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Atomic states in optical traps near a planar surface
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In this paper, we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the
modifications to the ordinary Wannier-Stark states in the presence of a surface, and we characterize the energy
shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an
effective model describing the finite size of the atom in order to regularize the energy corrections. In addition,
the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their

experimental observability are investigated.

DOLI: 10.1103/PhysRevA.83.052111

I. INTRODUCTION

Atomic interferometry has the potential to become a
powerful method to investigate atom-surface interactions, the
main reason being the high precision that can be reached in
frequency measurements. In this context, a new experiment
named FORCA-G (FORce de CAsimir et Gravitation a courte
distance) has recently been proposed [1]. The purpose of this
experiment is manifold: On one hand, it aims at providing
a new observation of the Casimir-Polder (CP) interaction
between an atom and a surface, resulting from the coupling of
the fluctuating quantum electromagnetic field with the atom
[2]; on the other hand, it also intends to impose new constraints
on the existence of hypothetical deviations from the Newtonian
law of gravitation. These goals will be achieved thanks to
the innovative design of FORCA-G, in which interferometric
techniques are combined with a trapping potential. This is
generated by a vertical standing optical wave produced by the
reflection of a laser on a mirror. The vertical configuration
leads to an external potential on the atom given by the sum of
the optical one and a linear gravitational term due to the Earth:
This deviation from a purely periodical potential produces
a localization of the atomic wave packet, corresponding to
the transition from Bloch to Wannier-Stark states [3]. Thus,
the main advantages of FORCA-G are the refined control
of the atomic position as well as the high precision of interfero-
metric measurements, as demonstrated in the first results from
the experiment [4].

Having in mind a theory-experiment comparison within a
given accuracy, the theoretical treatment of the problem as
well as the experimental investigation must be assessed inde-
pendently with the same precision. In the case of FORCA-G,
this demands a detailed theoretical study of the atomic wave
functions and energy levels in proximity of a surface. As
an intermediate step, a precise characterization of the CP
atom-surface interaction is also needed.

These issues are the main subject of investigation in this
paper. As a matter of fact, the influence of the CP interaction
on the atomic energy levels has so far been explored [1,5] using
the simple idea of calculating the electrodynamical potential
at the center of each well of the trap. We will discuss the
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validity of this model focusing, in particular, on the scheme of
FORCA-G. In this paper, we present a Hamiltonian approach
to this problem. This treatment first allows us to discuss,
independently of the CP atom-surface interaction, the atomic
trapped states. Since the presence of the surface breaks the
translational symmetry typical of Bloch and Wannier-Stark
problems, we focus, in particular, on the difference (both
in energy levels and wave functions) between our trapped
states and the standard Wannier-Stark solutions. Then, in
order to discuss the CP corrections to the energy levels,
we generalize the perturbative treatment usually exploited
to deduce atom-surface electrodynamical interactions, by
including the external optical and gravitational potentials,
and, as a consequence, treating the atomic coordinate as a
dynamic variable. The theoretical work presented here will be
useful for all experiments that aim at measuring short-range
interactions between atoms trapped in optical lattices and
a macroscopic surface [1,5,6] as they will require precise
modeling of the atomic states and energy levels close to the
surface.

This paper is organized as follows. In Sec. II, we describe
our physical system. Then, in Sec. III, we discuss the shape
of atomic wave functions in the trap. Section IV is dedicated
to the study of the CP interaction and its influence on the
atomic energy levels. In this section, we introduce an effective
description of the finite size of the atom and discuss its validity
in connection with the experiment. In Sec. V, we look at
the energy shifts introduced by a hypothetical non-Newtonian
potential, and we investigate the constraints that FORCA-G
could impose on the strength of this deviation. Finally, in
Sec. VI, we discuss our results.

II. THE PHYSICAL SYSTEM

In this section, we are going to describe the main features
of our physical system and the Hamiltonian formalism used to
investigate the interaction between atom and electromagnetic
field. Let us consider a two-level atom trapped in an optical
standing wave produced by the reflection of a laser having
wavelength A; = zk—’f on a surface located at z = 0. In the
configuration we are considering the optical trap has a vertical
orientation so that we have to take the Earth’s gravitation field

acting on the atom into account. The complete Hamiltonian
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can be written under the form

H = Hy + Hyyc = Hy + Hy + Hws + Hiy,
+o0
Hy = Z f dk, / d’khoal,(k.k)a,k.k,),
0
p

Hy = hayle) (e, ey
2

p U
Hys = — +mgz + —[1 — cos (2k;2)],
2m 2

Hipe = —p - 5(1‘)

The complete Hamiltonian contains a term Hy describing
the free evolution of the atomic and field degrees of free-
dom. In particular, H; is the Hamiltonian of the quantum
electromagnetic field, described by a set of modes (p,k,k;):
Here, p is the polarization index, taking the values p = 1,2
corresponding to TE and TM polarizations, respectively, while
k and k, are the transverse and longitudinal components of
the wave vector. We associate, with each single mode, a
frequency w = c/k? + k2, as well as annihilation and creation

operators a, (K, k) and a,T7 (Kk,k;). Thus, an eigenstate of the field
Hamiltonian is specified by giving a set of photon occupation
numbers |{n,(k,k)}) for each mode of the field. The vacuum
state of the field, with zero photons in each mode, will be
noted with |0, (k,k;)). In our formalism, the expression of the
electric field is the following:

i +oo ho
=— dk, | d’k |
£ T Xp:/(; ¢ / dmey

« [eik‘”fp(k,kz,Z)ap(kskz) — H.c.], (2)

where we have introduced the transverse coordinate r; =
(x,y) and the mode functions f,(k,k;,z) characterizing the
boundary conditions imposed on the field. Under the assump-
tion of a perfectly conducting mirror in z = 0, these functions
take a very simple expression [7],

f1(k,k.,z) = k x 2 sin (k,2),
- 3)
~AlC
f2(ksstZ) = k
w

z
Z

k
sin (k,z) — ic— cos (k;z),
w

where k = k/k and Z = (0,0,1). Hy is the internal Hamilto-
nian of our two level atom having ground state |g) and excited
state |e) separated by a transition frequency wy. While Hy
is associated with the internal atomic degrees of freedom,
the term Hws accounts for the external atomic dynamics.
As a consequence, it contains the kinetic energy (p being
the canonical momentum associated with z), as well as both
the gravitational potential (treated here in first approximation
as a linear term), where m is the atomic mass and g is the
acceleration of the Earth’s gravity, and the classical description
of the stationary optical trap, having depth U. Here, we
only treat the z-dependent terms of the Hamiltonian since
the degrees of freedom x and y, even in the presence of
a transverse trapping mechanism, are decoupled from the
longitudinal dynamics. For simplicity, we will take, as a unit
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of energy, the photon recoil energy E, given by E, = }% As
far as the atomic position is concerned, it will be expressed,
unless explicitly stated, in units of the periodicity of the trap
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%. For all numerical examples in this paper, we will use
the experimental configuration chosen for FORCA-G: E, =
537 x 10730 J (5 = 8.11 x 10° Hz) and & = 266 nm.

The interaction between the atom and the quantum electro-
magnetic field is written here in the well-known multipolar
coupling in dipole approximation [8], where u =gp (g
being the electron’s charge and p being the internal atomic
coordinate) is the quantum operator associated with the atomic
electric dipole moment, and the electric field is calculated in
the atomic position r. It is important to observe that, since
i clearly operates only on the atomic internal states, this
interaction term is the only one coupling atomic (both internal
and external) and field degrees of freedom. As a consequence,
the ground state of the free Hamiltonian Hy is simply given
by the tensor product of the vacuum field state |0, (k,k;)), the
atomic state |g), and the ground state of Hys. In the picture of
atomic dressing [9], the ground state of H is the bare ground
state, and the inclusion of Hj, will produce a new ground state
of the complete system, referred to as dressed ground state,
mixing all the degrees of freedom. We are going to tackle the
calculation of the ground state of Hyws in Sec. I1I, whereas the
atom-field interaction will be treated in Sec. IV.

III. MODIFIED WANNIER-STARK STATES

A. Ordinary Wannier-Stark states

In solid-state physics, it is well known that the solution
of the time-independent Schrodinger equation describing a
quantum particle in a periodic potential leads to the so-called
Bloch states [10,11]. Due to the periodicity of the system,
these states are completely delocalized in space coordinate,
and the energy spectrum is composed of bands of permitted
energies, each band being labeled with an index b = 1,2, .. ..
The addition of a linear potential (in our case, its role is played
by gravity) to the trap produces localization of the states: These
states are usually labeled as Wannier-Stark states (see, e.g.,
Refs. [12,13]). We will now describe their main features. For
each Bloch band b, a discrete quantum number # is introduced,
taking the values n = 0, + 1, + 2, .. .. The state |n,b)W> is,
in coordinate representation, approximately centered in the nth
well of the optical trap, and the energy of this state is in first
approximation given by

mgh;

(WS) _ m(WS)
Epy =By +no=
r

“4)

with EZWS) as the average of the bth Bloch band [3,14]. As a
result of the quasiperiodicity of the system (i.e., of the linearity
of the gravitational potential modifying the periodic trap) two
states |n,6)™> and |5,6)™S belonging to the same band b
are shifted, in coordinate representation, by s —p wells. At the
same time, their energies differ, in accordance with Eq. (4),
by s—p times §, = ";LEM Then, the problem of Wannier-Stark
states is solved once we know, for each band b, the average
Bloch-band energy E_,(]WS) and the eigenfunction centered in a
given well. The Wannier-Stark states can be calculated using,
for example, the numerical approach of [13].

In Figs. 1 and 2, we give the Wannier-Stark states |0, 1
for two different values of the potential depth U = 3,10 (from

now on expressed in units of E,).

)(WS)
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FIG. 1. Coordinate representation of the state |0,1) belonging to
the first Bloch band and centered in the zeroth well for U = 3.

The figures show that, as expected, a deeper well produces
a more localized state of the particle. Here, we recall that, in
all the plots, unless explicitly stated, the atomic coordinate z
is expressed in units of the trap period %

B. Wannier-Stark states in proximity of a surface

In the context of our problem, the presence of a surface at
z = 0 plays two roles. On one hand, it induces a modification
of the Wannier-Stark states by imposing a boundary condition
on the eigenvalue problem. On the other hand, the quantum
electrodynamical interaction between the atom and this surface
must be taken into account, as we will describe in Sec. IV.

The surface at z = 0 breaks the quasiperiodicity of the
system. The potential modifying the optical trap is no longer
linear, since it must be considered as the gravitational linear
potential for z > 0 and an infinite potential barrier for z < 0,
describing the impossibility of the particle to penetrate into
the mirror. We will refer to the eigenstates of this new physical
system as the modified Wannier-Stark states. From now on,
we are going to deal only with these new states: The state of
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FIG. 2. Coordinate representation of the state |0,1) belonging to
the first Bloch band and centered in the zeroth well for U = 10.

PHYSICAL REVIEW A 83, 052111 (2011)

the bth Bloch band centered in the nth well will be noted with
|n,b) [and, correspondingly, ¥, ,(2)].

We have solved the problem of modified Wannier-Stark
states numerically, using a finite-difference method. The first
step of our approach consists of considering a unidimensional
box 0 < z < zy and imposing that the wave function vanishes
at the borders. As for z = 0, this corresponds to a real physical
boundary condition (i.e., to the presence of the surface),
whereas the condition ¥(z;) = 0 is purely numerical. This
means that z; has to be chosen sufficiently large so that
the eigenfunction of interest decays to zero well before zy,
i.e., a solution will be acceptable if it decays sufficiently
fast toward O for z — z;. The next step is the discretization
of the interval [0,z/] using a set of N 42 mesh points z;
with 20 = 0,21, ..., zn41 = 2 (giving 8z = 54 for equally
spaced mesh points).

Using this approach, the problem is reduced to an eigen-
value problem of a tridiagonal symmetric matrix. The solution
of such a problem can efficiently be worked out using the
numerical approach first introduced in Ref. [15] as well as a
standard QL algorithm [16]. In order to check the robustness
of our numerical results, we have also checked their coherence
with a finite-element method [17,18].

Choosing a large enough numerical box, taking, for exam-
ple, zy = 30 (here, we recall that z is measured in units of trap
periods %), we have verified that the modified Wannier-Stark
states centered in a well far from the surface (approximately
starting from n = 10) have the same shape as the functions
shown in Sec. III A: This reflects the fact that, far from the
surface, the quasiperiodicity of the system is reestablished.
Moreover, in this region, we find that the energy difference
between two successive states equals the expected quantity &,
defined before: Starting from n = 10, the differences equal J,
with a relative precision better than 10~*. This can be seen in
Table I, where we show the results obtained for the first 13
energy levels with U = 3: In this table, we give the energy
levels E, as well as the differences §E,, = E, 1 — E,. In this
configuration, we have 6, = 0.070 068.

Table I only shows values of the energies belonging to the
first Bloch band (b = 1). We have checked that, increasing

TABLEI First 13 values of the modified Wannier-Stark spectrum
for U = 3. These values have been obtained on an interval [0,30].
The first two columns are in units of E,; the third one is in Hertz.

n E, SE,(107%) SE,(10* Hz)
1 1.4028 12.302 9.9788
2 1.5258 9.8043 7.9525
3 1.6239 8.4432 6.8485
4 1.7083 7.6206 6.1812
5 17845 7.2026 5.8422
6 1.8566 7.0518 57199
7 1.9271 7.0146 5.6897
8 1.9972 7.0079 5.6843
9 2.0673 7.0070 5.6835
10 2.1374 7.0068 5.6834
11 2.2074 7.0068 5.6834
12 2.2775 7.0068 5.6834
13 2.3476 7.0068 5.6834
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FIG. 3. (Color online) Density probability of modified Wannier-Stark states ¥, 1(z) for n = 1,2,3,4 and U = 3. The last two functions
(black, solid line) are compared to the corresponding standard Wannier-Stark state (red, dashed line).

the value of N above 10°, the last digit reported in Table I
remains constant, corresponding to a relative precision of
approximately 10~*. Actually, as a result of our numerical
method, we also found the eigenvalues and corresponding
states associated with higher bands. Nevertheless, we will
discuss only the first-band states since the ones belonging to
higher bands are much less relevant for experimental purposes:
As a matter of fact, higher bands are not efficiently trapped
in the experiment (the average energy of the second band is
around 4 E, for a trap depth of 3E).

As far as the states in proximity of the plate are concerned,
they are strongly modified by the boundary condition, and the
same property holds for their energies. In Fig. 3, we show
the first four eigenfunctions in the presence of the surface. For
the sake of comparison, the third and fourth wave functions are
superposed on the standard Wannier-Stark solutions centered
in the corresponding well. It is important to stress that the
ordinary Wannier-Stark functions of wells n = 3,4 are plotted
only to show that the shape of the modified ones tends toward
the standard solution: However, the fact that the ordinary
functions for these wells are different from zero for z < 0,
strictly speaking, makes no sense for our physical system. In
order to discuss the influence of the depth of the wells, we will
conclude this section giving the results obtained for U = 10.
In this case, since the ordinary Wannier-Stark states are much
more localized in each well, we expect the influence of the
surface to be evident on a smaller range of distances. This
can be seen directly in Table II, where the energy differences
converge more rapidly to J,.

Moreover, from Fig. 4, we see that the state v, ;(z) already
shows a remarkable accordance with the corresponding un-

modified Wannier-Stark state in the interval [0.6,6], where the
probability of finding the atom is approximately 0.9997.

IV. CP INTERACTION

A. Standard CP calculations

The presence of the surface does not only play the role
of imposing a boundary condition on the Wannier-Stark wave
functions. In fact, since it modifies the structure of the modes of
the quantum electromagnetic field, it is a source of an attractive
force between the atom and the plate. This is a particular case
of a general phenomenon usually called the Casimir effect for
two macroscopic bodies and the CP force when it involves one
or more atoms near a surface (for a general review, see, e.g.,
Ref. [19]). This phenomenon was first pointed out by Casimir

TABLE II. First ten values of the modified Wannier-Stark spec-
trum for U = 10. Same parameters as for Table I.

n E, SE,(107?) SE,(10% Hz)
1 2.9496 7.5127 6.0938
2 3.0247 7.0276 57003
3 3.0950 7.0072 5.6837
4 3.1651 7.0068 5.6834
5 3.2352 7.0068 5.6834
6 3.3052 7.0068 5.6834
7 3.3753 7.0068 5.6834
8 3.4454 7.0068 5.6834
9 3.5154 7.0068 5.6834
10 3.5855 7.0068 5.6834
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FIG. 4. (Color online) Density probability of modified Wannier-
Stark states ¥, 1(z) (black, dashed line) for U = 10 compared to the
corresponding standard Wannier-Stark state (red, dotted line).

in 1948 for two parallel perfectly conducting plates [20] and
in the same year by Casimir and Polder for atom-surface and
atom-atom systems [21].

The CP force between an atom and a mirror has been
measured quite recently using several different techniques
such as deflection of atomic beams [22] and reflection of
cold atoms [23-25]. In the past few years, Bose-Einstein
condensates proved to be efficient probes of this effect, both
by means of reflection techniques [26,27] and by observing
center-of-mass oscillations of the condensate [28-31]. The
FORCA-G experiment aims at achieving a percent precision
in the measurement of the force thanks to the combination of
cold atoms and interferometric techniques.

From a theoretical point of view, the force is usually
obtained from an interaction energy that results from a
time-independent perturbative calculation on the matter-field
Hamiltonian interaction term [2,9]. In this kind of approach,
the position of the atom is usually treated as a fixed parameter
and not as a quantum operator. As a consequence, in order
to deduce the CP interaction energy between an atom and a
perfectly conducting plate, we must neglect the term Hyws in
the Hamiltonian of the system (1) and use Eq. (2) for the
electric field. Choosing the bare ground state |0, (k,k))|g) as
the unperturbed configuration, the first-order perturbative cor-
rection on interaction term H;, is zero, since the atomic electric
dipole moment operator is an odd operator and the annihilation
and creation operators appearing in the electric field do not
connect states with the same number of photons. Moving to
second order, we obtain the z-dependent potential energy,

+00 s A(l)(k kz,r)|
Z / dk, / ' e 5)
h(w + wo)

In this expression, we have defined

(2)(1)

AV k1) = (0,(K,k)|(g] Hint| 1, (K k) e)

j ho
=L [ty (kk2), (6)
7\ 4mey
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and we sum over all the possible intermediate states
|1,(k,k;))|e) having one photon in the mode (p,k,k;) and the
atom in its excited internal state |e). Finally, the superscripts
(2) and (1) refer to the order with respect to the electric charge
contained in p.

This result holds for a perfectly conducting surface and
at zero temperature. However, the generalization for more
realistic configurations including the finite conductivity of the
plate as well as a temperature 7 > 0 is not straightforward
in a perturbative approach. This can be worked out using, for
example, the scattering method [32,33] or the Green-function
formalism (see Refs. [34,35] and references therein). The
resulting potential can be put under the form [36]

k672an

2k T " oalig)
(2) =L 2
P = Z S0 ameo dmey Jo 2K,

2 k2
£2
where §, = is the nth Matsubara frequency and the

prime on the Matsubara sum indicates that the n = 0 term
is to be taken with half weight. Moreover, we have defined

K,=, i—; + k2, and the r,(k,w) are the well-known Fresnel
coefficients for a planar surface. Finally, «(w) is the ground-
state atomic polarizability, which, for a multilevel atom, takes
the form [37]

X [VTE(k’iEn) - (1 + )rTM(k,l'fn)] . (D

2nnkgT
[

% Z Enoﬂ«zo
5 2 o
34 E%, — h*w?

where E, o = E, — E is the difference between the energies
of the nth atomic level (starting from the first excited state)
and of the ground state, whereas p,o is the matrix element
of the electric dipole operator between the same couple
of states. Clearly, the conductive properties of the surface
material are included in the Fresnel coefficients through
the electric permittivity and magnetic susceptibility €(w)
and u(w), respectively. We conclude this section giving the
expression of the CP potential for an atom in front of a real
surface at zero temperature,

a(w) =

®)

(2)( ) o /+oo 20!(15) dk ke—ZKz
47'[6() 0 2K
. 20%k2 .
X |:VTE(k,l§) - (1 + 7) VTM(kvlé):| , O

where K =,/ i—; + k2 and the sum over the Matsubara fre-
quencies is replaced by an integral.

B. Perturbation of modified Wannier-Stark states

In Sec. IV A, we have given the CP potential for an
atom having polarizability o(w) in front of an arbitrary
planar surface and at temperature 7. It could be natural
to think that this z-dependent potential should be added to
the Wannier-Stark Hamiltonian Hwg in Eq. (1) to obtain a
new time-independent problem. So, one could obtain a new
set of energies and wave functions also taking the quantum
electrodynamical part of the problem into account. In Fig. 5,
we plot this new complete potential [sum of Eq. (5) and the
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FIG. 5. (Color online) Sum of Wannier-Stark (for U = 3) and CP
potentials (in black, solid line) compared to Wannier-Stark potential
alone (in red, dashed line).

ordinary Wannier-Stark potential] for a rubidium atom in front
of a perfectly conducting surface at zero temperature. This plot
clearly shows that the CP interaction modifies the optical trap
on a limited range. In particular, in our case, the first well no
longer exists, the second and the third are slightly modified,
and starting from the fourth, the trap is practically unperturbed.

Nevertheless, the simple addition of the CP z-dependent
potential to the external Hamiltonian term Hysg, strictly
speaking, is incorrect. As a matter of fact, the potential (5)
[as well as Egs. (7) and (9)] has been derived using several
hypotheses. First, it arises from a perturbative treatment of the
interaction term Hj,, on the Hamiltonian H, + H;. Moreover,
in this calculation, the atomic position z is treated as a fixed
parameter. This is clearly incoherent with the fact that, for our
complete Hamiltonian (1), z is a dynamic variable.

These arguments suggest that we should reconsider the
calculation of the CP potential using our perturbative approach
including the Wannier-Stark Hamiltonian Hys. The perturba-
tive term is still H;,;, but now the atomic coordinate z has to
be treated as a quantum operator as well. So, we are able to
introduce a new unperturbed state for each well n of the first
Bloch band having the form

e

As we found for an ordinary CP calculation, the leading-order
correction to the energies is the second, and the corrections
take the new form

Z/+mdk2/d2k
0

10, (k,k2))1g)In,1). (10)

AED)

nl_

2
*ff O [ Hind 1,k k) |€)]5,5) | an
s—1 b1 EEOZ E(O) +h(w+w))

where now the intermediate state contains the modified
Wannier-Stark state |s,b). We notice that the difference
between two Wannier-Stark energies appearing in the denom-
inator is s — n times approximately 0.07E, if the state |s,b)
belongs to the first band (b = 1). We now point out that the re-
coil energy for a rubidium atom having m = 1.44 x 10~ kg
trapped in a periodic potential having A; = 532 nm is on the
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order of 10~!" eV. On the other hand, the atomic transition
energy fiwy is on the order of the eV. At the same time, the
numerator in Eq. (11) involves an integral over the z coordinate
containing the product of the wave functions associated with
the two states. This product becomes negligibly small for
|s —n| > 7, while the energy difference E(O) E(O1 is still
orders of magnitude smaller than Ziwy. As a consequence,
the Wannier-Stark energy difference in the denominator can
always safely be neglected with respect to Awy for the
intermediate states having b = 1. As far as the higher bands
are concerned, it is possible to see that the same superposition
integral decays to zero due to the delocalization of the modified
Wannier-Stark states. Furthermore, in the case of higher bands,
the energy difference E; (O) —E (o} is still 100E, (and then still
negligible with respect to hwp) for b = 10. This reasoning
enables us to use the closure relation on the |s,b) states and to
obtain

Effi—nu( me /

The expression in parentheses coincides with the second-
order perturbative calculation on the atom-field ground state
described in Sec. IV A. Thus, it is evident that the correction
we are looking for equals the average on the Wannier-Stark
state |n,1) of the known CP potential Vé%,)(z). Then, this can
be expressed as follows:

A“>(k kz,r>|
n,l1).
o+ wy)

12)

+00
AE® = / dz |[v ) Ve ). (13)
0

This expression has been obtained in the context of a
perturbative treatment for a perfectly conducting surface at
zero temperature. Nevertheless, the reasoning that led us from
the general expression (11) to the simple average value (13)
does not depend on the details of the calculation of the VC%)(z)
itself. As a consequence, it is reasonable to assume that the
average value (13) can also be used with the more general
expressions of the interaction energy (7) or (9).

The behavior of the integrand function around z = 0 must
be treated with care: Indeed, the CP potential diverges for
z — 0. In particular, it is well known that, for distances much
smaller than the typical atomic transition wavelength (van
der Waals regime), the interaction potential is temperature
independent, and its expression reads [28]

h /+°° a(i&) (&) — 1
- dé . 9
473 ), dmeg €(i&) + 1

€(w) being the electric permittivity of the surface material. As
for the atomic wave function, we have verified numerically
that, for any allowed value of n, it tends to zero linearly for
z — 0. As a consequence, the integrand function behaves
like z~! around the origin, implying a divergent energy
correction (13) for any n. In Sec. IV C, we will develop an
effective description of the atom to regularize this quantity.

Vipnaw(@) = (14)

C. Regularization of the correction

The potential Vé%,) (z) represents a particular case of singular
potentials since it diverges around the origin faster than z 2.
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The treatment of such potentials has been discussed since
the pioneering work of Case [38] (for more details, see, e.g.,
Ref. [39]). From first principles [40], it can be shown that these
potentials describe an unphysical situation in proximity to the
origin. In these cases, the solution of the time-independent
Schrodinger equation requires more detailed knowledge of the
short-distance physics of the problem.

In the case of atom-surface interaction, the z—> behavior of
the potential is an artifact of treating the atom as a pointlike
source. This statement is supported by the calculation of
the Casimir potential between a sphere of radius R and
a wall [41-43]. The potential energy associated with this
geometrical configuration shows a z~# long-distance behavior
(equivalent to the long-distance CP atom-surface interaction),
an intermediate 77> regime, and a transition toward a z~!
behavior when approaching z = 0. This property holds for
any value of the radius R of the sphere: Nevertheless, the
characteristic distance at which the transition occurs is, as
physically predictable, on the order of the radius.

Inspired by Ref. [44], we take the finite size of the atom into
account by replacing it with a probability density distribution
o). In accordance with Ref. [44], we make the further
assumption that the function p(r’) is different from zero within
a finite volume. Moreover, in our numerical applications, we
take this volume to be a sphere of radius R, also discussing the
dependence of the results on R. We assume that the atom has
coordinates (0,0,z). We stress here that the atomic coordinate
z is taken at the point of the sphere nearest to the surface:
As a consequence, the effective sphere representing the atom
is centered in (0,0,z + R). As far as the probability density
distribution is concerned, we will consider the cases of a
constant function p;(r’) = N, and of a spherically symmetric
parabolic distribution,

p(t) = No[R* —x? —y? —(Z —z—R’1.  (15)

For both probability distributions, the variable r’ is expressed
in the same frame of reference as for the atomic coordinate. The
factors Ny and N, are to be deduced from the normalization
condition

/ & pr) =1, (16)
Q

2 being the spherical atomic volume. Our hypothesis leads
to a new regularized expression of the atom-surface potential,
given by the average with respect to p(r’) of the standard CP
potential,

Vom@ = [ o, an
Q

where the z dependence of the new potential is implicitly
contained in the probability density distribution p(r’) and the
integration volume 2. Substituting Eq. (17) into Eq. (13) then
provides the regularized energies of our system.

Let us now analyze the behavior of the regularized poten-
tial (17) in proximity to the surface. Assuming that it has a
form

A
Vrma® = - (18)
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0.1 1 10 100 1000

z[nm]
FIG. 6. (Color online) Exponent « defined in Eq. (19) for the
standard CP potential (9) (black, solid line) and the regularized
potential (17) for radii 0.1 nm (red, dashed line), 1 nm (blue, dotted

line), and 10 nm (orange, dotted-dashed line). The sphere-surface
distance is expressed in nm.

the exponent « is

81 VC(I%’);reg (Z) 1

> .
d z V((ZP);reg (Z )

19)

o=—z

In Fig. 6, we plot the exponent « as a function of z for
the standard CP potential (9) and the regularized one (17).
Both are calculated in this case for a rubidium atom in
front of a perfectly conducting surface and at zero temper-
ature: The data for the dynamical atomic polarizability of
rubidium were kindly provided by Derevianko et al. [45].
Furthermore, the regularized expression is calculated for a
uniform probability density distribution and three different
radii R = 100 pm, 1,10 nm. In the four cases, it is evident that
the transition from z~* to z=3 behavior starts around the first
atomic transition wavelength (=780 nm). Moreover, while for
the standard CP calculation, the exponent tends to 3, in all the
other cases, the finite size of the atom leads, as anticipated, to
a z~! asymptotic dependence. The figure clearly shows that
the length scale of this second power-law transition is roughly
on the order of the atomic size. We will make use of this
regularized potential in Sec. IV D to work out the perturbative
calculations on the modified Wannier-Stark states.

D. Energy corrections

We are now ready to evaluate the average value (13)
of the potential (17) on any modified Wannier-Stark state.
Our approach leaves, as free parameters, the atomic effective
radius R and the probability density distribution p(r’). As
far as the radius R is concerned, we first remark that several
nonequivalent definitions of the effective atomic radius exist
in literature. For example, in Ref. [46], Slater gives an
empirical value of rubidium radius equal to 235 pm with
an associated accuracy of 5 pm. On the contrary, the work
in Ref. [47] estimates the atomic radius for rubidium to be
265 pm. As a consequence, in order to study the dependence
of the results on the value of the radius, we will consider
the two extreme cases R = 200 pm and R = 300 pm. As for
the probability distribution, we will use the functions p;(r’)
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TABLEIIIL. Absolute value (in Hertz) of the CP energy corrections
(they are all changed in sign) to the first 12 modified Wannier-Stark
states for U = 3. The notation a corresponds toa x 10°. These values
are calculated for a perfectly conducting surface.

n 200 pm, p; 200 pm, p, 300 pm, p; 300 pm, p,
1 2.39[1] 2.37[1] 2.19[1] 2.16[1]
2 1.76[1] 1.74[1] 1.60[1] 1.58[1]
3 1.20[1] 1.18[1] 1.09[1] 1.08[1]
4 6.80 6.7147 6.18 6.09

5 2.89 2.8557 2.63 2.59

6 8.71[—1] 8.60[—1] 7.91[—1] 7.80[—1]
7 1.93[—1] 1.91[—1] 1.76[—1] 1.74[—1]
8 3.57[-2] 3.53[-2] 3.27[-2] 3.23[-2]
9 6.76]—3] 6.70[—3] 6.33[—3] 6.27[—3]
10 1.84[-3] 1.83[—3] 1.78[-3] 1.78[-3]
11 8.36[—4] 8.35[—4] 8.29[—4] 8.29[—4]
12 5.10[—4] 5.10[—4] 5.09[—4] 5.09[—4]

and p,(r") discussed before. Furthermore, we are going to
consider the case of a perfect conductor for the surface in
order to get an insight into the qualitative features of the energy
correction. In Table III, we show the energy corrections for the
first 12 modified Wannier-Stark states obtained choosing two
radii and two probability density distributions. In order to be
coherent with the description of the atom as a sphere, the same
regularization treatment used for the CP interaction is applied
to the other z-dependent Hamiltonian terms contained in Hys.
As expected (R < ;), this does not modify our results by
more than 1073 in relative value.

It is easy to see from Table III that, as far as the energy
levels are concerned, a change in the effective radius produces
a more remarkable effect than a change of distribution from
the uniform case p;(r’) to the parabolic p,(r’). In particular,
switching from 200 to 300 pm gives a relative error that is
on the order of 10% on the first wells and then drops down,
whereas, the relative correction from p;(r’) to po(r’) is at most
around 1%.

It is now instructive to compare one of the set of energy
corrections shown in Table III with the simple evaluation of
the strength of the potential energy (9) at the center of each
well [1,5], which could be used as a first estimation of the
energy correction. This idea works better considering deeper
traps or farther from the surface: For example, we have verified
that the value of VC%) (z) calculated at z = 1 and the first energy
correction differ by a factor of approximately 4.4 for U = 3
(see Fig. 7), while this factor already drops to 1.12 for U = 20
and to 1.05 for U = 80. We also remark that a larger value of U
or alarger atom-surface distance reduces the dependence of the
results on the choice of both the probability density distribution
and the effective radius. This reasoning proves that, in the case
of the experiment FORCA-G, the delocalization of the atom
indeed plays a role.

Here, we want to stress that the validity of our spherical-
atom model used for the regularization of Vc(? (z) still remains
to be tested by experimental measurements. Some more
details, as well as the relationship with the search for non-
Newtonian gravity, will be given in Sec. VI.
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FIG. 7. (Color online) Absolute value expressed in Hertz of the
CP energy correction for a uniform distribution and a radius of 200
pm (black upper ticks) compared to the CP potential by evaluating
Eq. (7) at the well center (red lower ticks). The depth of the trapping
potential is U = 3.

V. DEVIATIONS FROM NEWTONIAN GRAVITATION

Many theories of unification of general relativity and quan-
tum mechanics predict a modification of the laws of gravity
at short distances. These modifications can be described by
the addition of a new potential to the standard Newtonian one.
This correction is often modelized by a Yukawa-type law so
that the complete gravitational potential between two pointlike
particles is written under the form

Vo(z) = %u + aye M) (20)
- ,

where G is the gravitational constant and m and M are the
masses of the two particles. In this expression, oy and Ay
are two parameters introduced to characterize the relative
strength of the corrective potential and its typical range,
respectively. The experiments aimed at testing the existence
of such a deviation set constraints on the allowed values of
the parameters «y and Ay. The present status of the excluded
regions at short ranges (z < 100 um) on the (ay,Ay) plane is
depicted in Fig. 8.

In the experimental configuration of FORCA-G, we have
verified that the only relevant Yukawa-type contribution is the
one associated with the atom-mirror gravitational interaction.
At the same time, the Newtonian part of the atom-surface
interaction is completely negligible with respect to the Earth-
atom term already taken into account in the Wannier-Stark
Hamiltonian (1) and with respect to the expected experimental
uncertainties. As a consequence, the correction we are looking
for is obtained by integrating the Yukawa part of Eq. (20) over
the volume occupied by the surface. Describing the mirror
as a cylinder (the atom being on the direction of its axis) and
recalling that we are looking for deviations having length scale
Ay in the micrometer range, we obtain, after a straightforward
calculation,

Hy = 2mayGpsmide %/*, (21)

ps being the density of the surface. We are now going to find
the new unperturbed energy levels of the system (in the absence
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FIG. 8. (Color online) In yellow are displayed the regions of the
(ay,Ay) plane excluded by experiments. The figure is taken from
Ref. [48] and Ay is expressed in um. The three superposed curves
represent the experimental constraints theoretically calculated for the
experiment FORCA-G. They correspond to the near regime, using a
superposition between wells n = 4 and n = 6 (blue solid line, first
from the left), the far regime for n = 40 (red solid line), and for
n = 70 (black dashed line).

of the CP interaction) in the presence of the new Hamiltonian
term (21). This can be done using the method described in
Sec. III, after choosing the value of the parameters ay, Ay,
and ps. The new eigenvalues of the unperturbed Hamiltonian
Hws + Hy will be noted with E(Y) for each well n. As far as
the surface density is concerned, since we still do not have any
information about the surface to be used in the experiment,
throughout this section, just as an example, we choose the
density of silicon ps = 2.33 x 10° kgm~3, close to the values
corresponding to SiO, or BK7 typically used in experiments.

As anticipated in Sec. I, one of the the scopes of the
experiment FORCA-G is to look for Yukawa-type deviations:
This will be done both near the surface (at distances on
the order of micrometers) and in the region where the
CP interaction can theoretically be modeled at a degree
of precision comparable to the experimental noise. In the
former regime, the idea of the experiment is to compare
the results obtained using two different isotopes of rubid-
ium (in particular, 35Rb and 3'Rb) in order to make the
energy differences between wells almost independent of the
CP interaction [1]. As a consequence, when discussing
the Yukawa correction near the surface, we first need to
calculate (both for Wannier-Stark and Yukawa potentials) the
differences in energy levels E, and E'Y) between 3Rb and
87Rb, calculated using the formalism described in Secs. II- IV
with the different isotope masses in the Hamiltonians (1)
and (21). These differences will be noted with

DE, = (EY’ — E}’) — (E("® — E(VY). (22)

Finally, the experiment will be able to detect a Yukawa-type
deviation if the difference DE, is within the experimental
sensitivity. In the case of FORCA-G, the expected sensitivity
is 10~ Hz [1].
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TABLE IV. First 24 values (the energy differences are expressed
in Hertz) of the modified Wannier-Stark spectrum for U = 3 and in
the presence of the Yukawa-type potential (21) with ay = 3 x 10'°
and Ay = 1 pum.

n DE, (Hz) n DE, (Hz)
1 1.654[—1] 13 2.0[-3]
2 1.425[—1] 14 1.5[-3]
3 1.221[—1] 15 1.2[-3]
4 9.43[-2] 16 9[—4]
5 5.72[-2] 17 7[—4]
6 2.71[-2] 18 5[—4]
7 1.30[—2] 19 4[—4]
8 8.0[—3] 20 3[—4]
9 6.0[—3] 21 2[—4]
10 4.4[-3] 22 2[—4]
11 3.4[-3] 23 1[—4]
12 2.6[-3] 24 1[—4]

In Table IV, we first give the results obtained for ay =
3x 10" and Ay =1 um: The value of ay approximately
corresponds to the limit of the experimentally accessed region
for Ay = 1 um.

From these results, it is clear that the Yukawa-type
deviations corresponding to the couple (ay,Ay) chosen are,
in principle, experimentally detectable up to the well n = 24
in a differential 3 Rb—®"Rb measurement.

We now turn to the second experimental configuration in
which the CP potential is expected to be predicted at the
10~*Hz level [1]. We stress that, apart from the precision
in the calculation of the nonregularized CP potential, we must
pay attention to the uncertainty introduced by our effective
description of the finite size of the atom. Assuming that the
CP potential can theoretically be determined, independent of
its regularization, with a 1% accuracy at best, the absolute
precision in its determination can be considered comparable
to the experimental error already around the well n = 40,
where z = 10 um and the potential equals approximately
0.06 Hz, i.e., in this second experimental configuration, the
atoms will be at 10 um or more from the surface. At this
distance, our hypothesis of a spherical atom already plays no
role. Indeed, we have checked that, using both probability
distributions and both radii, the potentials so obtained differ
less than 107> Hz already at z = 5 um. This is coherent with
the fact that the finite size of the atom plays a negligible
role at distances much larger than the atomic size itself. As a
consequence, in this second experimental regime, the precision
on the standard calculation and the experimental uncertainties
imposes stronger limitations than our effective model.

We have calculated the Yukawa corrections on the well
n = 40 for different values of Ay: For each of them, we have
found our limiting value of ay by looking for a correction
on the order of 10~* Hz. We have, moreover, repeated the
same calculation for n = 70 (where Vcp =~ 0.01 Hz) as well
as in the near regime discussed above evaluating the energy
difference between wells n = 4 and n = 6. These three curves
are represented in Fig. 8 on top of the present experimental
constraints.
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VI. DISCUSSION

In this paper, we have introduced an effective model
describing the atom as a spherical probability distribution.
This was needed in order to regularize the expression of the
CP energy correction to the modified Wannier-Stark states.
It is important to discuss, in more detail, the validity of this
model in connection with the experimental results.

Let us start by recalling that, in the context of the search
for non-Newtonian gravitation, our model does not impose
severe limitations. As a matter of fact, in the near regime, the
CP contribution is almost canceled by the use of two isotopes,
whereas, at far distances, we have shown (see Sec. V) that the
error introduced by our description is negligible with respect
to the accuracy in the knowledge of the CP potential itself.

The experiment could be used, in addition, to test the
validity of our model. To this aim, measurements should
be performed in the near regime (say, within the first ten
wells) with a single isotope. In this case, the measured
energy differences would check the consistency of our atomic
description as well as provide an estimation of the effective
radius. The use of a single isotope makes the correction coming
from the Yukawa potential negligible with respect to the CP
term (see Tables IIT and I'V).

Finally, the experimental setup can be used for a mea-
surement of the CP potential around 5 um: In this region,
as shown in Sec. V, the energy correction due to the atom-field
interaction is almost insensitive to the model chosen, and
the Yukawa interaction is much smaller than the quantum
electrodynamical one. This measure could provide a new
experimental observation of the CP potential with a relative
uncertainty of less than one part in 10°.

Nevertheless, here, we stress that precise knowledge of
the CP standard potential requires an accurate description of
the atomic and surface optical data. The details of the latter
are unavailable at present, so the calculations in this paper
have been performed for a perfectly conducting mirror. To
complete our analysis, it will be enlightening to compare our
results to the exact sphere-plate calculations [42,43]. In this
case, as remarked in Ref. [43], an appropriate description of
the dielectric properties of the sphere is needed to mimic the
atomic optical response.

VII. CONCLUSIONS

In this paper, we have discussed the modifications of the
Wannier-Stark states in the presence of a surface. As a first
step, we have considered the presence of the surface as
a boundary condition of the time-independent Schrédinger
equation obtaining a different class of states in this way. These
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states, even if asymptotically coincident with the ordinary
Wannier-Stark states at large distances from the surface,
significantly differ from them, both in energy and in shape
of the wave function, at the first few wells.

Then, we also have taken the CP interaction between
the atom and the surface as a source of correction to the
energy levels of the system into account. We have shown
that these corrections diverge due to the z~> behavior of
the electrodynamical potential energy. In order to regularize
this result, we have introduced an effective description of
the atom as a probability density distributed over a spherical
volume. Our description leaves, as free parameters, both the
radius of the sphere and the probability distribution. We have
characterized the dependence of our results on both quantities.
The validity of this model as well as the values of these
parameters remain to be investigated by experiments.

In the second part of the paper, we have studied the
possibility of measuring a hypothetical Yukawa-type contri-
bution to the gravitational potential at short distances. We
have calculated the constraints that the experiment FORCA-G
will be able to set on the («y,Ay) plane. We have shown that
the constraints set by the experiment are dominated by the
experimental uncertainties and are unaffected (to within those
uncertainties) by the choice of the model for the regularization
of the CP interaction.

This paper paves the way for the precise calculation of the
energy levels in the experimental configuration of FORCA-G
and other experiments that use atoms in optical dipole traps
close to a surface [1,6]. To this aim, precise knowledge of
the optical data of the mirror and the atom is needed. This
information will allow us to give a more detailed estimate of
the accuracy of our results also based on the comparison with
independent approaches to the regularization problem. Finally,
knowledge of the atomic wave functions constitutes the first
ingredient for the description of the dynamics of the system,
which is the subject of ongoing work.
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