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Differential phase extraction in an atom gradiometer
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We present here a method for the extraction of the differential phase of an atom gradiometer that exploits
the correlation of the vibration signal measured by an auxiliary classical sensor, such as a seismometer or an
accelerometer. We show that sensitivities close to the quantum projection noise limit can be reached, even when
the vibration noise induces phase fluctuations larger than 2π . This method does not require the correlation between
the atomic and classical signals to be perfect and allows for an exact determination of the differential phase,
with no bias. It can also be applied to other configurations of differential interferometers, such as gyrometers,
conjugate interferometers for the measurement of the fine-structure constant, or differential accelerometers for
tests of the equivalence principle or detection of gravitational waves.
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I. INTRODUCTION

Atom interferometers have demonstrated performances
comparable to or better than state-of-the-art classical instru-
ments, in terms of both sensitivity and accuracy, and have
found applications in various fields, from fundamental physics
to geophysics and navigation. In particular, differential atom
interferometers allow for an improved determination of the
quantity to be measured, as their mode of operation rejects
common mode noise sources and systematic effects. They
are used for the measurement of gravity gradients [1,2] and
rotation rates [3–5], for the determination of G [6,7] and
the ratio h/m [8,9], and for tests of the universality of free
fall [10–12] and are expected to find applications in the
detection of gravitational waves [13–16]. In most cases, the
fluctuations of the common phase, in general dominated by
the effect of parasitic vibrations, wash out completely the
visibility of single interferometers, but the correlation between
the two output signals can be used to recover the information on
the difference between the two interferometer phases. Various
techniques have been demonstrated to extract the differential
phase. A method based on ellipse fits was first used in [17],
but was shown to introduce significant biases, which are
errors in the determination of this differential phase. Methods
based on Bayesian estimators are more accurate [18–20],
but require an a priori model of the interferometer phase
noise. In a recent study, it was shown that the use of a
simultaneous third measurement allows for the retrieval of
the differential phase(s) with negligible bias(es) using a robust
three-dimensional fit [21].

In this paper we present an alternative method that uses the
correlation of the interferometer phases with an estimate of
the vibration phase provided by an auxiliary classical sensor.
It allows us to recover the differential phase of interferometers
operated in a gradiometer configuration, without any biasing
or an a priori knowledge of the noise distribution. We show in
particular that sensitivities close the quantum projection noise
limit can be obtained.
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II. PRINCIPLE OF THE METHOD

The output signals of the interferometers are given by the
transition probabilities P1 and P2:

P1 = A1 + C1

2
cos(φm + φ1 + φ1l),

P2 = A2 + C2

2
cos(φm + φ2 + φ2l),

where φm is the phase shift induced by the vibrations (of the
mirror used to retroreflect the lasers of the interferometer),
φi are the two interferometer phase shifts (with contributions
from inertial effects, such as gravity acceleration, and noniner-
tial effects, such as lights shifts), and φil are controlled phases
shifts applied to the phase of the interferometers. The φil can be
common to the two interferometers (such as when applying to
the laser phase difference either a frequency chirp for Doppler
shift compensation or a phase jump) or not. In particular, such
differential phase shifts can easily be set in the configuration
of a gradiometer, taking advantage of the spatial separation
between the interferometers. This was realized, for instance,
by applying a magnetic pulse at one of the two clouds [1,22] or
by inducing a common frequency jump onto the interferometer
lasers [23], the latter technique providing in principle a better
control of the applied differential phase.

Without loss of generality, we will take φ1 + φ1l = 0. This
can easily be realized, for instance, by applying a phase jump
before the last pulse of the interferometer. This leads to

P1 = A1 + C1

2
cos(φm),

P2 = A2 + C2

2
cos(φm + φd ),

where φd = φ2 − φ1 + φ2l − φ1l is the differential phase
between the two interferometers.

An estimate φs of the phase shift induced by the vibration of
the mirror φm can be determined due to the measurement of an
auxiliary sensor, such as a seismometer [24] or a mechanical
accelerometer [25,26], or with an additional interferometer
as in [27]. When using a classical sensor, a rigid link with
the mirror is required for an optimal correlation between φm

and φs and some signal processing can be used to flatten the
transfer function of the sensor [24].
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FIG. 1. (Color online) Allan standard deviation of the differential
phase (open circles) compared to Allan standard deviations of the
phase of a single interferometer (open squares) and of the vibration
noise (black squares). The line represents the quantum projection
noise limit. The parameters are σφm

= 3 rad, σδφ = 0.3 rad, and φd = 0.

This correlation can be exploited to determine the phase
of the interferometer, even in the presence of large vibration
noise that washes out the fringes at the output of the
interferometer. One can exploit, for instance, the fringe fitting
technique described in [28], which is based on the recovery of
interferometer fringes when plotting the transition probability
versus φs . Vibration noise provides there a random sampling
of the interferometer phase that allows the fringe pattern to be
scanned.

We show here that this technique can be extended to the case
of a differential interferometer by reconstructing the fringes
for both interferometers independently and fitting them as
a function of φs . Though the dispersion of the phases of
the two interferometers, as determined by the fits, is linked
to the quality of the correlation between real and measured
mirror vibrations (and might thus exhibit relatively large
fluctuations when this correlation is poor), the differential
phase can potentially be much better determined because the
fluctuations of the fitted phases of the two interferometers are
also correlated.

III. SIMULATION

To simulate the signals at the output of the interferometer,
we start by randomly drawing the values of φm in a Gaussian
distribution with a standard deviation of σφm

. In order to
account for an imperfect correlation between the mirror motion
and the sensor signal, we randomly draw the difference
between the corresponding phases δφ = φm − φs , with a
standard deviation of σδφ . The two transition probabilities are
then calculated, with A1 = A2 = 0.5 and C1 = C2 = 1. We
then account for the influence of detection noise, which we take
as quantum projection noise limited with a number of detected
atoms of Nat = 106 for each interferometer. We thus add to Pi

noise contributions δPi
, randomly drawn in Gaussian distribu-

tions with standard deviations σPi
= √

Pi(1 − Pi)/Nat .

IV. RESULTS

First, we generate 106 pairs (P1,P2) with σφm
= 3 rad,

σδφ = 0.3 rad, and φd = 0. Such a level of vibration noise
and degree of correlation between mirror vibrations and
sensor signal corresponds to the case studied in [28], where
an atom gravimeter operating in a urban environment was
directly put on the ground and the classical sensor was a
seismometer. We then group the data by sets of 100 trials
and perform 104 consecutive fits of Pi versus φs , from which
we extract 104 values of the fitted phases φi,f , and of their
difference φd,f = φ2,f − φ1,f . Figure 1 displays the Allan
standard deviation of the difference of the fitted phases σφd,f

(open circles) compared with the fitted phase of one of the
interferometers (open squares) and with the vibration phase
noise (closed squares). While the correlation with the data
of the classical sensor allows us to gain a factor of about
8 on the sensitivity of a single interferometer, the gain on
the differential phase noise is much larger, about 1700. The
thin line represents the quantum projection noise limit of
σQPN = √

2/
√

Nat and only lies a factor 1.25 below.
We then investigate the efficiency of this rejection as a

function of the value of the differential phase by plotting the
ratio σφd,f

/σQPN as a function of the differential phase φd for a
fixed value of σφm

= 3 rad and different amplitudes of σδφ . The
results are displayed in Fig. 2. We observe an optimal phase
sensitivity when φd = 0[π ], close to the quantum projection
noise limit. We observe a rapid degradation as the value

FIG. 2. Sensitivity in the differential phase extraction, normalized to the quantum projection noise limit as a function of the value of the
differential phase. A zoom on the curve for small values of the differential phase, below 50 mrad, is displayed on the right.
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FIG. 3. Sensitivity in the differential phase extraction, normalized
to the quantum projection noise limit, as a function of the standard
deviation of δφ, the difference between real and measured mirror
vibrations. The differential phase is zero.

of φd starts deviating from these values, which increases
with σδφ . In particular, the correlation between the two fitted
phases is lost when operating the two interferometers in
quadrature. There the sensitivity is minimal and comparable to
the sensitivity one would obtain with independent uncorrelated
interferometers.

In a second series of simulations, we vary the amplitude of
σδφ , keeping φd = 0 and σφm

= 3 rad. The results displayed in
Fig. 3 show that the sensitivity in the differential phase remains
close to the quantum projection noise (QPN) limit, within a
factor of 2, over a large range of σδφ of 1 rad. This shows that the
retrieval of the differential phase is still possible, even when
the correlation between the classical signal and the mirror
motion is far from being perfect and the level of uncorrelated
noise is high. Degradation of the correlation can arise from
nonlinearity of the sensor in the frequency range where the
vibration noise is important (from 0.1 to 100 Hz) or from the
intrinsic noise of the classical sensor. In the example above, a
level of intrinsic noise of the classical sensor lower than the
level of vibration noise by a factor of only 3 would still allow
reaching a sensitivity as good as twice the quantum projection
noise limit. This shows that, depending on the parameters,
midclass sensors, which are more compact and less expensive,
can in practice still be highly beneficial.

We then repeat these simulations for increasing values of
φd , ranging from 10 to 200 mrad. Figure 4 shows results that
illustrate that the trend in the degradation of the sensitivity
versus δφ increases with increasing values of φd , which was
already observed in Fig. 2.

Finally, we vary the amplitude of σφm
keeping the quality of

the correlation the same, which means that we keep the ratio
σφm

/σδφ constant, equal to 10. Figure 5 shows an increase by
less than a factor 2 with σφm

below an amplitude of 10 rad.
Note that for such a value, σδφ = 1 rad, which corresponds to
a situation where the fringes obtained when plotting Pi versus
φm are hardly visible. Even in that case, the sensitivity is only
twice the QPN limit and the rejection efficiency of vibration

FIG. 4. Sensitivity in the differential phase extraction, normalized
to the quantum projection noise limit, as a function of the standard
deviation of δφ, the difference between real and measured mirror
vibrations. The differential phase is varied between 10 and 200 mrad.

noise is as large as a factor 4000. For larger vibration noise,
the degradation of the sensitivity becomes significant. Also,
the number of points to be fitted needs to be increased for the
fit to converge to the correct value. We obtain stable fits up
σδφ = 20 rad with a number of points to fit of 1000.

Of importance, we checked that, whatever the noise
parameters we choose, the extraction of the differential phase is
free from any biasing: The mean value of the fitted differential
phase is always found equal to the differential phase. This
will hold in a practical implementation in particular when the
mean values of φs and φm are equal (and, for instance, equal to
zero in the absence of a long-term motion of the mirror). This
equality is verified if using a low-noise seismometer [24,28],
whose output signal is a velocity signal, but not necessarily if
using a dc accelerometer, such as in [26]. In the latter case,

FIG. 5. Sensitivity in the differential phase extraction, normalized
to the quantum projection noise limit, as a function of the mirror
vibration noise σφm

. The ratio between σφm
and σδφ is kept constant,

equal to 10. The differential phase is null.
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a nonzero dc value leads to an offset in the fitted phase that
can exhibit long-term drifts. Nevertheless, since this offset
is common to both interferometers it will cancel out when
calculating the differential phase. Finally, we checked that the
results presented here do not depend on the values of the offsets
A1 and A2 on the transition probabilities nor on the values of
C1 and C2 (if accounting for the corresponding degradation of
the QPN limited sensitivity).

V. CONCLUSION

We presented here a technique for extracting the differential
phase in an atom gradiometer in the presence of large
vibration noise that washes out completely the visibility of
the fringes of the individual interferometers. It relies on the
exploitation of the auxiliary signal provided by a classical
sensor that measures the motion of the mirror that retroreflects
the interferometer lasers. We show that sensitivities close
to the QPN limit can be reached provided the value of the
differential phase modulo π is zero. This corresponds to
in-phase or counterphase operation of the two interferometers,
which can be set either by changing the scale factor of the
interferometers or by applying a perturbation that is not a
common mode to the two interferometers. The technique can
also be used for other differential interferometers, such as gy-
rometers based on counterpropagating atomic sources [4,5], or

conjugate interferometers for the determination of the ratio
h/m [29].

This technique is also of interest for differential accelerom-
eters that use two different atomic species in order to perform
tests of the equivalence principle. In that case though, the
accelerometer scale factors may differ due to the difference
in the effective wave vectors of the interferometer lasers.
Vibration phases, even if proportional, are thus different for
each interferometer [20]. As an alternative, the scale factor
can be matched by making the interferometer pulse sequence
slightly different for the two accelerometers [19]. Though the
responses of the two interferometers to dc acceleration are
then identical, the difference in the pulse sequence makes
the transfer function not identical for the two accelerometers
and thus their response to vibration noise is different [30].
Even though the correlation between the fitted phases is then
reduced, a recent study [30] demonstrates that the present
technique compares favorably with other methods and allows
for a more robust extraction of the differential phase, free of
any bias, and with a potentially excellent sensitivity.
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[24] J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon,
A. Landragin, and F. Pereira Dos Santos, Appl. Phys. B 92, 133
(2008).

[25] R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B.
Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Landragin,
and P. Bouyer, Nat. Commun. 2, 474 (2011).

[26] J. Lautier, L. Volodimer, T. Hardin, S. Merlet, M. Lours, F.
Pereira Dos Santos, and A. Landragin, Appl. Phys. Lett. 105,
144102 (2014).

063615-4

http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1103/PhysRevA.89.023607
http://dx.doi.org/10.1103/PhysRevA.89.023607
http://dx.doi.org/10.1103/PhysRevA.89.023607
http://dx.doi.org/10.1103/PhysRevA.89.023607
http://dx.doi.org/10.1103/PhysRevLett.78.2046
http://dx.doi.org/10.1103/PhysRevLett.78.2046
http://dx.doi.org/10.1103/PhysRevLett.78.2046
http://dx.doi.org/10.1103/PhysRevLett.78.2046
http://dx.doi.org/10.1103/PhysRevLett.97.010402
http://dx.doi.org/10.1103/PhysRevLett.97.010402
http://dx.doi.org/10.1103/PhysRevLett.97.010402
http://dx.doi.org/10.1103/PhysRevLett.97.010402
http://dx.doi.org/10.1103/PhysRevLett.114.063002
http://dx.doi.org/10.1103/PhysRevLett.114.063002
http://dx.doi.org/10.1103/PhysRevLett.114.063002
http://dx.doi.org/10.1103/PhysRevLett.114.063002
http://dx.doi.org/10.1126/science.1135459
http://dx.doi.org/10.1126/science.1135459
http://dx.doi.org/10.1126/science.1135459
http://dx.doi.org/10.1126/science.1135459
http://dx.doi.org/10.1038/nature13433
http://dx.doi.org/10.1038/nature13433
http://dx.doi.org/10.1038/nature13433
http://dx.doi.org/10.1038/nature13433
http://dx.doi.org/10.1103/PhysRevLett.106.080801
http://dx.doi.org/10.1103/PhysRevLett.106.080801
http://dx.doi.org/10.1103/PhysRevLett.106.080801
http://dx.doi.org/10.1103/PhysRevLett.106.080801
http://dx.doi.org/10.1126/science.1230767
http://dx.doi.org/10.1126/science.1230767
http://dx.doi.org/10.1126/science.1230767
http://dx.doi.org/10.1126/science.1230767
http://dx.doi.org/10.1103/PhysRevLett.98.111102
http://dx.doi.org/10.1103/PhysRevLett.98.111102
http://dx.doi.org/10.1103/PhysRevLett.98.111102
http://dx.doi.org/10.1103/PhysRevLett.98.111102
http://dx.doi.org/10.1103/PhysRevA.88.043615
http://dx.doi.org/10.1103/PhysRevA.88.043615
http://dx.doi.org/10.1103/PhysRevA.88.043615
http://dx.doi.org/10.1103/PhysRevA.88.043615
http://dx.doi.org/10.1088/0264-9381/31/11/115010
http://dx.doi.org/10.1088/0264-9381/31/11/115010
http://dx.doi.org/10.1088/0264-9381/31/11/115010
http://dx.doi.org/10.1088/0264-9381/31/11/115010
http://dx.doi.org/10.1016/j.physleta.2006.04.103
http://dx.doi.org/10.1016/j.physleta.2006.04.103
http://dx.doi.org/10.1016/j.physleta.2006.04.103
http://dx.doi.org/10.1016/j.physleta.2006.04.103
http://dx.doi.org/10.1088/0264-9381/24/9/001
http://dx.doi.org/10.1088/0264-9381/24/9/001
http://dx.doi.org/10.1088/0264-9381/24/9/001
http://dx.doi.org/10.1088/0264-9381/24/9/001
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1364/OL.27.000951
http://dx.doi.org/10.1364/OL.27.000951
http://dx.doi.org/10.1364/OL.27.000951
http://dx.doi.org/10.1364/OL.27.000951
http://dx.doi.org/10.1103/PhysRevA.76.033613
http://dx.doi.org/10.1103/PhysRevA.76.033613
http://dx.doi.org/10.1103/PhysRevA.76.033613
http://dx.doi.org/10.1103/PhysRevA.76.033613
http://dx.doi.org/10.1088/1367-2630/11/11/113010
http://dx.doi.org/10.1088/1367-2630/11/11/113010
http://dx.doi.org/10.1088/1367-2630/11/11/113010
http://dx.doi.org/10.1088/1367-2630/11/11/113010
http://dx.doi.org/10.1103/PhysRevA.90.023609
http://dx.doi.org/10.1103/PhysRevA.90.023609
http://dx.doi.org/10.1103/PhysRevA.90.023609
http://dx.doi.org/10.1103/PhysRevA.90.023609
http://dx.doi.org/10.1103/PhysRevLett.114.013001
http://dx.doi.org/10.1103/PhysRevLett.114.013001
http://dx.doi.org/10.1103/PhysRevLett.114.013001
http://dx.doi.org/10.1103/PhysRevLett.114.013001
http://dx.doi.org/10.1103/PhysRevA.90.023617
http://dx.doi.org/10.1103/PhysRevA.90.023617
http://dx.doi.org/10.1103/PhysRevA.90.023617
http://dx.doi.org/10.1103/PhysRevA.90.023617
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1007/s00340-008-3088-1
http://dx.doi.org/10.1038/ncomms1479
http://dx.doi.org/10.1038/ncomms1479
http://dx.doi.org/10.1038/ncomms1479
http://dx.doi.org/10.1038/ncomms1479
http://dx.doi.org/10.1063/1.4897358
http://dx.doi.org/10.1063/1.4897358
http://dx.doi.org/10.1063/1.4897358
http://dx.doi.org/10.1063/1.4897358


DIFFERENTIAL PHASE EXTRACTION IN AN ATOM . . . PHYSICAL REVIEW A 91, 063615 (2015)

[27] F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de
Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino,
Appl. Phys. Lett. 101, 114106 (2012).
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