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Accurate trajectory alignment in cold-atom interferometers with separated laser beams
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Cold-atom interferometers commonly face systematic effects originating from the coupling between the
trajectory of the atomic wave packet and the wavefront of the laser beams driving the interferometer. Detrimental
for the accuracy and the stability of such inertial sensors, these systematics are particularly enhanced in
architectures based on spatially separated laser beams. Here we analyze the effect of a coupling between the
relative alignment of two separated laser beams and the trajectory of the atomic wave packet in a four-light-pulse
cold-atom gyroscope operated in fountain configuration. We present a method to align the two laser beams at
the 0.2 μrad level and to determine the optimal mean velocity of the atomic wave packet with an accuracy of
0.2 mm s−1. Such fine tuning constrains the associated gyroscope bias to a level of 1 × 10−10 rad s−1. In addition,
we reveal this coupling using the point-source interferometry technique by analyzing single-shot time-of-flight
fluorescence traces, which allows us to measure large angular misalignments between the interrogation beams.
The alignment method which we present here can be employed in other sensor configurations and is particularly
relevant to emerging gravitational wave detector concepts based on cold-atom interferometry.
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I. INTRODUCTION

Cold-atom inertial sensors based on light-pulse interfer-
ometry are developed by several groups in the world for
various applications, such as gravimetry and gradiometry,
metrology, tests of fundamental physics, and navigation and
gravitational wave astronomy. In these sensors, atomic phase
shifts generated by inertial forces originate from the relative
motion between the free falling atoms and the local reference
frame represented by the optical phase of the lasers driving
the beam splitters and mirrors for the atomic waves. Because
the laser beams are not perfect plane waves, the sampling
of the inhomogeneous wavefronts by the finite size of the
atom cloud at each pulse results in a systematic shift. Changes
in the mean atomic trajectory or temperature then lead to a
limitation of the stability of the sensors. Wavefront aberrations
coupled to the transverse expansion of the atom cloud in
the laser beam are, for example, a limiting factor to the
accuracy of cold-atom gravimeters [1–3] and have pointed
towards using ultracold-atom sources for improved accuracy
[4]. Even in differential configurations such as used in atomic
gyroscopes with counterpropagating atom clouds [5–8], in
gravity gradiometry [9] or gravitational wave detectors [10],
stochastic variations of the atom trajectories or of the laser
field wavefront pose severe constraints on the optics and on
the temperature and initial position jitter of the atom source.

Such effects are even more pronounced when the atom
interferometer is operated with laser beams that propagate
perpendicularly to the atom velocity in order to open a phys-
ical area in the interferometer [11]. This problem was first
identified in Ref. [5] and investigated in the case of a dual
cold-atom source gyroscope in Ref. [6]. When using separated
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laser beams, a systematic shift occurs even with a plane
wavefront as soon as different beams are not perfectly aligned.
The systematic shift associated with such angular misalign-
ment scales with the interrogation time T (time between light
pulses) and the atom initial velocity, while the inertial signal
scales with the area enclosed by the interferometer paths
[scaling with T 2 (T 3) in a three-pulse (four-pulse) gyroscope].
A method to align with μrad precision the three laser beams
in a Mach-Zehnder-like configuration of atom interferometer
gyroscope was presented in Ref. [7] for a total interrogation
time 2T � 50 ms (this method was later used in Ref. [8]
where 2T = 104 ms). However, the residual systematic shift
was not evaluated in this study. We report here on a method to
align the interrogation beams and to find the optimal atom
trajectory, which allows us to give an upper bound on the
residual systematic shift that becomes of second order in
the small parameters of the problem. While this alignment
method is general to several sensor architectures, we illustrate
it in the case of a four-light-pulse interferometer geometry
where the atom cloud is launched in a fountain configuration
with a total interrogation time of 800 ms, which has shown
favorable performance compared with three-light-pulse cold-
atom gyroscopes [11,12].

The article is organized as follows: Sec. II presents the
effect of the coupling of the atom initial velocity to the rel-
ative alignment between the two interrogation beams; Sec. III
presents the experiment and the main methods used in this
work; Sec. IV shows the measurements of the contrast loss
and of the phase shifts derived in Sec. II; and Sec. V
presents an analysis of the effect using the technique of point
source interferometry [13,14] providing a direct measure-
ment of a velocity-dependent phase shift in a single time-
of-flight fluorescence trace. We finally conclude in Sec. VI
and discuss the importance of the effect in other sensor
configurations.
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FIG. 1. (a) Sketch of the fountain with the laser beam configura-
tion. (b) Path of the atomic waves in the interferometer [in the (xz)
plane]. The numbers 1, 2, 3, 4 refer to the indices of the light pulses at
times t = 0, T

2 , 3T
2 , 2T . (c) Illustration of the systematic phase shift

induced by the coupling of atom velocity to mirror misalignment, in
the vertical direction. No phase shift is present if (left) the mirrors are
parallel even if the initial velocity is not the optimal one (see text), or
(middle) the initial velocity is the optimal one even if the two mirrors
are misaligned. In the right column, the mirrors are misaligned and
the initial velocity is not the optimal one, resulting in a systematic
phase shift �� = 2T keffδθδv.

II. COUPLING OF ATOM VELOCITY TO RELATIVE
ALIGNMENT BETWEEN TWO INTERROGATION BEAMS

We analyze the effect of the coupling between the initial
velocity of an atom entering a four-light-pulse interferometer
and the relative alignment of the two laser beams realizing
the beam splitters (bottom beam) and mirrors (top beam) for
the atom wave. Full details about the four-pulse geometry
in fountain configuration are given in our previous works
[11,12]. A sketch of the laser configuration is recalled here
in Fig. 1(a) showing the two beams separated by a distance
3gT 2/8 � 0.59 m (T = 0.4 s). Figure 1(b) illustrates the path
of the atomic waves in the interferometer. Each beam carries
two laser frequencies to drive stimulated Raman transitions
and is retroreflected by a mirror. The relative direction of
the effective Raman wave vector between the bottom and top
beams is given to first order by the relative angle δθ between
the two retromirrors.

At each light pulse the relative phase between the two
Raman lasers is imprinted on the diffracted part of the atomic
wave function. The total phase shift between the two arms of

the interferometer is [11,15]

�� = �kB · �r(0)−2�kT · �r
(

T

2

)
+ 2�kT · �r

(
3T

2

)
− �kB · �r(2T ),

(1)

where �r(t ) is the classical position of the center of mass of
the wave packet at time t , and �kB (�kT) is the effective two-
photon wave vector for the bottom (top) beam. Denoting as δθ

the angular mirrors’ misalignment, we express the two Raman
wave vectors as

�kB = keff�er,

�kT = keff(cos δθ �er + sin δθ �eθ ), (2)

where keff = 4π/λ is the momentum transfer during the Ra-
man transition (λ is the laser wavelength), �er is the unitary
vector in the direction of the bottom beam, and �eθ is the
normal to �er . Calculating the classical trajectory of the atom
and inserting Eq. (II) into Eq. (1), we obtain the expression for
the phase shift induced by mirror misalignment, to first order
in δθ (see Appendix A for the details of the derivation):

��(�v, δθ �eθ ) = 2T keffδθ �eθ · (�v + T �g), (3)

where �g is the local gravity acceleration (sum of gravitational
and centrifugal components) and �v is the velocity of the atom
at the time of the first pulse, referred to as initial velocity
hereafter. We define the optimal velocity as �vopt = −T �g,
which leads to a cancellation of the systematic shift. Hereafter
we denote as δ�v = �v − �vopt the offset from the optimum. The
effect is two dimensional and we will decompose its two
contributions in a vertical component [projection of �eθ in the
(xz) plane] and a horizontal component [projection in the (xy)
plane]. In each direction (horizontal, vertical), the systematic
shift amounts to 12 mrad of interferometer phase per 1 μrad
of mirror misalignment and δv = 1 mm s−1. In the following,
we use this systematic shift as a tool to accurately align the
atomic trajectory and minimize the angular misalignments of
the mirrors.

III. EXPERIMENTAL SETUP

A. Atomic fountain

Details about the experimental apparatus are given in our
previous works [11,12]. We recall here the main elements for
completeness.

We start our cycle by laser cooling and trapping about
107 cesium atoms in a magneto-optical trap (MOT) loaded
from a two-dimensional (2D) MOT. We then launch an atomic
cloud vertically in a fountain configuration with a mean initial
velocity of about 5.0 m s−1. The launching is followed by
2 ms of optical molasses, resulting in a velocity distribu-
tion f (v) described by the so-called Lorentz-B function (see
Appendix C for a detailed discussion on the choice of fitting
function). In the following, we approximately characterize the
atomic cloud by effective temperature Tat � 1.8 μK, corre-
sponding to a Gaussian velocity distribution of standard de-
viation σv � 11 mm s−1. After the molasses phase, the atoms
are selected in the state |F = 4, mF = 0〉 with a pulse of
magnetic-field gradient and enter the interrogation region. The
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FIG. 2. (a) Sketch of the detection scheme (to scale): atoms
fall down into the detection region sequentially passing through the
upper detection, middle repumping, and lower detection light sheets.
The light scattered by the atoms within the detection regions is
collected by upper and lower photodiodes resulting in the signals
shown in panel (b). The geometry of the detection optics ensures
negligible contribution of the scattering from upper (lower) regions
into the signal of lower (upper) photodiode.

atoms interact with two laser frequencies driving stimulated
Raman transitions coupling the two states |F = 3, mF = 0〉
and |F = 4, mF = 0〉. The Raman beams enter the interro-
gation region from two collimators and are retroreflected.
The beams are tilted by an angle θ0 = 3.79(1)◦ with respect
to horizontal direction (orthogonal to �g), in order to lift the
degeneracy between the Raman transitions associated with
±h̄keff momentum transfer.

To fine tune the relative alignment between the two retrore-
flected beams, we use a nonmagnetic piezomotor-controlled
mirror mount [SR200iNM-HS-200-2PZT assembled by Li-
optec and Physik Instrumente (PI)] to hold the bottom mir-
ror of 50.8 mm diameter. We control piezomotors driving
either vertical or horizontal tilt of the mirror by steps with
a typical size of 23 nm. We calibrated the step size of our
mirror by recording the position shift of the retroreflected
beam on a CCD camera and obtained angular variations of
0.39(2) μrad/step and 0.38(2) μrad/step for the vertical and
horizontal directions, respectively [16].

B. Detection system

At the end of the interferometric cycle, the atomic pop-
ulation in the output states F = 4 and F = 3 is detected by
means of fluorescence detection. The probability of the atom
with initial velocity �v to be in state F = 4 at the output of the
interferometer is given by

PF=4 ≡ P(�v, δθ �eθ ) = 1
2 + C cos[��(�v, δθ �eθ ) + φ], (4)

where 2C is the fringe visibility (assumed to be independent of
atom velocity) and φ incorporates the constant phase shift in-
duced by Earth rotation and phase noise contributions due to,
for example, vibration noise or laser phase noise. Accounting
for the finite-temperature velocity distribution of the atoms,
f (�v), the probability to find an atom with initial velocity �v in
state F = 4 is given by P(�v, δθ �eθ ) f (�v).

FIG. 3. Contrast of the interferometer as a function of mirror
steps in (a) vertical (nz) and (b) horizontal (ny) directions. Error bars
are standard deviations of fit-by-packet in a phase-scan acquisition
(see text). Dashed red lines are phenomenological Gaussian fits to
the data [Ay exp[−(ny − ny0 )2/2σ 2

y ] and Az exp[−(nz − nz0 )2/2σ 2
z ] ]

revealing nz0 = −0.6(4.0), σz = 36.2(6.1), ny0 = 19.8(2.3), σy =
37.1(2.4). The difference in the maximum value of contrast for the
two directions is due to sequential optimization: first the z direction,
and then the y direction with nz = nz0.

Figure 2 shows our detection scheme and typical atomic
signals. We illuminate the atomic cloud with light resonant
with the F = 4 → F ′ = 5 transition for a duration of 80 ms
and with an intensity I � 0.2Isat, Isat being the saturation
intensity. The vertical size of each light sheet is d = 10 mm.
We record the fluorescence with a two-quadrant photodiode
imaging the upper and lower detection regions, as the atoms
traverse them sequentially (the imaging magnification equals
0.3). For the same time, a thin repumping lightsheet (2 mm
in height) is on and is resonant with F = 3 → F ′ = 4. The
integrated signal in the upper lightsheet is thus proportional to
the number of atoms in F = 4, while the integrated signal in
the lower lightsheet is proportional to the total atom number.
The total flight time from the launch to the center of the
detection time window is tdet = 984 ms.

By design, our detection scheme does not discriminate
the horizontal position of the atoms within the lightsheets
and therefore integrates over all velocity classes along the x
and y directions. Moreover, integrating over time the signal
from the upper (lower) lightsheet, SP(t ) [SN (t )] integrates
over the velocity distribution in the z direction, yielding the
total number of atoms in the F = 4 internal state, NF=4 (total
number of atoms, N). In the next section, we determine the
transition probability from these integrated signals as the ratio
NF=4/N .

IV. RESULTS

A. Alignment of the mirrors

A misalignment between the two mirrors translates into a
velocity-dependent phase shift, which, after integration over
velocities, results in a loss of interferometer visibility. The
observation of this effect can be used to minimize the mis-
alignment between the two mirrors [7]. We show in Fig. 3
the visibility of the interferometer for various values of the
mirrors’ relative misalignment in the vertical (δθz) and hori-
zontal (δθy) directions. To obtain the values of visibility, we
varied the interferometer phase (via controlled phase jumps
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FIG. 4. Induced phase shift as a function of mirror angular position (in actuator steps) in (a) vertical and (b) horizontal directions, for
different values of velocity offsets (δvz and δvy). Blue dots (solid blue line), orange squares (dashed orange line), green triangles (dashed-dotted
green line), and red crosses (dotted red line) data (linear fit) in panel (a) are obtained with δt = 0.25, 0, −0.25, −0.5 ms, respectively; blue
dots (solid blue line), orange squares (dashed orange line), and green triangles (dashed-dotted green line) data (linear fit) in panel (b) are
obtained with δβy = −0.7, −0.07, 0.7 mrad, respectively (see text). The error bars are standard Allan deviation of phase in a half-hour-long
acquisition. (c) Slopes (phase shift per actuator step) extracted from the fits of the data shown in panels (a) (blue dots) and (b) (orange squares).
Solid blue and dashed orange lines are the linear fits to the corresponding data. The vertical dotted lines indicate the values of optimal velocities
that minimize the bias of the atom interferometer.

on the Raman lasers) and fit interference fringes by packets
of 20 points to extract the 1σ statistical uncertainties from a
data set of 100 packets. The fitted visibility data pinpoints the
mirror’s angle with an uncertainty of 4.0 (2.3) steps in the z (y)
direction, corresponding to an angular uncertainty of 1.5 (0.9)
μrad (assuming an average conversion factor for both mirror
directions of 0.38 μrad/step).

The data reported in Fig. 3 may also be interpreted in
position space: the difference in direction between the two
effective Raman wave vectors translates into a spatial sep-
aration between the two wave packets at the last pulse of
the interferometer, given by δ�r = 2 h̄

M (�kB − �kT) = 4vRT δθ �eθ ,
where vR � 3.5 mm s−1 is the one-photon recoil velocity of
the cesium atom. We expect a loss of interferometer con-
trast as this separation becomes comparable to the coherence
length of the atomic wave packet, Lcoh. Fitting the curves
in Fig. 3 with a Gaussian model, we extract a standard
deviation in the horizontal direction of σθ � 14.1(0.9) μrad,
which determines (as a result of the convolution between two
Gaussian wave packets) the value of the coherence length
Lcoh = 2

√
2vRT σθ � 56(4) nm (the values are similar in the

vertical direction). The comparison between the two inter-
pretations (velocity and position) shows that the wave packet
does not saturate the Heisenberg uncertainty relation, because
Lcohmσv � 2.6 h̄

2 (relative uncertainty below 10%).

B. Determination of optimal operational velocity

From Eqs. (4) and (3), the dependence of the transition
probability can be explicitly written as

P(�v, δθ �eθ ) = 1
2 + C cos[2T keff(δθzδvz + δθyδvy) + φ], (5)

with δvz = vz + gT and δvy = vy respectively being the ver-
tical and horizontal components of the offset of the mean
velocity vector from the optimal one. To find the optimal ve-
locity, we measure the phase shift of the interferometer when
varying the velocity of the atoms and the mirror alignment.

We first introduce a controlled velocity shift along the vertical
(z) direction by shifting in time the four pulses by an equal
amount δt with respect to their initial values, which is equiv-
alent to varying the initial mean vertical velocity of the atoms
by δvz = −gδt . Figure 4(a) shows the phase shift measured
for three mirror positions and four different values of induced
δvz. The optimal position of the mirror nz0 corresponds to
the crossing point of the lines, which we extract from si-
multaneous fitting of four data sets (i = 1, . . . , 4) with linear
functions having common offset parameters: ai(nz − nz0) + b.
We find the value of nz0 = 6.1(6), slightly different from the
value obtained from optimization on the contrast signal. This
method improves the determination of the optimum mirror
position with respect to the contrast measurements because
it yields an uncertainty of 0.6 steps, i.e., about 0.2 μrad.

To induce a controlled variation of the horizontal launch
velocity in the reference frame of the sensor, we tilt the whole
experiment in the (y, z) plane by an angle δβy, thus changing
the projection of the total acceleration �g on the y axis [17]. The
resulting deviation of the mean horizontal velocity becomes
δvy = gδβy(t1 + T ). In Figure 4(b) we show the recorded
phase shift at different values of mirror tilt along the y axis,
for three different values of δvy achieved with corresponding
sensor tilts δβy. With the same simultaneous fitting routine as
used for the z direction, we extract the value of ny0 = 23.1(5),
which reveals a small difference of (≈1.3 μrad) as compared
with optimization with the contrast curve [Fig. 3(b)].

We now combine the results for both directions and plot
in Fig. 4(c) the corresponding phase shifts per actuator step
as a function of velocity variation. The expected depen-
dence is a linear function intercepting the coordinates’ ori-
gin. We fit the data with d��

dnz
(mrad/act. steps) = −8.7(5) +

3.33(16)δvz (mm/s) and d��
dny

(mrad/act. steps) = 1.9(4) +
2.09(13)δvy (mm/s) for the z and y directions, respectively.
This representation of the data reveals the value of velocities
to be used in order to minimize the phase shift with respect to
mirror misalignment: 2.60(19) mm/s for the z direction and
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−0.89(18) mm/s for the y direction. With this method, we are
therefore able to minimize the interferometer bias by finding
the optimal velocity with an accuracy of about 0.2 mm s−1

in both relevant directions. Together with the determination
of the optimum mirror position with an accuracy of about
0.2 μrad, we can thus constrain the phase bias of the inter-
ferometer to 0.5 mrad, which corresponds to a rotation rate
bias of the gyroscope of 1 × 10−10 rad s−1.

C. Comparison with theoretical phase shift

Extracting the slopes of the data of Fig. 4(c) provides
a calibration of the step-to-angle conversion factor of the
piezo-motorized mirror mount in both directions, by match-
ing the measurements with the expected slope of 2T keff =
11.80 mrad μrad−1 (mm/s)−1 given by Eq. (1). From these
data we obtain conversion factors of 0.282(14) μrad/step and
0.177(11) μrad/step for the vertical and horizontal directions,
respectively. Both numbers significantly deviate from the
expectation of 0.385 μrad/step. Despite the fact that exact
values of the conversion factor are not crucial to tune the
interferometer at the optimal operating point, we explain here
the reasons for the discrepancy (and give additional details in
Appendix B). In the following, we include corrections arising
from the finite size of the atomic cloud after expansion which
becomes comparable to the size of the detection region, as
well as the size of the interrogating Raman beam at the last
light pulse.

For the typical temperature of our atomic cloud of Tat =
1.8(3) μK, the thermal rms velocity of 3.0(2)vR drives an
isotropic expansion resulting in a Gaussian width of the cloud
of σx, σy, σz � 10 mm after 984 ms of time of flight (time of
detection). We take into account two contributions. (i) First,
we consider the detection-related correction: the detection
region for each of the lightsheets resembles a square in the
horizontal plane with a 30 mm side. The atoms falling outside
this square in the x and y directions are not detected, which
corresponds to excluding about 17% of the atoms in the wings
of Gaussian distribution along each horizontal axis, assuming
the cloud centered in the detection region in the horizontal
plane. The z axis is not affected in this scenario because all
atoms pass sequentially in the detection region. (ii) Second,
for both axes (y and z), we account for the exact shape of
the intensity profile of the bottom Raman beam that performs
the last π/2 pulse of the interferometer. The associated inten-
sity variation gives rise to a spatially inhomogeneous beam
splitter efficiency, which can be parametrized by a weighting
function w(z) = 2

√
P(y, z)[1 − P(y, z)], where P(y, z) is the

local probability of the Raman transition. As a result, the
contribution of the atoms to the interference signal depends
on their position inside the cloud.

As the velocity distribution is mapped on a spatial dis-
tribution after ballistic expansion, the cut by the detection
and the inhomogeneous beam splitter efficiency modifies the
contributions of atoms of different velocity groups. This can
be interpreted as a shift of the initially induced mean velocity
towards an effective mean velocity. For example, in the y
direction, the atomic cloud becomes shifted at the detection
region proportionally to the tilt-induced acceleration by δy =
gδβy(t1 + tdet )2/2, which amounts to 3.5 mm for δβy = 0.7

FIG. 5. Phase shift per μrad of angular mirrors’ mismatch. Blue
dot (orange squares) data points correspond to the data sets for
vertical (horizontal) directions in Fig. 4(c), with the corrected ef-
fective velocities extracted from the model presented in the main
text. Solid blue (dashed orange) lines are linear fits to the data of
vertical (horizontal) directions. Semitransparent blue crosses (orange
triangles) show the same data of vertical (horizontal) direction, but
with original velocity values, with the dashed-dotted lines being the
corresponding linear fits (to guide the eye). The dotted black line is
the theoretical expectation for a 0.385 μrad/step scaling factor.

mrad. The faster side of the cloud becomes subsequently more
cut than the slower side, which results in a slower induced
effective mean velocity.

We apply this model to obtain the corrected, effec-
tive, mean velocities for both the z and y directions. In
Fig. 5, we compare the original (Fig. 4) and corrected
datasets. The effective initial velocities in the y direc-
tion are almost a factor of two smaller as compared with
the tilt-induced ones, which explains the previously ob-
served strong discrepancy. The resulting fitted slope changes
from the original value of 5.43(33) mrad μrad−1 (mm/s)−1

to the value of 12.10(72) mrad μrad−1 (mm/s)−1. In the
z direction, we find smaller velocity corrections that
shift the slope from 8.65(41) mrad μrad−1 (mm/s)−1 to
11.90(59) mrad μrad−1 (mm/s)−1. The corrected slopes in
both directions match well with the expectation. We note,
however, that this correction is sensitive to the exact knowl-
edge of several parameters, including cloud temperature,
size of detection region, Gaussian waist, and full size of
the interrogating beam. For example, a 10% relative error
in the cloud temperature generates 5% (8%) variation of the
slope value in the z (y) direction. Additional experiments
supporting our model are presented in Appendix B.

V. POINT SOURCE ANALYSIS

In case of a relatively large mirror misalignments, the
contrast of the interferometer becomes significantly reduced
as a result of destructive averaging of the velocity-dependent
phase shifts (see Fig. 3 for ∼80 actuator steps). The total
phase shift can thus be hardly extracted from the integrated
atomic signal. However, as the velocity distribution of the
atoms closely resembles that of a point source after our long
expansion time, the initial velocity of each atom is directly
mapped onto its position in the detection region. This opens
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FIG. 6. (a) Time-of-flight signal in the top lightsheet fit with
the function SP(t ) (solid red line) and corresponding reconstructed
total atom number profile S̃N (t ) (dashed green line). (b) Difference
between the data and the reconstructed total atom number profile and
extracted PSI waveform SP(t ) − S̃N (t ) (solid red line).

the possibility to resolve velocity-dependent phase shifts, as
has been done in previous studies by means of imaging tech-
niques with a camera [13,14]. Here we apply this technique,
known as point-source interferometry (PSI), in the case of
fluorescence detection.

As explained in Sec. III B, our detection scheme does not
discriminate the position of the atom within the lightsheets
such that all velocity classes along the x and y axes contribute
to the signal. We thus model the detected signals with time-
of-flight profiles for probability [SP(t )] and total atom number
[SN (t )] as

SP(t ) =
∫ ∞

−∞

∫ ∞

−∞
dvxdvy

∫ v̄z (t )+d/2tdet

v̄z (t )−d/2tdet

dvz f (�v )P(�v, δθ �eθ ),

SN (t ) =
∫ ∞

−∞

∫ ∞

−∞
dvxdvy

∫ v̄z (t )+d/2tdet

v̄z (t )−d/2tdet

dvz f (�v ), (6)

with

v̄z(t ) = vz0 +
(

g − vz0

tdet

)
(t − tdet ), (7)

where v̄z(t ) is the initial vertical velocity of an atom that
arrives at the center of the detection region at time t , and
vz0 is the center of the launched velocity distribution [18].
The integration goes over the initial velocities of the atoms
governed by the distribution function f (�v) = f (vx, vy, vz ).
The details of the exact form of distribution chosen to model
the data are given in Appendix C. In the limit of δθy,z → 0 the
phase shift in Eq. (3) becomes velocity independent, and we
recover the simple proportionality relations for the integrated
signals considered so far:∫

SP(t )dt ∝ NF=4 and
∫

S(t )dt ∝ N. (8)

In Fig. 6(a) we show a typical time-of-flight profile for a
mirror relative misalignment δθz ≈ 25 μrad, as recorded from
the upper detection lightsheet (see Fig. 2). We fit this data
with the function SP(t ) defined in Eq. (6) and parametrized as

follows: ASP(t ; vz0, v̄c, B,C, δθz, φ) + D (solid red line). The
free parameters are the amplitude, A, the offset D, the fringe
contrast C, the mean phase φ, and the mirror misalignment
δθz. The free parameters {v̄c, B, vz0} characterize the Lorentz-
B velocity distribution defined by

f (vz ) = f (0)[
1 + (

vz−vz0

v̄c

)2]B (9)

(see Appendix C for more details). Importantly, in these data
we minimize the angular misalignment along the y direction,
such that the phase shift [Eq. (5)] becomes vy independent.
Using the fitted parameters of the velocity distribution, we
reconstruct the average time-of-flight profile S̃N (dashed green
line). The deviation of the data with respect to S̃N represents
thus a bare contribution due to the interference, as illustrated
in Fig. 6(b).

Applying this method to a broad range of mirrors’ relative
misalignment δθz encounters, however, a number of limita-
tions. The robustness of the fitting routine is highly dependent
on the exact model of the velocity distribution of the atoms,
since an associated error translates into a spatial modulation
that can mimic the fringes. Additionally, while using this
method in the case of small angular misalignment (nz � 60),
we observe strong couplings between different fit parameters.
Here, the fringe period becomes so large that it exceeds the
size of the cloud, making the variation in δθz coupled with
variations of fringe contrast C and Lorentz-B parameters.
Lastly, the technical imperfections as shot-to-shot fluctuations
in atom number and small defects of the time-of-flight profiles
render fits unstable as the PSI signal of interest is much
smaller than the bulk envelope.

To robustly capture the mirrors’ relative misalignment δθz

in a broad range, we thus adopt a different method based on
Fourier analysis of the PSI signal. We start by recording 96
identical probability traces [as in Fig. 6(a)] for the actuator
step values in the range of [−240, 240]. For a given value
of nz, we then take the mean of 96 traces, which serves as a
reference atomic profile because the PSI phase is sufficiently
randomized [see Eq. (4)]. We subtract this reference profile
from each probability trace in order to obtain a bare PSI
signal. The corresponding profiles for the values of nz = −30
and nz = −240 are shown in Fig. 7(a). Here, we can clearly
observe the PSI waveform extending over multiple periods
for the large values of nz, which highlights the potential for
tracking large δθz angles with PSI analysis as compared with
integrating the entire fluorescence trace. To retrieve the value
of δθz, we perform a fast Fourier transform (FFT) for each
of the 96 PSI profiles and take the mean of the obtained
FFT traces for better signal-to-noise ratio. The resulting mean
FFT profiles of nz = −30 and nz = −240 data are shown
in Fig. 7(b). We fit these profiles with a phenomenological
function which is a sum of a Lorentzian profile centered at
0 Hz (accounting for background) and a Gaussian profile
(signal of interest). Based on Eqs. (5) and (7), from the fitted
center of the Gaussian profile we extract the value of δθz. As
uncertainty in δθz, we take the fitted width of the Gaussian
peak, as one may expect from the finite frequency resolution
linked with the total length of the cloud envelope.
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(a)

(b) (c)

FIG. 7. (a) Typical PSI signals for the two values of actua-
tor steps nz = 30 (blue crosses) and nz = 240 (orange circles).
(b) Fourier transform of the data in panel (a): nz = 30 (blue crosses)
and nz = 240 (orange circles). Solid blue and dashed orange lines are
the fits of corresponding data. In panels (a) and (b), the data for nz =
240 are enhanced ×10 for clarity. (c) Vertical angular misalignment
for a range of actuator-step values, extracted from the fits as shown
in panel (b). Plotted values (error bars) correspond to the fitted center
position (1σ width). Red line is the fit to the resulting data array.

Figure 7(c) shows the results for the fitted angular mirror
misalignment, revealing the expected linear behavior. The
extracted values for δθz are in good agreement with the ex-
pectation. Fitting the full data with an absolute linear function
gives δθz(μrad) = 0.352(2) steps/μrad × |nz − 11(9)|. The
conversion factor between the actuator steps and the angular
pitch in the vertical direction is quite close to the value
obtained in Sec. IV, as for the proof-of-concept demonstration
shown here. A full quantitative analysis would require a more
elaborate fitting of the time-of-flight profiles, which goes
beyond this study.

VI. CONCLUSION

To summarize, we presented a method to minimize the
systematic effect associated with the misalignment between
the retroreflecting Raman mirrors coupled to the atom trajec-
tory in a four-light-pulse atom interferometer operated in a
fountain configuration. We showed that the relative misalign-
ment between the mirrors can be zeroed within an accuracy
of 0.2 μrad and that the optimal velocity can be set within
an accuracy of 0.2 mm s−1. The resulting bias represents a
phase shift of 0.5 mrad, which amounts to a rotation rate bias
of 1 × 10−10 rad s−1. With this level of adjustment, achieving
a rotation rate stability of 1 × 10−11 rad s−1 translates into
ensuring a stability of the mean velocity (in y and z directions)

at the level of 20 μm s−1 and a stability of the mirror relative
misalignment at the level of 20 nrad. While the former is
already reached in our experiment, stabilizing the angular
misalignments will require dedicated mechanical engineering
and/or active temperature stabilization to reach the desired
level.

Using the point-source interferometry technique with flu-
orescence detection, we also showed how large (∼90 μrad)
mirror relative misalignments in the vertical direction can
be extracted even when the contrast from the integrated
transition-probability signal vanishes. At larger misalign-
ments, the contrast of the PSI traces diminishes due to
the finite velocity resolution of our detection lightsheets
(10 mm s−1). Using an imaging system with a camera would
allow us to extend the method to the two relevant directions.
Therefore, the PSI method appears as a good starting point
for a rough alignment of the mirrors, before using the higher-
precision step associated with the introduction of controlled
velocity shifts.

The method which we presented here is not specific to
a gyroscope architecture but will serve other atom interfer-
ometric sensors based on spatially separated interrogation
laser beams. In the case of large momentum transfer (LMT)
atom optics, the effect will scale with the diffraction order.
As an example, proposals of ground-based gravitational wave
detectors in the 0.1 to 10 Hz frequency band shall employ a
similar interferometer configuration as that presented here, but
with atom interferometric sensors spatially distributed along
a common laser baseline in a gradiometer setup [19,20]. In
that case, differential phase noise between distant sensors will
occur from the uncorrelated atomic velocities from one sensor
to the other. With LMT orders of 1000 (e.g., 500 times 2h̄k
momentum transfers), and assuming that the mirror relative
alignment can be zeroed with an accuracy of 10 nrad, reaching
phase-noise levels of the order of 1 μrad Hz−1/2 in the desired
frequency band (to reach strain sensitivities ∼10−22 Hz−1/2

[20]) will require a control of the atomic velocities at the level
of 10 nm s−1 Hz−1/2.
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APPENDIX A: DERIVATION OF THE
SYSTEMATIC EFFECT

We give here the details of the derivation of the systematic
shift (3) resulting from the angular misalignment between the
two Raman beams coupled to the trajectory of the atoms. We
first determine the classical position of the atom at the Raman
pulses. We write as �v0 (�r1) the velocity (position) of the atom
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FIG. 8. Schematic of wave packet propagation (classical trajec-
tories) in the (x, z) plane (not to scale) with the notations for the
positions used in the calculation.

wave packet at the first pulse, and �ri j the position of the atom
at pulse i in the arm j of the interferometer, with j = 1 being
the path corresponding to a diffraction at the first pulse (see
Fig. 8). For simplicity, we place the coordinate origin at �r1:

�r1 = 0,

�r21 = T

2
�v0 + T 2

8
�g + 1

2

h̄keffT

m
�er,

�r22 = T

2
�v0 + T 2

8
�g,

�r31 = 3T

2
�v0+9T 2

8
�g+ h̄keffT

m

[(
3

2
− cos δθ

)
�er − sin δθ �eθ

]
,

�r32 = 3T

2
�v0 + 9T 2

8
�g + h̄keffT

m
(cos δθ �er + sin δθ �eθ ),

�r41 = 2T �v0 + 2T 2�g + h̄keffT

m
[(2 − cos δθ )�er − sin δθ �eθ ].

(A1)

The phase of the interferometer reads

�� = (�kB�r1 − �kT�r21 + �kT�r31 − �kB�r41) − (�kT�r22 − �kT�r32)

= 2T keff(�v0 + T �g)[(cos δθ − 1)�er + sin δθ �eθ ]

+ 2
h̄k2

effT

m
(cos δθ − 1). (A2)

To first order in δθ , we obtain

�� = 2T keffδθ �eθ · (�v0 + T �g). (A3)

APPENDIX B: ADDITIONAL SUPPORT FOR THE
COMPARISON WITH THE THEORETICAL PHASE SHIFT

To further support our velocity-selectivity-based correction
model, we acquire additional data for the vertical direction,
similar to the dataset in Fig. 4(a) but with a different exper-
imental arrangement. First, we replace the bottom Gaussian-
beam collimator with a collimator having a rectangular (top
hat) intensity profile with full width of 30 mm and same
total optical power [21]. Second, we record now the full
detection trace that allows us to select different parts of the
cloud in the z direction in postprocessing and to determine the
corresponding phase shifts.

FIG. 9. Normalized vertical slope as a function of detection
window size. Red dashed horizontal line (pink-shaded region) corre-
sponds to the fit (fit error bar) to the data of Fig. 4(c) (i.e., the limit of
using the full detection window). The nonshaded regions in the insets
represent the parts of the detection signal used for data processing.

In Fig. 9 we show the dependence of the slope d2��
dδθzdδvz

normalized to the expected slope of 2T keff on the size of the
detection window centered around the maximum of the signal.

units of

FIG. 10. (a) Typical atom number signal (black dots) fit with SN

function using Lorentz-B (solid red line) and Gaussian (dashed green
line) velocity profiles for detection region d = 10 mm, (b) residuals
of the Lorentz-B (empty red circles) and Gaussian (green crosses) fits
from panel (a), (c) parameters of the Lorentz-B profile extracted from
100 identical experimental shots, fit with linear dependence by using
the orthogonal distance regression routine: B = 0.358(8)v̄c/vR −
0.42(4). For clarity, typical error bars of the single points are shown
only at the extremities of the data array.
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As the detection window size approaches zero, the value of
the normalized slope tends to unity, thus well recovering the
expected scaling. At large values of detection window (more
than half of integrated signal inside), we find a slope slightly
below the previously measured value (corresponding to an
actuator conversion factor of 0.282 μrad/step). This shift is
most likely attributed to small quantitative difference between
the Gaussian and the top hat collimators. A more advanced
modeling of this experimental result goes beyond this work.

APPENDIX C: VELOCITY DISTRIBUTION

Understanding the velocity distribution in optical molasses
is itself a challenging task that was a subject of intense
research [22] and resulted in the development of a one-
dimensional (1D) model based on solution of the Fokker-
Planck equation for simultaneous diffusion in momentum
and configuration space. Following this work, we expect the
atomic velocity distribution for our experimental parameters
to have a quasithermal-equilibrium profile given by so-called
Lorentz-B function [22]:

f (v) = f (0)

[1 + (v/v̄c)2]B
, (C1)

where the parameter B is linked to the critical velocity param-
eter v̄c by B = 1

3
√

3
v̄c
vR

, for the case of a model atom considered
in Ref. [22]. The analytical derivation of the velocity distribu-
tion in case of three-dimensional (3D) optical molasses as well

as the generalization of the 1D model to a 3D case is more
complex (see, e.g., Ref. [23], page 172). We thus aim here
at an empirical characterization of our velocity distribution in
the vertical direction only by analyzing time-of-flight profiles.

In Fig. 10, we show our results of fitting the fluorescence
trace for the total atomic signal [as the one shown in Fig. 2(b),
bottom]. The integrated (along the x and y directions) profiles
are fit with two SN functions, as previously introduced in
Eq. (6), with f (v) distributions corresponding to Lorentz-B
and Gaussian 1D profiles [Fig. 10(a)]. The strong fit residuals
[Fig. 10(a)] illustrate significant deviation of the actual veloc-
ity distribution from the thermal Gaussian one. The Lorentz-B
profile fits the data much closer. Therefore, when we refer
to the temperature of the cloud we rather mean the effective
temperature—the value extracted from the best-fit Gaussian
profile, typically about 1.8 μK.

We further analyze a single series of 100 identical atom
number pictures and extract the corresponding array of B, v̄c

pairs [Fig. 10(c)]. The statistical shot-to-shot fluctuation of
fitted parameters suggest about 20% peak-to-peak variation
of the cloud temperature, and a clear linear scaling between
B and v̄c. We use three similar datasets of 100 points each,
taken with a time difference of about 30 minutes, in order to
estimate the parameter variation over longer time. We obtain
the relation B = 0.367(11)v̄c/vR − 0.45(7), for a typical 1
hour timescale. As compared with the 1D model, we therefore
find a factor of about 2 larger slope and a significant offset
value.
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