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Owing to the use of a symmetrization π pulse at the middle of their laser sequences, Mach-Zehnder-type
atom interferometers are insensitive to clocks shifts and Doppler shifts, if constant, but to changes in these
quantities, which makes them accurate and sensitive inertial-force sensors. However, variations of the Raman
laser coupling between laser pulses restore a parasitic sensitivity to the Doppler shift. This effect, which sets a
limit to the symmetry of the interferometer, is quantitatively evaluated here as a function of the experimental
parameters, in the case of an atom gravimeter experiment, and compared to expectations. We show in particular
that velocity-distribution asymmetries lead to parasitic phase shifts that can compromise the accuracy and
long-term stability of the gravity measurement in the low 10−9g range.
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I. INTRODUCTION

Quantum technologies, which are based on the coherent
manipulation and control of quantum states, exploit quantum
superposition of states that allow for improved performances
in communication [1] and computing protocols [2], in atom-
interferometry-based inertial sensing [3,4], timekeeping [5],
or magnetometry [6]. The coherence of such quantum states
needs to be preserved from decoherence or dephasing arising
from inhomogeneities in coupling or resonance conditions.
Various techniques have been developed for that purpose
based on adiabatic passage techniques [7,8], pulse shaping,
or spin echo techniques [9], with NMR being a domain
in which this engineering reaches its highest degree of
sophistication, with a large variety of complex pulse sequences
having been developed for a precise tailoring of the state
evolution [10].

In the context of atom interferometry [11], which is
our interest here, analogous techniques have been used to
separate the effect of inertial forces, which act on the external
degrees of freedom, from a certain number of phase shifts
related to the internal structure of the atoms. In particular,
in Raman interferometers where a sequence of three Raman
pulses allow splitting, redirecting, and recombining the partial
wave packets [12,13], the middle π pulse not only allows
the wave packets to be redirected towards each other, but
also exchanges internal states. As a consequence, the phase
shift accumulated during the first half of the interferometer,
if related to clock shifts (i.e., to shifts of the electronic
energy levels), is compensated by the phase shift accumulated
during its second half. In principle, this symmetric interfer-
ometer geometry makes the interferometer insensitive to the
detuning of the Raman beams from resonance, in contrast
with a clock based on the traditional two-pulse Ramsey
sequence [14].

In practice, as already claimed in Ref. [13], small residual
phase offsets can appear when the Raman frequency is
not perfectly centered with respect to the atomic Doppler
distribution. In particular, the authors of Ref. [13] observed

*franck.pereira@obspm.fr

that their measured value of g shifted by 1 μGal/kHz when
they varied the frequency of their coupling laser beams
(1 μGal = 10−8 m/s2), but they did not provide a detailed
analysis of this effect at that time. This was, to our knowledge,
the first discussion of this topic, and we are not aware of any
later detailed study of this effect.

The aim of this paper is thus to provide a quantitative
analysis of these residual offsets and of their dependence on
experimental parameters. We show in particular that, in the
general case where the couplings are different for the different
pulses, the symmetry of the interferometer is broken, so that it
exhibits a residual sensitivity to Doppler shifts. As a case study,
we investigate the impact of this asymmetry on the gravity
measurements performed with a Mach-Zehnder interferometer
in a gravimeter configuration.

We start by investigating this effect theoretically in the
first section of the paper. We then describe our gravimeter
experiment, focusing on the features most relevant for this
study and detailing our measurement process. In particular,
the expansion of the atoms inside the Raman beams during the
interferometer induces differences in the Raman coupling at
each pulse. We then investigate the sensitivity of the gravity
measurement to the interferometer asymmetry by modifying
the velocity distribution of the detected atoms. Finally, we
introduce controlled asymmetries by deliberately changing
the intensity in the last Raman pulse and demonstrate the
possibility to compensate the effect of the asymmetry arising
from the expansion of the cloud.

II. ASYMMETRY OF ATOMIC INTERFEROMETER

The Mach-Zehnder interferometer is implemented by using
a three pulses sequence (π/2-π -π/2) of counterpropagating
Raman transitions [12]. These pulses respectively separate,
redirect, and finally recombine the two partial wave packets.
The phase �� at the output of the interferometer is given by
a linear combination of the phase difference of the Raman
lasers at each of the three pulses �� = φ1 − 2φ2 + φ3 [11].
Assuming perfect and infinitesimally short Raman pulses, and
neglecting any contributions other than the one related to the
spatial dependence of the Raman laser phase difference, this
phase φi is linked to the position of the atom wave packet with
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respect to the phase front of the Raman laser φi = �keff · �ri .
The phase of the interferometer thus provides a three-point
measurement of the trajectories of the atoms. Here, �keff =
�k1 − �k2 is the effective wave vector of the Raman process, �k1

and �k2 are the wave vectors of the Raman lasers, and �ri is the
position of the atoms at the ith pulse. If the time separation
between consecutive pulses is equal, this linear combination
allows us to extract the curvature of the atoms’ trajectories (and
thus their acceleration) independently of the initial velocity.
More generally, a linear increase in the difference between
atomic and laser phases, such as due to a detuning from
the Raman resonance condition arising either from frequency
shifts of the internal energy levels or a Doppler shift of the
atoms, makes no contribution to the interferometer phase.
When using counterpropagating Raman lasers, the geometry
of the Mach-Zehnder interferometer and, more specifically, its
symmetry makes this interferometer an inertial sensor and not a
clock.

Nevertheless, this cancellation relies on the perfect sym-
metry of the two π/2 pulses. We show here that, for finite
pulse durations, nonzero Raman detunings, and unequal pulse
intensities, the interferometer becomes sensitive to noninertial
effects. For that purpose, we calculate the evolution throughout
the whole interferometer of the atomic wave function, in the
basis of the two states that are coupled by the Raman lasers,
for Raman pulses of finite durations, and following a treatment
similar to Refs. [15–17]. The detuning δ from resonance is
given by

δ = ω2 − ω1 − (ω0 + ωD + ωR + ωLS), (1)

where ω1 and ω2 are the frequencies of the two Raman lasers,
ω0 is the frequency of the hyperfine transition, ωD = �keff · �v
is the Doppler shift, ωR is the recoil frequency, and ωLS is
the (possibly uncompensated) differential light shift from the
Raman lasers. The two-photon Rabi frequencies are taken to
be potentially different for each pulse, given by �i for the
ith pulse. Although the interferometer pulses can thus differ
from perfect π/2 and π pulses, we will continue throughout
the rest of the paper to refer to them as such. After some
algebra, we find an additional contribution to the phase of the
interferometer given by
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where τ is the duration of the first and last pulse. This shows
that the phase of the interferometer is independent of �2, but
shows a residual sensitivity to a fixed detuning if �1 is different
from �3.

Figure 1 displays as a dotted line this phase shift for the
following parameters: �1 = 2π × 25 kHz, �3 = 1.1�1, and
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FIG. 1. Interferometer phase shift as a function of the detuning
with respect to the Raman resonance condition, for a difference of
10% in couplings � between the first and last Raman pulse. The dotted
line is the unweighted contribution, calculated by using Eq. (2). The
thick line is weighted by the contrast.

τ = 10 μs. Significant phase shifts, of several tens of mrad,
are calculated for detunings of the order of the Rabi frequency.
In our experiment, the width of the velocity distribution
results in a distribution of detuning due to the Doppler
shift, so that the phase of the interferometer results from an
averaging of the phase shift calculated in Eq. (2) over this
distribution.

We now show how to perform this averaging by considering
how each velocity class contributes to the interferometer phase.
Let us consider the fraction of atoms of velocity v within
dv, given by Nf (v)dv. N is the total number of atoms
and f (v) is their velocity distribution. These atoms, which
enter the interferometer in the ground state |g〉 (|5S1/2,F = 1〉
for 87Rb), exit the interferometer in the excited state |e〉
(|5S1/2,F = 2〉 for 87Rb) with a certain transition probability
P (v) that depends on v. This transition probability is calculated
by using the method described above and is written as
P (v) = A(v) + 1

2C(v)cos[�0 + ��(v)], where �0 is a phase
that is independent of the velocity v (being, for instance,
the inertial phase) and ��(v) is the phase shift calculated
above. A(v) is an offset and C(v) is interpreted as the contrast
with which this velocity class realizes the interferometer.
The total number of atoms exiting in the state |e〉 is thus
given by Ne = N

∫
f (v)P (v)dv, and the transition probability

of the interferometer, defined as P = Ne/N , is given by
P = ∫

f (v)P (v)dv. Assuming that ��(v) remains small with
respect to 1 rad for significant values of f (v), this simplifies
to P � A + 1

2Ccos(�0 + ��), with C = ∫
f (v)C(v)dv and

�� = 1
C

∫
f (v)C(v)��(v)dv.

This shows that the contribution to the interferometer phase
shift ��(v) of each velocity class is weighted not only by the
velocity distribution but also by its (normalized) contribution
to the global contrast. We give below the analytic expression
of the contrast C(δ) for a given detuning δ (one simply has to
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replace δ by keffv for a Doppler shift):
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The phase shift ��(δ) multiplied by the contrast C(δ) is
finally displayed as a thick line on Fig. 1. The figure clearly
shows that the weighting by the contrast C(δ) reduces the
contribution of large detunings classes. The odd character of
the weighted phase shift makes the overall phase �� equal
zero if the velocity distribution is symmetric and the Raman
resonance condition is tuned to the center of the distribution.
By contrast, any asymmetry of the distribution or off-centering
of the Raman resonance will result in a parasitic phase shift
leading to systematic errors in the inertial measurement.

III. EXPERIMENTAL SETUP

A. Interferometer setup

In our setup, 87Rb atoms from a two-dimensional magneto-
optical trap (2D-MOT) load a three-dimensional MOT (3D-
MOT) for about 80 ms [18]. A subsequent molasses phase
cools the atoms down to a temperature of about 2 μK. The
molasses beams are then simultaneously switched off within
100 μs with a fast mechanical shutter. The atomic cloud, whose
1/e2 radius is 0.5 mm, is thus simply allowed to freely fall
over a distance of about 20 cm before being detected at the
bottom of the vacuum chamber. Although their initial velocity
is in principle null, fluctuations in the imbalance between
the molasses beams of a few percent, as well as in their
polarizations, lead to residual velocity fluctuations of up to
100 μm/s.

The atoms are vertically velocity selected [15] in the
|F = 1,mF = 0〉 state thanks to a combination of microwave,
pusher, and Raman pulses. In more detail, a first microwave
pulse transfers about 1/5 of the atoms, initially in the |F = 2〉
state, into the |F = 1,mF = 0〉 state. A brief pulse of a pusher
beam, tuned on the |F = 2〉 → |F ′ = 3〉 transition, removes
atoms left in |F = 2〉. A second microwave pulse transfers
the remaining atoms in the |F = 2,mF = 0〉 state, before a
Raman selection pulse is applied, which transfers the central
part of the velocity distribution into |F = 1,mF = 0〉. Finally,
a second pusher pulse removes the atoms left in |F = 2〉,
which have not been selected. The maximum two-photon Rabi
frequency of the Raman pulse is of the order of 2π × 25 kHz,
comparable to the Doppler width of the initial velocity
distribution. The single-frequency detuning of the Raman
lasers is of order of −1 GHz, and the 1/e2 radius of the
Raman beams is 12 mm. After selecting the atoms, we drive
a Mach-Zehnder interferometer, using a π/2-π -π/2 Raman
pulse sequence, to respectively separate, redirect, and finally
recombine the two partial wave packets [12]. The first pulse
of the interferometer occurs about 16 ms after the release
from the molasses. The Rabi frequency for the interferometer
is identical to the Rabi frequency used in the selection. This

ensures that the difference in the resonance condition between
the selection and the first Raman pulse is linked to the
4-ms time separation between these two pulses only and is
independent of the Raman differential light shift if any. This
time separation induces a Doppler-shift change of 100.5 kHz,
which is precisely accounted for in the experiments presented
below, except when otherwise specified. On the contrary,
changing the Rabi frequency in between the selection and the
interferometer would induce a change in the same proportion
of the differential light shift if the latter is not canceled (this
cancellation can be realized by a proper adjustment of the
intensity ratio between the Raman lasers). This change in light
shift would also need to be accounted for in order for the
Raman pulse to be tuned on resonance for the interferometer.

We exploit the state labeling [11] to measure the populations
in the two output states, thanks to a detection performed on
the internal state. From the populations N1 and N2 in the
two hyperfine states, we derive the transition probability P =
N1/(N1 + N2). This transition probability P is given by P =
1
2 [1 + C cos(��)], where C is the interferometer contrast and
�� is the phase difference between the two different arms.
In our geometry of vertically aligned Raman lasers, this phase
shift is given by �� = keffgT 2 [19], where g is the gravity
acceleration, and T = 80 ms is the time separation between
consecutive pulses. The cycle time in our experiment is
360 ms.

B. Detection setup

As will be shown later, the response of the detection,
which weights differently the contribution of the different
velocity classes to the interferometer signal, induces residual
noninertial phase shifts due to the asymmetry of the inter-
ferometer. We thus describe here the main features of the
detection system, which allows for simultaneous detection
of the two populations. A more detailed description can be
found in Ref. [18]. The atoms arrive in the detection zone
about 200 ms after their release from the molasses, and
20 ms after the last π/2 pulse. Their velocity in the detection
area is thus 2 m/s. For the detection phase, the two lasers
which induce Raman transitions during the selection and
interferometer phase are put on resonance with respectively the
|F = 1〉 → |F ′ = 2〉 (repumping) and |F = 2〉 → |F ′ = 3〉
(cycling) transitions. A first brief pulse of duration of 90 μs
resonant with the |F = 2〉 → |F ′ = 3〉 transition freezes the
atoms in the |F = 2〉 state while the |F = 1〉 atoms continue
to fall [20,21]. After a separation time of about 10 ms, the two
clouds are 2 cm apart. A 10-ms-long pulse containing both
slightly red detuned cycling light and on-resonance repumping
light then illuminates the two clouds with a high saturation
parameter (s ∼ 50). The emitted fluorescence is collected onto
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FIG. 2. Positions of the two atomic populations in the detection
area for different timing parameters (Tdet and T1). The |F = 2〉
(|F = 1〉) state is represented in red (blue). On the left, the normalized
optical system response is displayed along the vertical axis z. z = 0
is taken as the vertical center of the detection system. (a) Optimal
case: the two populations are centered on their respective detection
zones (−10 mm and +10 mm) corresponding to the optimal pair
(Tdet = Tdet opt and T1 = T1 opt). (b) Off-centered case: Tdet �= Tdet opt

and T1 = T1 opt. (c) Case where one cloud only is well centered
in its corresponding detection zone Tdet = Tdet opt and T1 �= T1 opt.
(d) Tdet �= Tdet opt and T1 �= T1 opt.

two different photodiodes, one for each of the two populations.
The timing of both the brief pulse (at Tdet) and the long pulse
(at Tdet + T1) is set so as to optimize the positioning of the two
atom clouds in each of the two detection zones.

Figure 2 displays a sketch of the detection system and
illustrates the effect of the parameters Tdet and T1 in different
cases. It displays on the left the theoretical response of the
detection system along the vertical axis. Measurements of its
actual response are in good agreement with the expectations
of the model, with maximum deviations of only 4% [18].
One can notice that the response of each measurement zones
is not flat, but varies almost linearly by about 9%, with an
opposite slope for each zones. The optical system that collects
the fluorescence being the same for the detection of the two
zones, the photodiodes are offset with respect to the optical
axis of the system, which leads to an inhomogeneous response
as a function of the initial position of the atoms in a given zone.
Actually, this detection system was designed to guarantee a flat
response of the detection efficiency in the transverse plane (and
not necessarily in the vertical direction) in order to efficiently
average to zero Coriolis-acceleration phase shifts [18]. Given
that response, detecting the atoms off center as displayed as
case (d) in Fig. 2 maximizes the signal, but, as we will see
later, leads to a bias in the measurement.

C. Measurement process

In our experiment, the usual g absolute measurement is
performed by alternating measurements in four different con-
figurations [18]. This measurement protocol allows most of the
systematic effects to be removed, except Coriolis acceleration
and eventual phase shifts due to wavefront distortions. It is
composed of two pairs of configurations in which the wave
vector keff is reversed (k↑ and k↓). keff = k↑ describes the
situation where the higher-frequency Raman beam propagates
upward, and keff = k↓ describes where the higher-frequency

beam propagates downward. The half difference of a single
pair of configuration (k↑ and k↓) provides a g↑↓ measurement
in which the effects related to perturbations of the internal
degrees of freedom of the atoms and to radio-frequency phase
shift are suppressed [13]. The second pair is performed with
half the Raman power, which allows the two-photon light
shift to be suppressed [22]. For most of the measurements
performed in this paper, we also alternate four configurations.
A first pair of k↑ and k↓ configurations with fixed parameters
leads to a reference value of gref

↑↓, whereas we modify one
or few parameters in the second pair. We thus perform
differential gravity measurements �g = gref

↑↓ − gmod
↑↓ , where

common-mode effects (related, for instance, to real gravity
changes, such as tides, or most of the systematic effects, such
as Coriolis acceleration) are rejected.

IV. EFFECT OF INITIAL VERTICAL RAMAN SELECTION

We start by modifying the selection parameters to investi-
gate the impact on the gravity measurement of the shape of the
velocity distribution of the selected atoms. Figure 3 illustrates
how the shape of this velocity distribution can be altered.
Although the initial velocity distribution in our experiment is
better described by a Lorentzian b, as already discussed in
Ref. [23] and given by f (v) = A/[1 + (v − v0)2/v2

c ]b, than a
Gaussian, as we will see later, we take here for this illustration
the initial velocity distribution to be Gaussian, with a FWHM
of 80 kHz, which corresponds to a temperature of 1.8 μK and
which is comparable to the FWHM of the velocity distribution
in the experiment.

After the selection pulse, performed with a Raman pulse
along the vertical direction, of frequency νsel↑ (νsel↓) for
a k↑ configuration measurement (k↓), the selected velocity
distribution enters the interferometer. In the absence of Raman
detuning at the selection, the Raman frequencies νsel↑ and νsel↓
correspond to Raman pulses tuned on resonance with the center
of the velocity distribution. But, by modifying the selection
frequency by δνsel, we can prepare a velocity distribution with
a controllable asymmetry. Depending on whether we offset the
selection frequency in the same or in opposite directions for
the k↑ and k↓ measurements, we generate two different ways
to potentially bias the gravity measurement:

(i) The first case, where we apply opposite offsets to the
selection frequencies (νsel↓ + δνsel; νsel↑ − δνsel), mimics an
error in the determination of the mean Doppler shift at the
selection.

(ii) The second case (νsel↓ + δνsel; νsel↑ + δνsel) mimics
the effect of a residual uncompensated one-photon light shift.

Figure 3 displays the calculated selected velocity distribu-
tion obtained for various settings of the selection frequency.
Figure 3(b) corresponds to selection frequencies well centered
on the velocity distribution, which lead to symmetric selected
velocity distributions. Figures 3(c) and 3(d) correspond to the
two cases discussed above and lead to asymmetric velocity
distributions. In particular, one can notice a clear difference �

in the amplitudes of the secondary lobes on either side of the
distribution.

We then measure the impact on the gravity determination in
these two cases by performing differential measurements using
the four configuration-measurement processes detailed above.
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FIG. 3. Predicted velocity distributions (in the frequency domain) (a) before and (b)–(d) after the vertical velocity Raman selection pulse.
The spectra on the left correspond to the k↑ configuration, and the ones on the right to the k↓ configuration. The horizontal-axis label ν

corresponds to the resonant frequency of each velocity class, offset by the frequency of the hyperfine transition. (a) Initial Gaussian distribution.
The centers of the distribution are νsel↑ = −310 kHz in the k↑ configuration and νsel↓ = 280 kHz in the k↓ one. (b) Velocity distribution after the
selection in the ideal case, for which δνsel = 0. (c) Case where δνsel �= 0 and where the selection frequencies are offset in opposite directions:
νsel↑ is shifted by −δνsel and νsel↓ by +δνsel. This case corresponds to a Doppler effect. (d) Case where δνsel �= 0 and where the selection
frequencies are offset in the same direction: νsel↑ is shifted by +δνsel and νsel↓ by +δνsel. This case corresponds to a one-photon light shift. �

is the difference in amplitude between the two second-order lobes of the selected velocity distribution.

As discussed above, the Raman frequency difference at the
first pulse of the interferometer is shifted by the same amount
as the selection frequency in order to keep the center velocity
class well resonant with the interferometer. Measurements of
the gravity shift, in units of μGal, as a function of the offset in
the selection frequency are displayed on Fig. 4 as full symbols.
For this series of measurements, the Rabi frequency was � =
2π × 12.5 kHz.

For a velocity-selection-frequency shift corresponding to
the second case (analogous to an uncompensated light shift),
we do not observe a significant bias on the �g measurement
(full circles in Fig. 4). In the first case though, which
corresponds to a Doppler shift, the asymmetry in the velocity
distribution results in a well-resolved bias on the g measure-
ment of −0.12 (2) μGal/kHz of frequency offset. We take this
last result as evidence that the interferometer is not perfectly
symmetric. Such a difference between these two cases is
expected: in the second case, the shift in the value of g changes

sign when changing the direction of the Raman wave vector
k, so that the average of the effect over the two k directions is
null, whereas it does not change sign in the first case.

We then repeated the same measurements but keeping the
Raman frequency at the first pulse fixed, instead of shifting
it by the same amount as the selection frequency. The results
are displayed as open symbols in Fig. 4. We find as before
no effect in the second case (open circles), whereas the effect
is much larger in the first case, of 1.44 (4) μGal/kHz (open
squares). Indeed, in the first case, the Raman frequency for
the interferometer is tuned on the side of the selected velocity
distribution, leading to largely unbalanced contributions from
opposite-Doppler-shifted velocity classes. The effect is then
comparable to the result obtained in Ref. [13], where the
Raman frequency of the interferometer was changed without
changing the frequency of the selection.

These measurements illustrate the necessity of adjusting
the selection frequency onto the center of the initial velocity
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FIG. 4. Effect of an offset δνsel around the velocity frequency
selection νsel. Squares (circles) show differential measurements
corresponding to a Doppler (light shift) effect. The interferometer
Raman frequency is (not) shifted according to the δνsel for the solid
colored (not solid colored) symbols.

distribution, and the Raman frequency onto the center of the
selected velocity distribution. Any mistake in the adjustment
of the corresponding Doppler shifts will lead to an error in the
gravity measurement.

V. COMPARISON WITH SIMULATION

In order to compare the previous measurements with
their expectations, we developed a numerical model of the
experiment by performing a Monte Carlo simulation. The
atoms are drawn randomly in a Gaussian position distribution
of σ = 0.5 mm and in a Lorentzian b velocity distribution,
with parameters vc = 16.5 mm and b = 2.4. These parameters
are extracted from a fit of the measured velocity distribution
with a Lorentzian b function, which adjusts better the velocity
distribution than a Gaussian distribution. The Raman beam
is modeled with a Gaussian beam with a 12 mm waist.
The simulation includes the effect of the Raman velocity
selection. It calculates the evolution of the atomic state in the
interferometer, taking into account the trajectory of the atoms
in the laser beams (and thus the coupling inhomogeneities), the
Raman frequency shifts (such as due to Raman detuning and
one-photon light shifts [15]). The response of the detection,
which we discuss in more detail in Sec. VII, is also included.
It weights differently the contribution of the different velocity
classes of the atomic cloud in a manner that depends on the
timing parameters. Other systematics, such as two-photon
light shifts [22] and Coriolis acceleration, are not expected
to influence the effect under study here, which is confirmed
by the simulation, that can also take these systematics into
account. The number of draws is adjusted for the statistical
error to be of order of 0.1 μGal or better. This corresponds
typically to 106 to 107 draws depending on the interferometer
parameters.

For the parameters of the results presented above,
the simulation predicts in the first case sensitivities of

−0.106 (3) μGal/kHz and 1.36 (1) μGal/kHz, depending on
whether the Raman detuning is adjusted or not, and confirms
the absence of bias in the second case. These predictions are
in fair agreement with the measurements.

VI. INFLUENCE OF INITIAL CLOUD VELOCITY

The velocity distribution just before the selection pulse
and, more specifically, its mean value depend on parameters
such as the power imbalance of the molasses beams or their
polarization state. Fluctuations of the release time from the
molasses will also affect the mean velocity just before the
selection pulse, as any change in the time interval between
release and selection time modifies the velocity change
induced by gravity acceleration during that interval.

In this section, we deliberately modify the initial velocity by
changing the time of the release from the molasses, keeping all
Raman frequencies and timing parameters constant, in order
to investigate the influence of variations of this release time
onto the gravity measurement. In our experiment, release from
the molasses is performed by switching off the laser light with
a fast mechanical shutter, controlled by a TTL pulse. Varying
the delay parameter tr of this logic pulse changes the time of
the release accordingly.

We then perform (four-configuration) differential measure-
ments in order to measure the change in the gravity values
as a function of the change in tr . We find a linear variation
of �g versus δtr with a sensitivity of −5.6 (1) μGal/ms
for a Rabi frequency of 2π × 25 kHz. The linear behavior
is well reproduced by the simulation, which gives, for the
same parameters, a sensitivity of −4.23 (3) μGal/ms; about
25% smaller. The difference between the measurements and
the simulation can be attributed to imperfect modeling of the
initial velocity distribution, or larger coupling inhomogeneities
in the experiment than in the simulation. The latter could
arise from differences in the intensity profile of the Raman
beam: deviation from the ideal Gaussian beam profile could,
for instance, be due to speckle or fringes.

We then repeat the measurement of this sensitivity for
different Rabi frequencies. The results of these measurements
are displayed as gray diamonds in Fig. 5. The results
of the simulation, which are displayed as open circles
on the figure, show a linear behavior, with a slope of
−0.168(3) μGal ms−1 kHz−1. A linear fit to the measurements
gives here again a significantly larger effect, by about 50%,
with a slope of −0.26 (1) μGal ms−1 kHz−1.

As the change of the initial velocity induced by the change
in the release time is equivalent to a Doppler shift, we can
compare these measurements with the measurements of Fig. 4,
where the change was applied on the selection frequency.
Given the fact that a change δtr on tr gives a change in the
Doppler shift of kgδtr of about 25 kHz/ms, the previously
determined sensitivity of −0.12 (2) μGal/kHz of Doppler shift
corresponds to a sensitivity of −3.0 (5) μGal/ms of delay.
This result and other such measurements taken for close Rabi
frequencies are plotted as blue squares in Fig. 5 and show good
agreement with the measurement performed by modifying the
release parameter tr , considering their relatively large error
bars. These measurements show that the release time needs
to be controlled to better than about 100 μs for accurate
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FIG. 5. Sensitivity of the gravity measurement to a change in the
release time from the molasses as a function of the Rabi frequency.
Gray diamonds show the measurements and open circles show the
simulation. Blue squares show the equivalent sensitivities obtained
when modifying the selection frequency.

measurements at the μGal level. Although such a level of
control is easy to reach if using acousto-optic modulators or
closed-loop galvos to switch off the light, it is not guaranteed
when using open-loop mechanical shutters.

VII. INFLUENCE OF DETECTION PARAMETERS

The weighting of the different velocity classes in the total
interferometer phase can also be affected by the detection
response. Indeed, after the 200 ms time of flight between
the release and the detection, positions in the detection
area and atomic velocities are significantly correlated. We
then investigate the influence of the detection by adding
offsets δTdet and δT1 to the two detection timing parameters,
which affects the atomic positions in the detection area
(see Fig. 2). Because the atomic trajectories are affected
by the beam-splitting momentum transfer, optimal detection
parameters are different for the two configurations “↑” and
“↓,” and thus the measurements are performed independently
for each wave-vector direction. The results are displayed
on Fig. 6 for the (k↑) configuration: �g = gref

↑ − gmod
↑ with

gref = g(Tdet ini,T1 ini) and gmod = g(Tdet,T1). Tdet ini and T1 ini

are the initial parameters, which were estimated thanks to
the measurement of the variation of the amplitude of the
fluorescence signals versus the detection parameters.

In a first series of measurement, we scan the parameter Tdet

keeping T1 fixed and we observe an odd dependence (see black
squares in Fig. 6). We measure a relatively large bias of order
of 10 μGal for large displacements (a 2 ms offset corresponds
to a position shift of 4 mm in the detection). Second, we
scan the separation between the two clouds in the detection
keeping their average position fixed. This corresponds to
changing simultaneously T1 and Tdet by respectively δT1 and
δTdet = −δT1/2. We observe less pronounced variations with
an even behavior. These two series of measurements are
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Δ
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FIG. 6. Influence of the detection timing parameters on the
gravity measurements. Black full squares are for scanning only δTdet

[δT1 = 0, Fig. 2(b)]. Red open circles are for scanning the position of
the two interferometer outputs in a symmetrical way with respect to
the center of the detection [δT1 = −2δTdet, Fig. 2(d)]. The black and
red lines represent respectively third- and second-order polynomial
fits to the results.

difficult to interpret because they correspond to exploring a
2D parameter space along two peculiar lines.

We then compare these measurements with the results of
our numerical simulation, varying the detection parameters.
Figure 7(a) represents the results of the simulation. It displays
the variation of the gravity value with respect to T1, for various
“center time” parameters Tc (Tc = Tdet + T1/2) ranging from
Tc opt + 1 ms to Tc opt − 1 ms. We observe almost no depen-
dence when Tc is well adjusted, and a roughly even dependence
if not, similar to our measurement (red curve in Fig. 6). We
thus extract two important features from these simulations:
(i) the larger the offset with respect to the optimal value of
Tc, the higher the curvature, and (ii) the center of each curve
corresponds to the optimum T1.

In a second step, we performed a series of measurements
varying the timing parameters in the same range as in
the simulation around their initial values. The results are
displayed in Fig. 7(b). We fit the curves with second-order
polynomials, from which we extract vertices and curvatures.
Figure 8 displays as open squares these curvatures as a
function of δTc = Tc − Tc ini. For comparison, curvatures
extracted from simulated data, expressed as a function of
δTc = Tc − Tc opt, are also displayed as full squares. The
results of the simulation show a linear behavior, with a slope
of 0.537 (3) μGal ms−2 ms−1 change in Tc. A linear fit to the
data gives a larger slope of 0.81 (7) μGal ms−2 ms−1 change
in Tc. Remarkably, the linear fit to the measured data crosses
zero at δTc � −0.2 ms, which indicates that the initial value
Tc ini was off by −200 μs with respect to its optimal value.

This illustrates how, by extrapolating the curvature to zero,
we can determine Tc opt. In a complementary way, by averaging
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FIG. 7. Influence of the detection parameters. (a) Simulation results for Tc = Tc opt, Tc opt ± 0.5 ms, Tc opt ± 1 ms. (b) Measurement results
for Tc = Tc ini, Tc ini ± 0.5 ms, Tc ini ± 1 ms. Results are fit with second-order polynomials.

the coordinate of vertices, we obtain T1 opt. We thus perform
this procedure independently for each direction of the wave
vector, because the optimal timing parameters depend on
its direction. We find T

↑
1 = 9.4 (3) ms, T

↓
1 = 9.90 (5) ms,

T
↑

c = 298.59 (6) ms and T
↓

c = 299.73 (5) ms. This leads to
T

↑
det = 293.4 (2) ms and T

↓
det = 294.4 (2) ms, close to the

expected values, calculated to be T
↑

det ini = 293.6 ms and
T

↓
det ini = 294.8 ms.

We estimate from the results of the simulation that, even for
relatively large variations of about ±1 ms in the parameters
T1 or/and Tdet, the bias on the g measurement remains smaller
than 1 μGal. In particular, the above-mentioned uncertainties
in the determination of the optimal parameters lead to a
maximum error on the gravity measurements of 0.2 μGal.
Finally, we estimated, considering the weak influence of the
timing parameters, that the weighting by the detection had no
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FIG. 8. Measured (open squares) and simulated (full squares)
curvatures with respect to the variation of Tc.

significant impact on the previous measurements of Secs. IV
and VI.

VIII. FORCING THE ASYMMETRY

In this section, we introduce controlled asymmetries in the
interferometer by deliberately changing the coupling at the
last π/2 pulse, around the typical value of 2π × 12.5 kHz.
We repeat measurements of the sensitivity to the frequency
selection by using the protocol described in Sec. IV for
different Rabi frequencies of the third pulse: �3 = �3 ini +
δ�3. The results, displayed as black dots in Fig. 9, show a
monotonic increase of the sensitivity as a function of δ�3.
The results of the numerical simulation are also displayed
for comparison (red dots). They show the same behavior as
the measurements with an offset of about 0.1 μGal/kHz.
Remarkably, the sensitivity to the selection frequency is null
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FIG. 9. Sensitivity to the frequency of the velocity selection as a
function of the amplitude change of the third Raman pulse. Black full
circles represent the measurements and red open squares represent
the simulation.
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FIG. 10. Raman spectrum of the initial velocity distribution,
measured about 12 ms after the release of the atoms from the molasses.

for a change of about 14%. This corresponds to compensating
for the asymmetry due to the coupling inhomogeneity by an
increase in the coupling. Although this compensation is not
independent of the interferometer parameters (for instance,
it depends on the initial velocity distribution), it could be of
interest for improving the long-term stability of the gravity
measurement.

IX. INITIAL VELOCITY DISTRIBUTION

Finally, we characterized the initial velocity distribution
because, from the study performed above, we expect that any
asymmetry in this distribution will lead to a bias in the g

measurement. We thus performed measurements of the veloc-
ity distribution with Raman spectroscopy, before selection, by
using a long Raman pulse of the order of 100 μs, for which the
convolution with the width of the Raman pulse is negligible.
The measured Raman spectrum, displayed in Fig. 10, indeed
reveals a clear asymmetry in the initial velocity distribution.

The measured distribution was then used to average the
phase shift derived in Sec. II for a Rabi frequency of
2π × 25 kHz and a difference of −14% between the Rabi
frequencies at the first and third pulse (which we take here as
equivalent to the effect of the inhomogeneities in the Raman
coupling due to the transverse spread of the atoms). We found

a small effect of −0.60 μGal, that would be the effect in the
absence of Raman velocity selection before the interferometer.
To determine the effect expected in the case of the velocity
selection, we first calculated from the measured distribution the
expected velocity distribution after the selection, and averaged
the above phase shift with this new distribution. We then found
the bias to be significantly smaller: −0.3 μGal.

X. CONCLUSION

We studied the influence of Raman-coupling variations
on the symmetry of a Mach-Zehnder interferometer. In the
geometry of a free fall gravimeter, where the atoms travel
transversally in the Raman beams during the interferometer,
coupling inhomogeneities lead to a residual sensitivity of the
interferometer phase to the atomic velocity. We show how this
effect leads to a bias if the interferometer pulses are not tuned
on resonance with the center of the velocity distribution, or if
the velocity distribution of the detected atoms is asymmetric.
In particular, in our gravimeter, a frequency mismatch of
5 kHz, which is about one order of magnitude smaller than
the width of the velocity distribution, leads to a gravity
shift of 1 μGal for a Rabi frequency of 2π × 25 kHz. Our
measurements have been compared with a numerical model of
the experiment, which reproduces successfully the observed
trends, but underestimates the amplitude of the effects by up
to 50%. This could indicate that inhomogeneities in the Raman
coupling are larger than expected.

Our study highlights the necessity of controlling the initial
atomic velocity distribution, which depends on a number of
parameters, such as the release time from the molasses and/or
the launch velocity, if the interferometer operates in a fountain
geometry. Careful adjustments of the frequency of the Raman
laser during the selection and interferometer phases, as well as
of the timings of our detection, are thus required to reach an
accuracy at or below the μGal level.
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[20] J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon,
A. Landragin, and F. P. Dos Santos, Appl. Phys. B: Lasers Opt.
92, 133 (2008).

[21] J. M. McGuirk, G. T. Foster, J. B. Fixler, and M. A. Kasevich,
Opt. Lett. 26, 364 (2001).
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