity measurement due to

the expansion of the atomic cloud across the lasers wave-
fronts (see Fig. 1).

III. CHARACTERIZATION OF THE MIRROR

In our setup, the retroreflecting mirror (and an additional
quarter-wave plate) are placed outside the vacuum chamber
as shown in Fig. 1. Formerly, as described in Ref. [32],
we have used a standard dielectric mirror and obtained
at best a sensitivity of 60 μGal in 1 s measurement time
(1 μGal ¼ 10−8 ms−2). For this study, the mirror is
replaced by a Kilo-C-DM MEMS deformable mirror from
Boston Micromachines Corporation with a 9.9-mm diam-
eter of the active circular surface. This DM uses 952
microactuators, with a pitch of 300 μm, and a maximum
stroke of 1.8 μm for an applied voltage of 195 V. The DM
surface is a continuous gold-coated membrane, with a
specified flatness of 11 nm rms. A homemade software
program allows us to control the DM surface shape, by
varying the amplitude of the first 64 Zernike polynomials
[34], which are conventionally used as a basis to decom-
pose wavefront aberrations. The default setting of the DM
is the flat map (FM) configuration, which is calibrated by
the constructor in order to make the mirror plane, with
optimized voltages for each actuator (around 80 V). This
calibration is performed so as to minimize the rms error,
and the corresponding measurement performed with a
wavefront sensor is provided. From this measurement,
we calculate a flatness of 6.47 nm of rms (10.81 nm
rms considering the DM rectangular edge) and 28.02 nm of
the peak to valley dominated by a residual curvature. This is
comparable to the flatness of the best high-quality com-
mercially available dielectric mirrors.
To characterize the response of the DM with respect

to the applied voltage, we measure the wavefront
deformation of a laser beam reflected by the DM using
a Shack-Hartmann (SH) sensor [35] (a HASO model,
marketed by the company Imagine Optic). We deform
the mirror by applying on each actuator i a voltage
VðiÞ ¼ VFMðiÞ þ U:ZðiÞ, where VFMðiÞ is the setting of
the FM configuration, ZðiÞ is a given Zernike polynomial
evaluated at the pixel i, and U is the corresponding
amplitude. We then perform differential measurements,
subtracting from the deformed wavefront signal the refer-
ence FM wavefront. The measurement is performed on
several aberrations, corresponding to the lowest-order
Zernike polynomials, which are expected to be dominant
in our experiment. To illustrate these measurements, we
display in Fig. 2 the response of the DM to the amplitude
U of the applied voltage for a coma 90° deformation
[Fig. 2(a)] and for an astigmatism 0° deformation
[Fig. 2(b)]. For weak amplitudes U (below about 20 V),

FIG. 1. Laser wavefronts propagation. The laser beam enters
the vacuum chamber from the top and exits through the bottom
window. The descending wavefront is taken as flat (red line).
After being reflected by a standard mirror (left) or a deformable
mirror (right), it reenters the vacuum chamber (blue line). Left:
The ascending wavefront gets distorted by the aberrations of the
bottom window, λ=4 plate, and standard mirror. The laser phase
difference then depends on the transverse position. It gets
sampled differently at the three pulses depending on the
ballistic trajectories of the atoms, which leads to a bias. Right:
The ascending wavefront is corrected by properly shaping the
deformable mirror. This leads to uniform laser phase differences
and no bias.
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we find a linear behavior of the actuator motion.
Nonlinearities at higher amplitudes make the DM response
decrease. We measure an amplitude of 0.025ð1Þλ per volt
added to the FM voltages, which is twice the surface
deformations because of the reflection onto the DM. This is
in perfect agreement with the constructor calibrations. In
addition, we find the standard deviation of measurements
repeated over several days to be lower than λ=125, limited
by the SH repeatability, confirming the DM long-term
stability in an open loop [36].
The parasitic phase shifts induced by the wavefront

aberrations of the laser beams result from the convolution
between the distribution of atomic trajectories and the
Raman beam wavefronts and, consequently, depend on
many experimental parameters such as the temperature,
the initial position and velocity distribution of the atomic
cloud, the shape of the Raman beams, etc. Table I lists the
expected phase shifts at the output of the interferometer,
induced by the most common aberrations, which corre-
spond to some of the first Zernike polynomials. These
phase-shift formulas are derived for Raman beams with an
infinite size and homogeneous intensity profile and for a
point source atomic cloud in a ballistic expansion.
The focus gives an interferometer phase shift indepen-

dent of the initial positions of the atoms. On the contrary,

the shifts due to comas depend linearly on the initial
positions. It is thus, in principle, zero when the atomic
distribution is centered on the mirror. We actually use
this linear dependence to center the atomic cloud on the
mirror or/and the mirror on the atomic cloud (see below).
As for the astigmatism, it is zero and thus independent of
the initial positions of the atoms. However, this is related
to averaging the effects of opposite curvatures along
orthogonal directions and assumes a radial isotropy.
This no longer holds if the velocity distribution (of the
detected atoms) is not isotropic, which can be induced
by spatial inhomogeneities of the detection. For instance,
with Gaussian velocity distributions, eventually different
along two orthogonal directions, we obtain ΔΦ ¼
2keffT2ðσ2νx − σ2νyÞ=R2, where σνx;y are the projection of
the initial velocity dispersion of the atomic cloud.
Remarkably, most of the first modes of Table I depend on

T2σ2ν, where σν is the initial velocity dispersion of the
atomic ensemble. The corresponding biases on the value of
g are therefore independent of T and proportional to the
temperature. In contrast, higher-order terms, e.g., spherical
aberrations, give biases on g which depend not only on the
temperature but also on the value of T.

IV. MEASUREMENTS WITH AN
ATOM INTERFEROMETER

A good control of the mirror and atom parameters (such
as centering and alignments) is necessary to characterize
the DM impact on the interferometer and compare exper-
imental results with a model of the experiment. For that
purpose, a first coarse adjustment of the mirror position is
initially performed by maximizing the number of detected
atoms. Because of mechanical tolerance and alignment
errors, the atomic cloud is not necessarily perfectly aligned
with the Raman beams and the center of the detection area.
Thanks to additional bias coils, the initial position of the
cloud is set so as to maximize the contrast of the
interferometer, which corresponds to placing the atomic
cloud at the center of the Raman beams. Once the atomic
cloud position is fixed, we take advantage of the property of
the coma aberration to make a finer adjustment of the DM
onto the center of the atomic cloud. Significant coma
aberrations are applied on the DM, and the differential bias
on g is measured as a function of the mirror position, with
respect to the FM configuration, as shown in Fig. 3. As
expected, linear dependencies are observed through the
east-west (EW) and north-south (NS) directions, which are
aligned with the proper axes of the DM. The zero crossing
positions (marked by the blue arrows) correspond to the
best DM alignment with the center of the atomic cloud.
In order to determine the relationship between the

wavefront and the interferometric phase shift, a simulation
of an interferometer using a DM has been developed.
This Monte Carlo simulation reproduces the experiment

FIG. 2. Amplitude of the DM deformation as a function of the
amplitudeU of the applied voltage for (a) a coma 90° deformation
and (b) an astigmatism 0° deformation.

TABLE I. Interferometer phase shifts due to different aberration
orders of the retroreflecting mirror. The phase shifts are averaged
over the velocity distribution for initial positions x0 and y0 of the
atomic cloud. fðR;x0;y0;t1;T;σνÞ¼4½x20þy20þσ2νð6t21þ12t1Tþ
7T2Þ�−R2, where R is the mirror radius, t1 is the delay of the first
Raman pulse with respect to the release time of the atoms, and σν
is the initial velocity dispersion of the atomic cloud.

Zernike polynomial ðZm
n Þ ΔΦ

Piston ðZ0
0Þ, tilts ðZ�1

1 Þ 0
Focus ðZ0

2Þ 8keffT2σ2ν=R2

Astigmatisms ðZ�2
2 Þ 0

Comas 0° ðZ−1
3 Þ 24keffT2x0σ2ν=R3

Coma 90° ðZ1
3Þ 24keffT2y0σ2ν=R3

Spherical ab. ðZ0
4Þ 24keffT2σ2νfðR; x0; y0; t1; T; σνÞ=R4
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described in Fig. 1, taking into account the parameters of
the atomic source, the inhomogeneity of the detection
response (as in Ref. [37]), and the wavefront aberrations. To
characterize the DM, the biases of different aberrations on g
are measured by varying the mirror shape for T ¼ 58 ms.
For these measurements, the short-term sensitivity is in the
range 100–200 μGal at 1 s. A summary of the comparison
between the numerical simulations and the experimental
results is shown in Table II. The bias of the focus and the
spherical aberration on g are measured for weak deforma-
tions of the DM.We find a good agreement for the spherical
aberration but a significant difference for the focus, which
is not explained. To evaluate the effect of the comas, we
set a fixed deformation of 0.4λ and displace the DM on the
EW (for the coma 0°) and NS (for the coma 90°) directions,
for a fixed position of the cloud (Fig. 3). Here also,
experiments are in good agreement with the simulations.
Given the measurement of the DM flatness in the FM

configuration, we now evaluate the corresponding bias on
the gravity measurement. For that, we consider only the
contributions having revolution symmetry such as the focus
and the different orders of spherical aberrations. By
weighting these contributions with their corresponding
measured sensitivities, we estimate a relatively large bias
on the gravity measurement of the order of 30 μGal. This

FM calibration is performed by the manufacturer by
minimizing the global rms error, which is not best suited
for our application, for which one would minimize aberra-
tions of revolution symmetry (such as the focus, the
spherical aberrations, etc.) and would tolerate higher
residuals on the other aberrations (tilts, astigmatisms,
comas, trefoils, etc.). Given the excellent resolution on
the actuator displacement (of the order of 50 pm, in
principle), lower biases could be obtained by adjusting
the mirror with these constraints, which would improve the
accuracy of the gravimeter. Alternatively, comas could be
minimized in order to reduce the sensitivity to the initial
position of the atomic cloud (see Table I and the measure-
ments below), which would improve the long-term stability
of the measurement.
We then evaluate the stability of the gravity measurements

when deliberately applying selected aberrations using the
DM. First, a differential measurement with two different
amplitude of focus (0.1λ and 0.6λ) is performed over 2 days.
Figure 4(a) displays the results of this measurement, where
each point is averaged over 4400 s (73 min). The observed
fluctuations around the average value of 792 μGal are
consistent with a white noise, as the corresponding Allan
standard deviation is found to decrease as 1=

ffiffiffi

τ
p

with the
averaging time τ. We reach a stability of 4 μGal after 10 h,
which corresponds to a remarkable relative stability of 0.5%.
This confirms the high stability of the DM in an open loop.
Then, we perform differential gravity measurements of a
fixed coma 90° with 0.1λ amplitude versus the FM con-
figuration. We observe relatively large and well-resolved
variations, displayed in Fig. 4(b), of the order of �30 μGal
over a day, which we attribute to slow fluctuations of the
atomic source initial position (of the order of �200 μm)
[37]. These position fluctuations bias the gravity measure-
ment in the presence of asymmetric wavefront distortions
such as coma aberrations.

V. COMPENSATION OF WAVEFRONT
ABERRATIONS

Because of its high stability, the deformable mirror
could, in principle, be used to correct the biases caused
by the bottom window of the vacuum chamber and the

FIG. 3. Effect of comas, of 0.4λ amplitude, on the gravity
measurement. The deformable mirror is displaced on the east-
west (respectively, north-south) direction with a coma 0° defor-
mation (black squares) [respectively, coma 90° (red circles)].

TABLE II. Comparison between simulations and measure-
ments of different aberration biases on g.

Aberration Measurement Simulation

Focus 2991ð55Þ μGal=μm 3652ð10Þ μGal=μm
Spherical ab. 3172ð110Þ μGal=μm 3275ð10Þ μGal=μm
Coma 0°/EW −494ð30Þ μGal=mm −523ð1Þ μGal=mm
Coma 90°/NS −503ð14Þ μGal=mm −522ð1Þ μGal=mm

FIG. 4. Differential gravity between (a) two different focus
deformations of 0.1λ and 0.6λ amplitudes and (b) a coma 90°
deformation with 0.1λ amplitude and the FM configuration.
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quarter-wave plate as described in Fig. 1 (right). However,
the optical flatness of the view port was not measured
before being installed. Furthermore, it is very likely that its
properties have been modified by its installation in the
experimental chamber, due to mechanical and thermal
stresses during the pumping process.
As mentioned before, the wavefront aberration effect

on the gravity signal depends on many experimental
parameters, which allows one to get some insight on their
shape and amplitude. For instance, the size of the atomic
detection [14] or the aperture of the Raman beams [15] acts
as a filter for the atomic trajectories which contribute to the
interferometer signal. Also, the effect of wavefront dis-
tortions gets modified when varying the temperature or
modifying the initial position of the cloud (see Table I).
Remarkably, increasing the initial size of the atomic cloud
reduces the contribution of high-frequency components of
the wavefront [13]. Measurements of the interferometer
phase versus the above-mentioned parameters can be
compared with phase shifts calculated for different models
of these aberrations [13–15]. But, in the absence of an
a priori knowledge of the wavefront, the deconvolution
from the interferometer response and the averaging over
the trajectories is a difficult task, due to nonunicity of the
solution of the inverse problem [13]. As a way to overcome
this, spatially resolved detection, such as the point source
interferometry imaging technique demonstrated in
Ref. [38], allows for the measurement of the phase shift
as a function of the transverse position in the interferometer
laser beam, which is then related only to the initial
transverse velocity. This renders the deconvolution simpler
and offers the possibility of more accurately reconstructing
the wavefront and, thus, retrieving the resulting wavefront
aberrations. In that case, one would be able to compensate
for these distortions by using a DM. Unfortunately our
sensor geometry is not well adapted for the implementation
of this technique, due to a lack of optical access.
Instead, and for a proof of principle, a well-characterized

optical element is inserted between the bottom window and
the mirror, and its effect on the interferometric measure-
ment is compensated by adapting the shape of the mirror.
More precisely, we use an additional window of low optical
quality, selecting a 9-mm diameter area which presents
strong aberrations in order to generate a large bias on the
measurements. The wavefront aberrations of this area are
initially characterized using the SH, in direct transmission.
Figure 5 shows these aberrations, which were decomposed
on the Zernike polynomial basis. Dominant contributions
are 780(22) nm of astigmatism 0°, −480ð15Þ nm of focus,
−370ð12Þ nm of coma 0°, and −60ð6Þ nm of spherical
aberration. In order to compensate for the wavefront
distortion caused by the additional window, the DM is
shaped following the same aberration by summing the
above contributions with their respective amplitudes. To
assess the efficiency of the wavefront correction by the

DM, a set of gravity measurements is realized before and
after the installation of the additional window for several
interferometer times 2T. Each gravity value is obtained by
averaging the results of two measurements performed with
two opposite wave-vector directions in order to reject most
of the systematic effects [13]. The gravity measurements
reported below are differential, taking the value of g
measured for T ¼ 50 ms with the DM in the FM configu-
ration as a reference. For the reference measurements, the
contrast of the interferometer is 17%. The measurement
process is done in four steps, and the results are displayed
in Fig. 6.
First, a series of reference measurements (represented

by open squares) are realized with the DM in the FM
configuration before adding the window. Note that, in all
the differential measurements, the systematic effect due to
the two-photon light shift [39] is not corrected for, which
explains most of the observed variation of the measured
values of g as a function of T. Second, we add the window,
we observe a reduction of the contrast down to 10%,
and we measure a change of the gravity value as large
as −1040ð10Þ μGal for T ¼ 50 ms with respect to the
reference configuration, keeping the DM in the FM
configuration. Using Table II, we expect a variation of
−1626ð99Þ μGal of gravity due to the effect of the window
aberrations. We attribute the difference between the
calculated and measured values to the DM nonlinearities,
which are significant for high deformations (> 0.3λ).
Third, we repeat the gravity measurements for different
values of T, represented by the blue triangles, in the
presence of the additional window keeping the DM in
the FM configuration.
Finally, the DM is shaped according to the corrections

described earlier, and we recover the initial contrast of 17%
at T ¼ 50 ms, which we take as evidence of the efficiency

FIG. 5. Aberrations of the additional window measured by a
Shack-Hartmann sensor in direct transmission through a 9-mm
aperture diaphragm area.
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of the wavefront correction. This is confirmed by a last
series of differential measurements, displayed as red
circles. We find a good agreement with the initial mea-
surements performed without the additional window, which
demonstrates the efficiency of the compensation. Relative
residuals (displayed as black diamonds at the bottom in
Fig. 6) lie in between �4%. These differences can be
explained by residual imperfections of the correction and
fluctuations of the two-photon light shift.

VI. CONCLUSION

In conclusion, we demonstrate that the use of an
appropriate deformable mirror allows one to correct the
wavefront aberrations in atomic interferometers. Though
the compensation is demonstrated here for the large
distortions induced by an additional window of poor optical
quality, it should also be effective for weaker aberrations
thanks to the high resolution of the actuation and the
excellent stability of the mirror. This could be demonstrated
in state-of-the-art atom gravimeters, such as those of
Refs. [2,4,13].
In addition, the large dynamical range of the DM and

its short response time enable one, at the same time, to
suppress Coriolis acceleration (compensating Earth’s rota-
tion by counterrotating the mirror during the interferometer
sequence [40]) and reject ground vibration noise (by
translating the mirror surface in real time [41] or right
before the last Raman pulse, similar to Ref. [42]). These
compensation techniques can be extended to other instru-
ments based on atom interferometry, such as gravity
gradiometers and gyroscopes. In particular, they would
be relevant for large-scale experiments, such as based on

large-momentum transfer beam splitters and/or long inter-
ferometer times. Indeed, in these experiments, the effect of
wavefront aberrations scales as the effective momentum
nℏk imparted to the atoms, and the effect of high-order
aberrations onto the inertial measurement increases with
the interferometer duration 2T.
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