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Raman-laser spectroscopy of Wannier-Stark states
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Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional
(1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice
between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are
measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice
depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can
also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise
characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.
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I. INTRODUCTION

Cold atoms trapped in optical lattices have proven to be
well suited for simulating solid-state systems, enabling the
observation of Bloch oscillations [1,2], resonant tunneling
[3-5], or the Mott insulator regime [6]. In addition, the
precise knowledge and control of the atomic external degrees
of freedom in these systems make them promising for
applications such as metrology [7,8] or the development of
inertial sensors [9,10]. In a recent article [11] we showed
that Raman pulses can be used to induce tunneling between
neighboring sites of a one-dimensional (1D) vertical lattice.
The present article aims to provide a more detailed description
of the system. In particular, we use Raman spectroscopy to
probe the energy structure of atoms trapped in a 1D vertical
lattice. This study is motivated by recent proposals to use such
a system to measure short-range forces [12—15] or to make a
compact gravimeter [10,16,17]. It is also of interest for any
experiment using a shallow optical lattice because it provides
a comprehensive characterization of the system.

We consider atoms trapped in a vertical standing wave
created by a laser far detuned from resonance. This results in a
periodic potential, which is superimposed on the gravitational
potential in the vertical direction. The internal atomic structure
is approximated by a two-level system with long-lived states
|g) and |e) with energy difference hv,,. The total Hamiltonian
of this system is given by

H = Hy+ H + H,, (D

where ﬁim = hv,gle){e| represents the internal energy, ﬁl =
Upl[1 — cos(2k;2)]/2 is the periodic lattice potential with
lattice depth Uy, lattice wave number k;, and vertical spatial
coordinate Z, and ﬁg = m,gZ represents the gravitational
potential, where m, is the mass of the atom and g is the
acceleration due to gravity.

As known from solid-state physics, the eigenstates of the
external part H; + H,, which is the sum of a periodic and
a linear potential, are given by Wannier-Stark (WS) states
[18,19]. They form a so-called WS ladder of states |W ),
where b is the discrete index of the Bloch band, which
structures the eigenstates in the periodic lattice, and the discrete
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quantum number m is the well index, which characterizes the
vertical position of the wave function (z| W} ,,) and labels the
well containing its main peak in the limit of deep lattices
(Up > E,). The energy difference between adjacent lattice
sites in the same band is simply the potential energy difference
between two neighboring wells hvg = m,gA;/2, where A; =
21/ k; is the lattice wavelength and vg is the Bloch frequency.
Considering only the bottom band (b = 0) and adding the
internal Hamiltonian leads to a new WS-ladder-like structure
consisting of states |g,W,,) and |e, W) (see Fig. 1).

In this structure, the application of a laser field resonant to
AE/h = v, + Amvg with Am =0, £1, 2, ... allows for
coupling one state of this ladder to neighboring WS states with
opposite internal state and thereby for the determination of the
clock frequency v,, and the local gravity g in a spectroscopic
measurement. In this, the inherent state labeling [20] gives
us a tool for the precise measurement of the external state
by internal-state detection. Coupling of the ladder states
becomes apparent when adding a coupling Hamiltonian H, =
hQy,=o0 cos(wt — kZ)|e)(g| + H.c. to H, where Q=0 is the
Rabi frequency in absence of the lattice potential and k; =
27 /s the coupling laser’s wave number [21]. From this, the
coupling strength for transitions between pairs of these states
either in the same well (Am = m — m’ = 0), or in neighboring
wells (Am # 0) is calculated to be [21]

Qam = Quy=o( Wi le™5 | W), )

As we will see in more detail later in this paper, the lattice
depth Uy plays an important role for driving these transitions.
In too shallow lattices, the atomic localization is too weak and
Landau-Zener (LZ) tunneling occurs, which limits the WS
state lifetime. For too deep lattices, the WS states are localized
in only one well, which strongly limits the intersite coupling
strength and thus compromises spectroscopy measurements.
Figure 2 illustrates the delocalization of the WS wave function
at the depth of 1.6 E, that we use in our experiment: it displays
the spatial density probability of the WS wave function
[Wo(2)]? = |{z|Wp)|?, which extends over about 15 wells.
Intersite transitions can be realized choosing A, in the opti-
cal domain, with a single laser connecting two different elec-
tronic states, such as the ground state and a metastable state of
the optical clock transition studied in [22]. Alternatively, they
can be realized with two-photon transitions between the two
hyperfine ground states of alkali-metal atoms. In this paper,
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FIG. 1. Wannier-Stark ladder of states and couplings between
states by the probe laser.

we will focus on this latter case. For 8’Rb, transitions between
the ground and excited hyperfine levels |g) = |52S, 2. F =
1,mp =0) and |e) = |52S1/2,F = 2,mp = 0) can be driven
using counterpropagating vertical Raman beams providing a
frequency difference of vy = v, — vy, that can be tuned around
Vg = 6.834 GHz. This transition implies a momentum transfer
k = k| 4+ k, =~ 47 /A, with A; = 780 nm replacing k; in Eq.
(2). Here, vy, v, and ky, k, are the respective frequencies and
wave numbers of the two Raman lasers.

The intersite coupling on this transition is discussed for
different values of A; in Sec. II. The experimental apparatus is
then presented and the observed coupling strengths are com-
pared to theoretical values. The achieved linewidth surpassing
the Fourier limit by less than a factor two in the range up to
1.4 s of spectroscopic interrogation time and its limitations
are presented and discussed in Sec. III. Finally, we show the
observed longitudinal and transverse structures observed in
our composed trap in Sec. IV.

II. COUPLINGS

The possibility to drive resolved intersite transitions
strongly depends on the lattice wavelength and depth, as
illustrated in Fig. 3. We calculated the coupling strengths
as a function of the lattice depth (by using a numerical
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FIG. 2. Spatial density distribution of |W,) wave function for
lattice depth Uy = 1.6E,.
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FIG. 3. (Color online) Coupling strengths Am = £1 versus
lattice depth for three different lattice wavelengths: A; = 532 nm,
A; = 1064 nm and A; = 800 nm, A; = 780 nm.

calculation of the second term in Eq. (2); see also [21])
for Am = m’ — m = =1 transitions, for three different lattice
wavelengths: close to resonance (A; = 800 nm), far blue de-
tuned (A; = 532 nm), and far red detuned (A; = 1064 nm). The
choice of these wavelengths is motivated by the availability of
sufficiently powerful lasers (=20 W in the far-detuned cases,
up to several watts close to resonance), allowing us to reach
a sufficient depth of a few recoil energies with a relatively
large waist (=1 mm). Such a waist is required for minimizing
parasitic forces due to the dipolar potential gradient along
the longitudinal direction when using such a system for
high-precision measurements (gravimetry, short-range forces,
fine structure constant [23],...).

At sufficiently low depths of a few E,, we find coupling
strengths of the same order of magnitude for the far-blue- and
far-red-detuned cases whereas the intersite coupling remains
small close to resonance. We find relatively large variations
and modulations for the far-detuned cases with respect to the
close-to-resonance case. Calculations performed for Am > 2
transitions showed similar behaviors. Nevertheless, tilting both
Raman lasers by the same angle with respect to verticality
gives the possibility to preserve the direction of k while
reducing its magnitude, thus changing the coupling strengths.
As an example, we plot in Fig. 4 the couplings in the
close-to-resonance case for k reduced by a factor of two, which
corresponds to an angle of 60° with respect to verticality.
Although we find larger coupling strengths, which oscillate
versus lattice depths, couplings comparable to the far-detuned
cases for Am > 1 are only reached at twice-lower lattice
depth.

Another important parameter depending on the lattice
wavelength is the tunneling rate out of the bottom band,
which limits the lifetime of the atoms in shallow lattices. For
an estimate of this rate, we use the Landau-Zener formula.
Figure 5 displays the calculated rates as a function of the
lattice depth (in units of recoil energies) for low depths of
2E, and 3E,. The LZ tunneling rate remains small in the
far-blue-detuned case, even for lattices as shallow as 2E,,
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FIG. 4. (Color online) Coupling strengths Am = 0,£1,£2,43
versus lattice depth for a lattice wavelength A; = 800 nm and tilted
Raman beams giving an effective wavelength of A; = 1600 nm.

whereas it becomes comparable to 1 s~! for a lattice depth
Uy between 2E, and 3E, in the close-to-resonance case.
Operation at A; = 532 nm thus appears more appealing as
one can combine large lifetimes and good couplings for large
site offsets Am.

We have compared these calculations with measurements
corresponding to the blue-detuned case. Our system [11]
consists of laser-cooled 3’Rb atoms loaded in the first
band of a vertical one-dimensional optical lattice, created
by a single-mode frequency-doubled Nd:YVO, laser (A; =
532 nm, maximal power 12 W) with a waist of about
700 um. Because this blue-detuned standing wave does not
provide transverse confinement, a red-detuned (A = 1064 nm,
beam waist 200 um) Yb fiber laser is superimposed on the
lattice (see Fig. 6). The difference in the waists of the two
lasers allows us to reduce inhomogeneities in the lattice
depth due to the transverse extension of the atomic sample.
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FIG. 5. (Color online) Landau Zener tunneling rate as a function
of the lattice wavelength for Uy = 2E, and 3E,.

= ]

.\f'
=
=]
1

»

1
=
\
=
¥

o
bl 00N

Raman 1 & 2
780nm

4

FIG. 6. (Color online) Experimental setup. The laser beams for
optical trapping (lattice at 532 nm and transverse confinement at
1064 nm) and Raman spectroscopy (780 nm) are superimposed using
dichroic optics.

Before being transferred into this mixed dipole trap, about
107 atoms are loaded in a three-dimensional (3D) magneto-
optical trap (MOT) and cooled down to 2 uK with a far-
detuned molasses. The dipole-trap lasers are switched on either
at the end of this cooling phase or at the beginning of the
MOT sequence. Switching off the molasses lasers leaves about
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FIG. 7. Raman spectrum showing the transition probability as a
function of the Raman frequency from a lattice depth of 1.6E,. The
resonances separated by the Bloch frequency vz = 569 Hz are the
signature of intersite transitions.
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1% of the atoms trapped in the mixed trap with a lifetime
of about 1 s. These atoms, which are initially distributed
in all the Zeeman sublevels of |52S, 2, FF =2) are then
depumped to |57} /2, F = 1) before being optically pumped
(98% efficiency) on the |52Sl/2,F =1)— |52P3/2,F = 0)
transition to the |52S, 2,7 =1,mp =0) Zeeman sublevel,
which is sensitive to stray magnetic fields only to second
order. After being released from the optical trap, atoms fall
for about 140 ms before reaching the detection zone located at
the bottom of the vacuum chamber. The detection scheme is
based on a time-of-flight measurement similar to that used in
atomic clocks and inertial sensors. It allows us to measure by
fluorescence the atomic populations in the two hyperfine states
F =1and F = 2, denoted N| and N,, respectively [24], from
which we derive the transition probability P = N, /(N, + Nj).
The Raman transitions are driven by two counterpropagating,
circularly polarized beams at 780 nm, detuned from the atomic
transition by about —3 GHz and aligned along the direction
of the optical-trap beams. These are collimated with a 1/e?
radius of 1 cm, ensuring a good intensity homogeneity along
the transverse size of the trap.

In order to determine the coupling strengths, a Raman spec-
trum is first scanned by measuring the transition probability
as a function of the frequency difference between the Raman
lasers vg. For such scans, the intensities in the Raman laser
beams are 0.25 and 0.54 mW/cmz, and the duration of the
Raman pulse is 8 ms. This ratio between the Raman intensities
is chosen to cancel the differential light shift they induce on
the frequency of the hyperfine transition [25].

We observe multiple resonances, corresponding to transi-
tions between the two hyperfine levels at Raman frequencies
equal to the hyperfine splitting plus or minus an integer number
Am of Bloch frequencies (v =~ 569 Hz in our system). The
difference in peak height is due to the difference in the coupling
strengths. We then fix the Raman frequency difference at the
center of each peak and record a Rabi oscillation pattern by
measuring the transition probability as a function of the pulse
length, from which we extract the Rabi frequency. We repeat
this procedure for different lattice laser power values. The
measured coupling strengths of the Am = 0,1,2,3 transitions
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FIG. 8. Normalized Rabi frequencies measured as a function of
the lattice depth for Am = 1,2,3,4. The normalization factor Qy,—¢
is an adjustable parameter. Solid lines are the result of numerical
evaluation of Eq. (2).
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are plotted in Fig. 8 as a function of the lattice laser power.
The results have been normalized and the relation between
lattice laser power and actual lattice depth has been adjusted
for a better match with the theoretical predictions. Data points
corresponding to minima in the couplings have larger error bars
as inhomogeneities in the Rabi frequencies damp so heavily
the Rabi oscillations that almost no oscillations are observed.
We attribute this inhomogeneity to the transverse spread of
the atoms, which experience different lattice depths due to the
Gaussian profile of the lattice beam.

The good agreement between the measurements and the
theoretical predictions allows us to determine the depth with a
resolution on the order of 0.1 E, from the direct comparison of
the relative amplitudes of the peaks. Alternative techniques for
the determination of the lattice depth are not as accurate here:
diffraction in the thick-grating limit [26] creates sidebands
in the velocity distribution which can hardly be resolved due
to the width of the initial velocity distribution of the order
of 2.5v,, and parametric excitation gives rise to very wide
resonances due to the complete anharmonicity of the lattice
potential.

III. LINEWIDTH

We then investigated the question of the linewidth of
such transitions. Various effects are expected to contribute
to the broadening of the transitions and to ultimately limit the
minimally attainable linewidth. One of them is the differential
light shift (DLS) induced by the trapping laser beams. This
effect is dominated by the light field of the transverse dipole
trap, because atoms are trapped at the intensity maxima of
the 1064 nm beam and observe maximal DLSr at its center.
By performing microwave spectroscopy on the 525, 12, F =
Il,mp =0) —> |5251/2,F = 2,mp = 0) transition, we mea-
sure a shift in the center of the line of about 3 Hz/W and
a broadening of about 2 Hz/W, which gives a limit to the
linewidth of 3 Hz at the 1.5 W that we typically use. We
have also measured the shift of the line induced by the lattice
laser beam and found a much smaller effect of 0.4 Hz at full
power.

This broadening is illustrated in Fig. 9, which shows the
evolution of the linewidth as a function of the duration of
the microwave pulse, where the microwave power has been
adjusted for optimal transfer at resonance (which corresponds
to the case of a  pulse), as well as in Fig. 10, which shows as
a dotted line the microwave spectrum corresponding to a pulse
duration of 1.4 s.

The DLSr induced by the transverse trapping laser can
be compensated thanks to an additional laser beam with a
blue detuning for the |e) state and a red detuning for the |g)
state [27]. For that purpose, a small fraction of one of the two
Raman beams is used with an additional detuning of 80 MHz
in order to prevent undesired Raman transitions. This beam is
superimposed with the transverse trapping laser beam and its
size, position, and power are adjusted to reduce the broadening
of the microwave transition. For a transverse-trapping laser
power of 1.5 W, the differential light shift is compensated with
a power of 12 nW. Figure 10 displays as a continuous line the
microwave spectrum for optimal compensation.
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FIG. 9. (Color online) Linewidth (full width at half maximum;
FWHM) of transitions between the hyperfine states driven by a
microwave probe in the same lattice well or by counterpropagating
Raman lasers with Am = 3 as a function of the pulse duration .
For each different pulse duration, the probe’s Rabi frequency 23
is adjusted so that Q37 = 7. The solid line shows the theoretical
Fourier-limited FWHM of a pulse of duration .

The linewidths of the Raman transitions are displayed in
Fig. 9, for uncompensated (compensated) DLSr, as squares
(circles). The ratio between the intensities of the two Raman
lasers is set to cancel (on average) the net differential light shift
that they induce. However, due to differences in the spatial
modes of the two Raman lasers and parasitic reflections, this
compensation is not perfect, which leads to a broadening of

0.8

Transition Probability

8 12 16 20 24
Microwave frequency detuning (Hz)

FIG. 10. Transition probability as a function of the microwave
detuning with (continuous line) or without (dotted line) the DLS
compensation beam (see text) for a microwave pulse of 7 = 1.4 s.
The compensated transition’s detuning to the hyperfine frequency
of 18.7 Hz is the Zeeman quadratic shift due to a bias field of
180 mG. The mean DLS imposed by the transverse trapping laser is
—4.6 Hz.
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FIG. 11. (Color online) Transition probability as a function of
Raman frequency. The broad peak at vanishing relative Raman
laser detuning (vg — v, = 0) corresponds to unresolved intersite
transitions in the same lattice band. The large structure arising
between 10 and 50 kHz is due to a coupling from the bottom to
the first excited band.

the hyperfine transition. As this broadening is proportional to
the total Raman intensity, the linewidth is proportional to the
Rabi frequency of the transition, only increased with respect to
the Fourier-limited microwave transition by a constant factor
of about 1.5. Atom loss prevents us from driving longer
transitions. Nevertheless, our system allows us to achieve
a spectroscopic resolution of about 1 Hz, which can be of
interest for selecting atoms in a single site of the lattice, as
demonstrated in [28] with less-resolved transitions.

In order to study the short-term sensitivity of our system,
we performed a spectroscopic measurement of the Bloch
frequency by measuring alternately the frequency of the
Am = +3 and Am = —3 and calculating the difference to
cancel any shift of the hyperfine clock frequency. We obtained
a statistical uncertainty on the Bloch frequency of 2 x 107>
in relative value after 1 s of integration, which is a factor
of 3 better than the previously reported sensitivity in [11]
using Ramsey spectroscopy. The best sensitivity reported for
a trapped accelerometer was 1.4 x 10~ in relative value after
a one hour measurement time [10], which corresponds to an
equivalent relative short-term sensitivity of 9 x 1076 at 1 s.

IV. PROBING LATTICE’s LONGITUDINAL AND
TRANSVERSE STRUCTURES

Performing the Raman scan over a larger frequency range
reveals additional features. Figure 11 displays such a spectrum
for two different lattice depths of 4E, and 2.3E, (measured
by Raman spectroscopy as described in the last paragraph of
Sec. II). Note the large blue sideband, which corresponds to
transitions from the bottom band to the first-excited band. The
absence of red sideband indicates that the trapped atoms have
been loaded in the bottom band and that upper bands are not
populated.
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FIG. 12. (Color online) Population in the first excited band as a
function of trapping time. The solid line is an exponential decay fit
to the data from which we extract a lifetime of 16 ms.

We have measured the lifetime of the atoms in the first
excited band for a lattice depth of 4E,. A Raman pulse of
2 ms detuned by 30 kHz transfers 60% of the atoms initially in
F = 1inthe excited band in the F' = 2 state. When increasing
the delay between the Raman pulse and the turning off of
the lattice laser, and measuring the number of the atoms that
have remained trapped, we observe a decay in the number
of atoms in F = 2. Corresponding data are displayed in
Fig. 12, from which we extract an exponential lifetime of
16 ms. This relatively short lifetime explains that, for trapping
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FIG. 13. Transition probability (Dotted line) as a function
of Raman frequency around the Am = 43 transition, when the
Raman laser’s wave vector is slightly misaligned from the lattice’s
wave vector. The two sidepeaks correspond to intersite transitions
involving a change in the transverse vibrational state. The Raman
lasers wave vector is aligned with the lattice’s wave vector (Solid
line).
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times as large as several hundreds of ms, only the bottom
band is populated. Loading the shallow lattice from the initial
thermal distribution simply selects atoms loaded in the bottom
band.

Transitions between vibrational states along the transverse
directions can also be induced by Raman lasers, provided that
their effective wave vector projection along the transverse
direction is not null. Such transitions are exploited, for
instance, for Raman -sideband cooling [29,30]. To do so,
we simply tilt the Raman retroreflecting mirror. Figure 13
displays zooms of the Raman spectrum close to the Am = +3
transition for a Raman pulse of 400 ms and for k perfectly
vertical (continuous lines) and tilted by a few mrad (dotted
line). We find red and blue sidebands about 25 Hz apart
from the carrier, which correspond to transitions An = %1,
where n is the index of the transverse vibrational level.
We find equal amplitude for both sidebands, indicating
that atoms are distributed among many such n states. The
transverse temperature was independently measured by time-
of-flight fluorescence imaging to be 1 wK. In addition, the
sidebands are significantly broadened with respect to the
carrier. This broadening is attributed to the anharmonicity
of the potential because the depth of the transverse dipole
trap is only about four times the average transverse kinetic
energy.

V. CONCLUSION

We have investigated the possibility to drive intersite
transitions in an optical lattice using Raman transitions. We
have shown that good couplings between neighboring wells
and high-resolution Raman spectroscopy could be achieved in
a composite trap formed by a shallow blue-detuned vertical
lattice combined with a 1064 nm laser progressive wave for
transverse confinement. Broadening due to the inhomogeneity
of the differential light shift of the trapping laser can be
prevented using an additional laser beam for differential
light shift compensation. Raman transitions allow for a
precise determination of the parameters of the shallow 1D
lattice (depth, band filling, radial oscillation frequency,...).
This spectroscopic tool enables a sensitive determination of
the Bloch frequency; for instance using the Ramsey type
interferometer scheme demonstrated in [11], and can be used
for the measurement of short-range forces, when such an
interferometer is created close to a surface [12].

ACKNOWLEDGMENTS

This research is carried out within the project iSense, which
acknowledges the financial support of the Future and Emerging
Technologies (FET) program within the Seventh Framework
Programme for Research of the European Commission,
under the FET-Open Grant No. 250072. We also gratefully
acknowledge support by the Ville de Paris (Emergence (s)
program) and IFRAF. G. T. thanks the Intercan network and
the UFA-DFH for financial support. Helpful discussions with
P. Wolf, S. Pelisson, M-C. Angonin, and R. Messina are
greatfully acknowledged.

063422-6



RAMAN-LASER SPECTROSCOPY OF WANNIER-STARK STATES

[1] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Phys. Rev. Lett. 76, 4508 (1996).

[2] M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas-
Kopeinig, and H.-C. Négerl, Phys. Rev. Lett. 100, 080404
(2008).

[3] C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini,
O. Morsch, and E. Arimondo, Phys. Rev. Lett. 98, 120403
(2007).

[4] V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni,
M. L. Chiofalo, and G. M. Tino, Phys. Rev. Lett. 100, 043602
(2008).

[5] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsollner, and
H.-C. Nagerl, Phys. Rev. Lett. 104, 200403 (2010).

[6] M. Greiner, O. Mandel, T. Esslinger, T. W. Hédnsch, and I. Bloch,
Nature (London) 415, 39 (2002).

[7] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature
(London) 435, 321 (2005).

[8] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa,
C. Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett.
96, 033001 (2006).

[9] P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and
F. Biraben, Europhys. Lett. 71, 730 (2005).

[10] N. Poli, F-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli,
and G. M. Tino, Phys. Rev. Lett. 106, 038501 (2011).

[11] Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pélisson,
P. Wolf, and F. Pereira dos Santos, Phys. Rev. Lett. 106, 213002
(2011).

[12] P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and
A. Clairon, Phys. Rev. A 75, 063608 (2007).

[13] G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Phys. Rev.
Lett. 97, 060402 (2006).

[14] I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, and
M. Inguscio, Phys. Rev. Lett. 95, 093202 (2005).

PHYSICAL REVIEW A 84, 063422 (2011)

[15] A. Derevianko, B. Obreshkov, and V. A. Dzuba, Phys. Rev. Lett.
103, 133201 (2009).

[16] M. de Angelis et al., Proceedings of FET 11 Conference, Physics
Procedia (to be published).

[17] T. Kovachy, J. M. Hogan, D. M. S. Johnson, and M. A. Kasevich,
Phys. Rev. A 82, 013638 (2010).

[18] G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).

[19] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and
M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996).

[20] Ch. J. Bordé, Phys. Lett. A 140, 10 (1989).

[21] P. Lemonde and P. Wolf, Phys. Rev. A 72, 033409
(2005).

[22] L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, Phys.
Rev. Lett. 106, 073005 (2011).

[23] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and
F. Biraben, Phys. Rev. Lett. 106, 080801 (2011).

[24] J. Le Gouét, T. E. Mehlstiubler, J. Kim, S. Merlet, A. Clairon,
A. Landragin, and F. Pereira Dos Santos, Appl. Phys. B 92, 133
(2008).

[25] D. S. Weiss, B. C. Young, and S. Chu, Appl. Phys. B 59, 217
(1994).

[26] Yu. B. Ovchinnikov, J. H. Miiller, M. R. Doery, E. J. D.
Vredenbregt, K. Helmerson, S. L. Rolston, and W. D. Phillips,
Phys. Rev. Lett. 83, 284 (1999).

[27] A. Kaplan, M. F. Andersen, and N. Davidson, Phys. Rev. A 66,
045401 (2002).

[28] M. Karski, L. Forster, J. M. Choi, A. Steffen, N. Belmechri,
W. Alt, D. Meschede, and A. Widera, New J. Phys. 12, 065027
(2010).

[29] S. E. Hamann, D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch,
and P. S. Jessen, Phys. Rev. Lett. 80, 4149 (1998).

[30] H. Perrin, A. Kuhn, I. Bouchoule, and C. Salomon, Europhys.
Lett. 42, 395 (1998).

063422-7


http://dx.doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/10.1103/PhysRevLett.100.080404
http://dx.doi.org/10.1103/PhysRevLett.100.080404
http://dx.doi.org/10.1103/PhysRevLett.98.120403
http://dx.doi.org/10.1103/PhysRevLett.98.120403
http://dx.doi.org/10.1103/PhysRevLett.100.043602
http://dx.doi.org/10.1103/PhysRevLett.100.043602
http://dx.doi.org/10.1103/PhysRevLett.104.200403
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature03541
http://dx.doi.org/10.1038/nature03541
http://dx.doi.org/10.1103/PhysRevLett.96.033001
http://dx.doi.org/10.1103/PhysRevLett.96.033001
http://dx.doi.org/10.1209/epl/i2005-10163-6
http://dx.doi.org/10.1103/PhysRevLett.106.038501
http://dx.doi.org/10.1103/PhysRevLett.106.213002
http://dx.doi.org/10.1103/PhysRevLett.106.213002
http://dx.doi.org/10.1103/PhysRevA.75.063608
http://dx.doi.org/10.1103/PhysRevLett.97.060402
http://dx.doi.org/10.1103/PhysRevLett.97.060402
http://dx.doi.org/10.1103/PhysRevLett.95.093202
http://dx.doi.org/10.1103/PhysRevLett.103.133201
http://dx.doi.org/10.1103/PhysRevLett.103.133201
http://dx.doi.org/10.1103/PhysRevA.82.013638
http://dx.doi.org/10.1103/RevModPhys.63.91
http://dx.doi.org/10.1103/PhysRevLett.76.4512
http://dx.doi.org/10.1016/0375-9601(89)90537-9
http://dx.doi.org/10.1103/PhysRevA.72.033409
http://dx.doi.org/10.1103/PhysRevA.72.033409
http://dx.doi.org/10.1103/PhysRevLett.106.073005
http://dx.doi.org/10.1103/PhysRevLett.106.073005
http://dx.doi.org/10.1103/PhysRevLett.106.080801
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1007/BF01081393
http://dx.doi.org/10.1103/PhysRevLett.83.284
http://dx.doi.org/10.1103/PhysRevA.66.045401
http://dx.doi.org/10.1103/PhysRevA.66.045401
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1103/PhysRevLett.80.4149
http://dx.doi.org/10.1209/epl/i1998-00261-y
http://dx.doi.org/10.1209/epl/i1998-00261-y

