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Contrast decay in a trapped-atom interferometer
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A Ramsey-Raman interferometer is used to realize a compact force sensor using cold 87Rb atoms trapped in
a vertical optical lattice. The sensitivity and accuracy of the force measurements are discussed and the limits in
short-term sensitivity evaluated. We reach a relative sensitivity on the Bloch frequency and thus on the gravity
acceleration of 3.9 × 10−6 at 1 s. We perform an experimental study of the influence of the transverse confinement
onto the decay of the interferometer contrast and compare the measurements with a simple semiclassical model.
It is shown that vertical gradients of the trapping potential can contribute significantly to the loss of contrast.
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Inertial sensors based on atom interferometry now reach
impressive sensitivities and accuracies, giving rise to new
applications in high-precision measurements, particularly
gravimeters [1–4], gradiometers [5,6], gyrometers [7–10],
and velocity sensors for the measurement of photon recoil
and the determination of the fine structure constant [11].
The performances of these atomic interferometers (AI) are
competitive with other devices based on other technologies,
e.g., optical interferometers [4]. Yet, in most cases, these
apparatus remain complex, bulky, and hardly movable. The
size of these instruments, when using free falling atoms,
scales quadratically with the interferometer time and so
does the intrinsic sensitivity. Various miniaturization schemes
are currently investigated, with efforts towards simplifica-
tion [12–15] and in engineering of subsystems [16–18]. As
an alternative, the falling distance can be reduced using either
semitrapped configurations, based, for instance, on the use of
Bloch oscillations to levitate the atoms [19,20], or trapped
geometries such as those based on atom chips [21–23] or
optical lattices [24,25].

In this paper, we report the characterization of an atomic
sensor based on 87Rb atoms trapped in a shallow vertical
optical lattice. A so-called Ramsey-Raman interferometer
allows for the precise measurement of the energy difference
between neighboring lattice sites. After a short review of the
measurement principle, we present the performances of our
second generation setup in terms of sensitivity and accuracy.
Finally, we investigate the influence of the trapping laser’s
parameters onto the contrast decay.

I. PRINCIPLE OF THE EXPERIMENT

In our system, we consider laser-cooled 87Rb atoms trapped
in a vertical one-dimensional (1D) lattice far detuned from
resonance. Atoms experience a periodic potential Ĥl = Ul[1 −
cos(2kl ẑ)]/2, which adds to the gravitational potential Ĥg =
magẑ and to kinetic energy represented by Ĥk = p2

2ma
. Ul and kl

represent the lattice depth and wave number, ma is the atomic
mass, and g the gravity acceleration. Restricting the problem
to the fundamental Bloch band, the eigenstates of the total
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Hamiltonian Ĥtot = Ĥk + Ĥl + Ĥg are given by the Wannier-
Stark (WS) states |Wm〉 [26], where the quantum number m

is the well index which labels the different lattice sites. The
increment of energy between two consecutive states is equal
to

h × νB = magλl/2, (1)

where νB ∼ 568.5 Hz is the Bloch frequency and λl is
the wavelength of the lattice laser. Considering the two
internal hyperfine states |g〉 = |5 2S1/2,F = 1,mF = 0〉 and
|e〉 = |5 2S1/2,F = 2,mF = 0〉, one obtains two WS ladders
separated by the h × νHFS, where νHFS ∼ 6.834 GHz is the
hyperfine structure frequency (HFS). The corresponding two
sets of eigenstates |g,Wm〉 and |e,Wm〉 are shown in Fig. 1.

The spread of the atomic wave function depends on the
lattice depth [28]. For shallow depths (Ul < 5Er , where Er =
�

2k2
l /2ma is the recoil energy of a lattice photon) the wave

function extends across a significant number of wells [27,28].
This delocalization allows for resonant tunneling between
different lattice sites using coherently driven two-photon
stimulated transition with counterpropagating vertical Raman
beams [29]. Rabi oscillations between |g,Wm〉 and |e,Wm′ 〉 can
be induced either in the same well (m = m′) or in neighboring
wells (m �= m′). By energy conservation, such a transition
occurs when the frequency difference of the two Raman beams
fulfils νR1 − νR2 = νHFS + �m × νB (where �m = m − m′).
This resonance yields the value of νB .

In this system, we have demonstrated sub-Hz spectroscopy
of WS states and various types of AI [24,30], allowing
for the measurement of νB with a relative sensitivity of
9 × 10−6 at 1 s at best. Using Rabi frequencies larger than
νB , multiwave interferometers have also been realized [31].
All these measurements were limited by the detection noise.

To overcome this limitation, the experimental setup has
been upgraded, improving mainly the number of trapped
atoms and the detection efficiency. We first realize in a new
vacuum chamber a three-dimensional (3D) magneto-optical
trap (MOT) at a base pressure of 10−10 mbar, resulting in a
lifetime of 40 s. About 108 atoms are collected in 500 ms
and cooled to 2 μK in a –20 � detuned molasses phase. The
atoms are then optically pumped into |5 2S1/2,F = 1,mF = 0〉
state to reduce the influence from stray magnetic fields. The
lattice is created by a vertically retroreflected and single-mode
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FIG. 1. (Color online) Wannier-Stark ladders of states. The two
internal states are separated by the hyperfine transition frequency
νHFS. The increment of energy between neighboring wells corre-
sponds to the increment of gravitational potential energy h × νB ,
where νB is the Bloch frequency.

frequency-doubled Nd : YVO4 laser (λl = 532 nm, P =
7.5 W, and 1/e2 radius of ∼1 mm), leading to a lattice depth
of ∼1.7Er . This depth can be increased up to 3.9 ER by
changing the waist of the laser. Transverse confinement is
provided by an additional red detuned progressive wave from
a Yb fiber laser (λ = 1064 nm, 0.3 < PIR < 2 W, and 1/e2

radius of 145 μm on the atoms) aligned along the lattice axis.
This infrared (IR) trap induces a large differential light shift
(DLS) on the hyperfine states (∼3.3 Hz/W). An anti-light-shift
(ALS) beam well mode-matched is superimposed on this IR
laser. To produce the ALS beam, we use a few nanowatts
from a laser red detuned from the D2 transition of 3 GHz.
This laser creates a DLS of opposite sign, which compensates
for the IR DLS and its inhomogeneities [24]. Finally, around
75 000 atoms are distributed in a 1-mm-long cloud (about
4000 adjacent WS states) in the fundamental lattice band. The
lifetime of the atoms in the mixed trap is ∼7 s. This represents
an improvement of about 1 order of magnitude both in the
atom number and in their lifetime in the trap compared to the
previous setup [24,30].

The atoms are interrogated using counterpropagating circu-
larly polarized Raman beams which are carefully aligned onto
the lattice. With respect to our previous work [30], Raman
detuning has been increased from 3 to 300 GHz from the 87Rb
D2 line, enabling the impact of the Raman DLS to decrease
by 1 order of magnitude. The maximal total Raman power is
∼10 mW distributed over a 1/e2 radius of ∼2.6 mm. This
leads to a maximum Rabi frequency of 25 Hz for a transition
�m = 7 at a depth of 1.6 ER . Typical interrogation time is
around 1 s. The Raman transition changing both the internal
and external states, we use a state-selective detection based
on a time-of-flight fluorescence. From the measurement of the
populations in the two hyperfine states Ng and Ne we compute
the transition probability from |g〉 to |e〉: Pe = Ne

Ng+Ne
. The

optical system collecting the fluorescence has been changed
from a system collecting 1% of the fluorescence with a single
photodiode to a symmetrical one collecting 8.6% on two

FIG. 2. (Color online) Ramsey-Raman fringes for a lattice depth
Ul = 3.9Er showing evidence of transitions between up to five
neighboring lattice sites. Rabi envelopes are separated by the Bloch
frequency νB ∼ 568.5 Hz and contain interference fringes with an
interfringe of �ν = 1/TR . Here τπ/2 = 10 ms and TR = 150 ms.
The intensities of the Raman lasers and the lattice depth were set to
optimize the contrast of the �m = ±3 fringes. Insert: zoom on the
�m = −3 transition.

independent photodiodes. With respect to our previous results,
we are now dominated by the contribution from quantum
projection noise. Combined with the increased number of
atoms, it enables us to reduce the detection noise by a factor
of 10.

II. SENSITIVITY MEASUREMENT

We report here the measurement of νB using an interferom-
eter scheme called a Ramsey-Raman interferometer [24]. This
interferometer is composed of two π/2 pulses of duration τπ/2

separated by a free precession time TR . During this AI, the
atomic wave functions are placed in a coherent superposition
of two wave packets centered in two different wells. A fringe
pattern such as displayed in Fig. 2 is obtained by scanning
the frequency difference between the two Raman νR1 − νR2

around the HFS frequency. We observe sets of Ramsey fringes
in each Rabi envelope corresponding to a given �m transition.
The fringe spacing is ∼1/TR .

We report here on our best sensitivity measurement realized
using a transition �m = ±7 at a depth Ul = 1.7 Er , with
TR = 900 ms and τπ/2 = 10 ms with a fringe contrast of
about 20%. To determine the sensitivity of our measurement,
we localize and monitor the fluctuations of the position of
the central fringes of our interferometers (displayed in Fig. 3)
using the integration scheme described in Ref. [30]. The long-
term frequency fluctuations of the + and –7 νB measurements
are dominated by a frequency shift of the clock transition
νHFS due to polarization fluctuations in the ALS fiber inducing
slow light-shift fluctuations. Computing the half difference
of the frequency fluctuations of the two �m = +7 and –7
interferometers enables us to get rid of this effect and to recover
the intrinsic νB fluctuations.
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FIG. 3. (Color online) Ramsey-Raman fringes around –7 and
+7 νB for a lattice depth of Ul = 1.7 Er with TR = 900 ms
and τπ/2 = 10 ms. The central fringe of the interferometers is
indicated and the red curve is a sinusoidal fit.

To quantify our sensitivity, we compute the Allan stan-
dard deviation of this half difference, displayed in Fig. 4.
We obtain a relative short-term sensitivity corresponding to
σν

7νB
= 3.9 × 10−6 at 1 s. As the short term frequency fluctu-

ations are filtered by the digital integrator locking the Raman
frequency difference onto the central fringes, we extrapolate
the sensitivity to 1 s, assuming the noise to be white and
averaging as 1/

√
Tmeas where Tmeas is the measurement time.

The sensitivity decays as a white noise down to 1.5 mHz in 200
s and increases for larger measurement times due to residual
frequency fluctuations.

III. NOISE BUDGET

Remarkably, we repeatedly obtain about the same relative
sensitivity of ∼5 × 10−6 at 1 s with other sets of parame-
ters and other interrogation schemes (Rabi spectroscopy or
symmetric interferometers [30]). To understand this limit, a
noise budget was performed, determining the contributions of
the different sources of noise: detection noise, trapping lasers
noise, Raman laser noise, and vibration noise.

FIG. 4. Allan standard deviation of the half difference of the
frequency fluctuations of �m = +7 and –7 transition measured
with a Ramsey-Raman interferometer with experimental parameters
τπ/2 = 10 ms and TR = 900 ms. The half difference cancels the
hyperfine transition fluctuations and decays in 1/

√
Tmeas. The black

dashed line is a guide to the eyes.

TABLE I. Noise budget.

Noise σν at 1 s σδν

7×νB

Trapping lasers noise 13 mHz 3.25 × 10−6

Raman lasers noise 7 mHz 1.76 × 10−6

Detection noise for C = 20% 5.9 mHz 1.9 × 10−6

Vibration noise for �m = 7 11.2 mHz 2.8 × 10−6

Sum 21.9 mHz ∼5.5 × 10−6

Using a 0.5-ms-long π/2 microwave (MW) pulse, we
measure the noise on the transition probability due to detection
noise: σPe = 3.3 × 10−3 at 1 s. We deduce the impact of the
detection noise onto the frequency noise of the interferometer
using

σν = σPe

CπTR

. (2)

For a contrast C = 20% and TR = 900 ms, we find σν,det ∼
5.9 mHz. Using a MW Ramsey interferometer of 80% contrast
for TR = 900 ms and τπ/2 = 10 ms, we measure the noise due
to the trapping lasers. We find σPe = 2.9 × 10−2 at 1 s, which
corresponds to a frequency noise σν,lasers = 13 mHz. By shining
the Raman lasers (off resonance with respect to the two-photon
transition) during the MW pulses, we deduce an additional
noise contribution σν,Raman = 7 mHz at 1 s, which we attribute
to the Raman DLS fluctuations. Finally, the contribution of the
mirror vibration noise is determined from the measurement of a
seismometer, whose velocity signal is weighted by the transfer
function of our Ramsey-Raman interferometer. For �m = ±7
we calculate σν,vib = 11.2 mHz at 1 s, which corresponds to
an acceleration noise of 2.8 × 10−6 g at 1 s, due to ground
vibration noise.

Adding up all these noise contributions summarized in
Table I, we obtain a total frequency noise σν,tot = 19.4 mHz at
1 s, yielding a relative sensitivity on the Bloch frequency for a
measurement of the �m = 7 transition of σν,tot

7νB
= 4.8 × 10−6

at 1 s. This short-term sensitivity corresponds to the one
we obtain routinely. The trapping laser noise is slightly
predominant, though the intensities of all trapping lasers
are locked. This noise may come from fluctuations of the
differential light shifts seen by the atoms due to laser-pointing
fluctuations.

IV. ACCURACY STUDY

The Bloch frequency depends on three quantities that can be
determined independently with high accuracy: the wavelength
of the lattice laser λl , the h/ma ratio and g. The lattice laser is
locked on an iodine line using a frequency modulation transfer
spectroscopy (hyperfine transition a1 of the 1116/P(52)32-
0 line at 532.195951(03) nm [32]). We estimate the relative
uncertainty on λl to be about 2 × 10−9, h/ma is known to one
part in 109 [11]. Gravity acceleration g has been measured
in the laboratory room by atomic and conventional corner-
cube gravimeters. From these values, we compute the expected
value of the Bloch frequency: νB,expt = 568.509003(6) Hz. It
differs from our mean measurement νB,meas = 568.542(4) Hz
for an IR laser power of 0.5 W. This corresponds to a well
resolved relative difference of 5 × 10−5. The measured value
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FIG. 5. (Color online) Measurement of the Bloch frequency νB

versus the IR transverse trap laser power for different IR waist
positions. Black squares: waist 2 cm below the atoms. Red circles: 1
cm above. Blue triangles on the atoms. The corresponding curves are
linear fits. The measurements have been realized for interferometers
at �m = ± 7 and ± 6 transitions at Ul ∼ 1.8 ER . The pink star
represents the expected value νB,expt.

corresponding to an acceleration larger than g, the difference
cannot be due to an error of the lattice tilt. Moreover, we
estimate our uncertainty on verticality to be 0.5 mrad leading
to a relative uncertainty of ∼10−7.

We studied the impact of the IR laser power (PIR) on
the measurement of νB , depicted by the black squares of
Fig. 5. We observed a fairly linear dependence versus the IR
power. A linear fit to the data gives νB,meas = νB0 + β × PIR

with β = 69.9 (7) mHz/W and νB0 = 568.510 3(50) Hz. The
extrapolation at 0 power νB0 is close to the expected value.

We attribute this effect to a residual dipole force which
occurs if the atoms are not at the waist of the IR beam. To
estimate this effect, we consider the dependence of the IR
laser intensity on z. The on-axis intensity is given by

IIR(PIR,z) = 2PIR

πw2
IR

(
wIR

wIR(z)

)
, (3)

where wIR(z) is the 1/e2 radius of the IR laser and wIR =
wIR(z = 0) = 145 μm is the waist radius. The trap depth
UIR(z,PIR) being proportional to IIR, atoms that are not at the
laser waist feel slightly different potentials while tunneling
from �m wells. This creates a frequency offset, proportional
to the IR power:

�νIR(PIR,z,�m)

= UIR(PIR,z + �m × λ532/2) − UIR(PIR,z)

�m × h
. (4)

Computing this effect versus PIR and using z as a free
parameter, we find that the black squares of Fig. 5 correspond
to a waist ∼2 cm below the atoms, which is comparable to
the Rayleigh length but significantly larger than the expected
positioning uncertainty of a few mm.

We then performed similar measurements at other positions
of the waist with respect to the atoms. The beam waist was

displaced in a controlled way by translating the 400 mm focal
length lens that focuses the transverse beam. The results are
represented by the red circles and blue triangles of Fig. 5.
We observe again linear behaviors, with different slopes,
corresponding to a waist positions located approximately 1 cm
above and on the atoms. The three extrapolated frequencies at
PIR = 0 W match with each other and are in a good agreement
with the theoretical prediction.

V. CONTRAST DECAY STUDY

A. Systematic study

We performed a study of the contrast decay of our
interferometers versus the free precession time TR , depending
on the separation �m and the lattice depth Ul . For each
measurement, we tuned the lattice depth in order to be at a
local maximum of coupling for a given �m transition [33].
Typical measurements for a waist-atom distance z = −2 cm
are displayed in Fig. 6. Contrasts decay exponentially, faster
when the depth is higher and the separation bigger. For
comparison, we measured the contrast decay of a microwave
Ramsey interferometer (black squares), which decreases much
more slowly with TR , keeping a contrast as large as 80% for
TR = 1.8 s. Fitting the decays with C0 × e−γ TR , depicted by
the black dashed curves of Fig. 6, we observe decay rates γ

ranging from 0.8 to 1.6/s for various separations and depths.
We do not observe a clear correlation between decay rates and
separations or depth, but for these measurements separation
and depth are linked, as optimizing the coupling for a given
separation requires one to adjust the lattice depth. On the other
hand, the dependence of coupling versus the depth exhibits for
some separations several maxima. This allows one to perform
measurements for the same separation �m = 3 at two different

FIG. 6. (Color online) Ramsey-Raman interferometer contrast
versus TR in semilog scale. Red circles correspond to �m = +6
and –6 transitions at Ul = 1.8 ER , green triangles correspond to
�m = +3 transition at Ul = 1.6 ER , and blue diamonds correspond
to �m = +3 transition at Ul = 3.9 ER . Black squares correspond
to the contrast of a Ramsey-MW interferometer. All measurements
were performed at PIR =0.5 W, and at z = −2 cm. Black dashed
curves correspond to exponential decay fits to the data.
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FIG. 7. (Color online) Ramsey-Raman interferometer contrast
decay measurements and calculations versus PIR for different IR
waist-atoms distances. Measurements have been performed for
�m = +6 and –6 transitions at Ul ∼ 1.8 ER . Black squares
correspond to a IR waist-atoms distance of –2 cm, red circles +1
cm, and for the blue triangles the waist is approximately on the
atoms. Green stars correspond to a spin-echo interferometer with the
IR waist on the atoms. The green dashed line represents the plateau
at 0.4/s. The black, red, and blue curves correspond to decay rate
calculations using the model explained in Sec. V B for a waist-atoms
distance of, respectively, z = −2, + 1, and +0.2 cm and a waist of
145 μm.

depths 1.6 and 3.9 ER [33]. The decay rate at 3.9 ER is twice
bigger than at 1.6 ER .

We also performed a contrast decay study for various PIR

and IR waist positions at a given depth ∼1.8ER on the �m =
6 transition. For these measurements we used a symmetrical
Ramsey interferometer, adding two MW π pulses as for the
accordion interferometer described in Ref. [30]. This config-
uration makes the interferometer insensitive to the IR differ-
ential light-shift inhomogeneities, such that the ALS laser is
no longer necessary. We checked that the two interferometers
(symmetrical or usual Ramsey-Raman with ALS) are equiva-
lent, observing the same contrast behavior for PIR = 0.5 W.

In Fig. 7 are summarized all the extracted decay rates plotted
versus the IR power. Though the contrast decays were found for
some measurements to deviate from pure exponential decays
(especially at small IR power and for the waist closer to the
atoms), we chose to quantify the loss of contrast by the rate
obtained from an exponential decay fit in order to compare the
results with calculations explained in the forthcoming section.
We observe that the decay rates increase with the PIR and with
the distance between the IR waist and the atoms. Remarkably,
the decay rates extrapolated at PIR = 0 W are not null but reach
similar values of about 0.4 /s for different positions.

As a complementary analysis, we measure the decay
rates of a completely symmetric interferometer, that not
only exchanges internal but also external states during the
interferometer. This is realized using a spin-echo sequence [34]
with a Raman π pulse inserted in the middle of the free
evolution time of a Ramsey-Raman interferometer. This
interferometer configuration is no longer sensitive to the Bloch

frequency and thus to the difference in the frequency between
the Raman lasers. A phase shift can be applied between the
two last pulses, enabling us to scan the phase and measure the
contrast. We observe for this interferometer decay rates that
are independent from the IR power: a plateau equal to 0.4/s,
depicted by the green stars of Fig. 7. This confirms that the
(partially) symmetric Ramsey-Raman interferometer suffers
from an additional source of contrast loss, independent not
only of the IR power but more generally of any inhomogeneity
in the trapping potential.

B. Dephasing inhomogeneity

Different processes can lead to such contrast decays: deco-
herence or dephasing inhomogeneities. Most decoherence pro-
cesses, such as Landau-Zener tunneling, parametrical heating,
and spontaneous emission due to the trapping lasers, are com-
mon with the MW Ramsey interferometer. Spontaneous emis-
sion from the Raman lasers leads to a negligible loss of contrast
of 0.3% and is independent from TR . Thus these effects cannot
explain the contrast decay of the Ramsey-Raman interferom-
eter. We examine now possible sources of dephasing inhomo-
geneities, due to longitudinal or transverse confinement.

1. Longitudinal effects

The atoms being distributed along 4000 wells due to the
initial cloud size, any force gradient along this cloud would
cause a spread of the Bloch frequencies. The effect of the
gravity gradient of about 3 × 10−7 g/m is clearly negligible.
The effect of the IR laser is calculated to be a 15-mHz/cm
displacement with respect to the laser waist for PIR = 0.5 W.
The spread over the 1-mm cloud is thus 1.5 mHz and induced
a negligible contribution to the contrast decay rate. The lattice
beam waist being much larger (∼1 mm), similar effects are
even weaker.

2. Transverse effects

For PIR = 0.5 W, the depth of the IR trap is around 1.6 μK,
when the atom’s temperature at the end of the molasses phase
is around 2 μK. The atoms will thus occupy all possible
transverse states. When displacing the atoms from lattice site to
lattice site, the shape of the potential changes and so does the
energy of these transverse levels, from a different amount for
each level. In the following, we will make the assumption that
during the Raman pulses, atoms do not change of transverse
state number n. The atom displacement being much smaller
than the Rayleigh length, the initial n state and final n′ are
nearly orthogonal if n �= n′.

To calculate how the different energy levels are shifted,
we consider the Gaussian shape of the potential and follow a
semiclassical approach. We calculate the density of states and
the number of states having an energy lower than a given value
E, g(E) and N (E), using equations from [35,36],

g(E) =
(

ma

2π�2

)n/2 ∫
UIR(r)<E

[E − UIR(r)]n/2−1

�(n/2)
drn, (5)

N (E) = πn/2

hn�(1 + n/2)

∫
UIR(r)<E

{2ma[E−UIR(r)]} n
2 drn,

(6)
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where �(x) is the Riemann gamma function and n the number
of dimensions of the integral. g(E) and N (E) are linked by
the relation

N (E) =
∫ E

−UIR

g(ε)dε. (7)

Considering the problem as two dimensional, the equations
are

g(E) = ma

2π�2

∫∫
UIR(r)<E

dr2 = ma

�2

∫
UIR(r)<E

rdr. (8)

The condition UIR(r) < E is equivalent to

r <

√
−wIR(z)2

2
ln

(
E

U0(z)

)
, (9)

where U0(z) corresponds to the IR depth at the center of
the beam. The quantities g(E,z) and N (E,z) are calculable
analytically:

g(E,z) = −wIR(z)2

4

ma

�2
ln

(
E

U0(z)

)
, (10)

N (E,z) = maw
2
IR(z)

4�2

[
E − U0(z) − E ln

(
E

U0(z)

)]
, (11)

and E varies between U0(z) and 0.
The total number of transverse states Ntot is given by

N (0,z). For PIR = 0.5 W, Ntot ∼ 2 × 106, which validates
the semiclassical approach. We numerically invert N (E,z) in
order to deduce E(N,z). Calculating E(N,z) and E(N,z +
�mλl/2), we can deduce the energy shift of each level
�E(N,z,�m).

Having only in between 1 and 10 atoms per lattice site, the
atomic density is too small for thermalization to play a role.
We thus use a Boltzmann distribution fB with a temperature
Tat = 2 μK, truncated at E = 0:

fB(E) = exp

(−E − U0(z)

kBTat

)
. (12)

The mean energy shift is given by

�E(z,�m) = A

∫ Ntot

0
�E(N,z,�m)fB (E(N,z))dN, (13)

where A is a normalization constant: A−1 =∫ Ntot

0 fB(E(N,z))dN . For z ∼ 2 cm, PIR = 0.5 W and
�m = 6, we find �E ∼ h× 153 mHz. The standard deviation
of the energy shift is given by σ�E(z,�m), where

σ 2
�E(z,�m) = A

∫ Ntot

0
[�E(N,z,�m) − �E(z,�m)]2

× fB(E(N,z))dN. (14)

Using the same parameters, we find σ�E ∼ h× 122 mHz,
comparable to the mean energy shift, which indicates a rather
large dispersion. We then simulate the interferometer fringe
pattern by averaging the transition probability over the energy
distribution �E(N ) for various free precession times TR , laser
power PIR, and waist-atoms distance z. We extract from the
calculation of the contrast versus the free evolution time a
decay rate by fitting the calculated data with an exponential

decay law. We determine the decay rates at three different
positions: z = –2, +1, and 0.2 cm. We add to these decay
rates a constant offset of 0.4/s, corresponding to the observed
plateau of Fig. 7. For comparison with experimental data, we
plot these calculated decay rates on Fig. 7 as black, red, and
blue curves. We find a fair agreement with our measurements,
which indicates that the dephasing due to the transverse
spread of the dipole force can contribute significantly to
the contrast loss when the atoms are not located at the IR
waist.

C. Lattice laser effect

Our calculations do not take into account the effect of the
lattice laser, when the measurements suggest that increasing
the lattice depth increases contrast loss (cf. Fig. 6). We take
advantage of the weak dependence of the Raman coupling on
the �m = 6 transition around its optimal value at 1.8 ER

to perform contrast decay measurements for different lattice
depths in the range 1.2–2.2 ER , keeping the IR laser power
constant at 1 W. Figure 8 shows that the decay rates linearly
increase with the depth in this range, though with slopes that
are significantly different for the two kinds of interferometers.
In the case of the Ramsey-Raman interferometer, the rate
(displayed as red circles) varies by a factor of 2 in the range of
depth explored here. For variations of the depth of about ±10%
around 1.8 ER , which correspond to our estimate of the typical
fluctuations during the measurements of Fig. 7, the decay
rate can change by up to 0.3/s. This explains to a significant
extent the dispersion we observe on these measurements for
a given set of parameters. Moreover, the blue triangles of
Fig. 8 indicate that the additional decay that constitutes the
plateau is linked to the lattice depth, though we currently have
no explanation for this effect. It is also consistent with the
dispersion of the green stars on Fig. 7.

FIG. 8. (Color online) Interferometer contrast decay versus Ul .
Red circles: Ramsey-Raman interferometer, blue triangles: spin-
echo interferometer. Measurements were performed for �m = +6
transition, for PIR = 1 W, the IR waist on the atoms. Red and blue
curves are linear fits to the data.
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Our calculation does not allow a simple way to include the
effect of the lattice laser, as the total potential is not separable
and transverse and longitudinal directions are coupled.

VI. CONCLUSION

We have presented here a measurement of the Bloch
frequency using a Ramsey-Raman interferometer scheme with
atoms trapped in a 1D vertical lattice. Our apparatus allows
for the measurement of the Bloch frequency with a relative
sensitivity of 3.9 × 10−6 at 1 s for an IR waist 2 cm away
from the atoms. Even though this sensitivity is not competitive
with free-falling gravimeters reaching relative sensitivities of
∼5 × 10−9 at 1 s [3,4], this experiment is at the state of the
art when compared with another trapped configurations [25]
where a relative sensitivity of 1.5 × 10−6 at 1 s was reached.
Our sensitivity is limited on one hand by vibration noise
and trapping laser noise, which could both be reduced using
antivibration platforms, and on the other hand by the detection
noise.

A significant influence of the IR laser power onto the value
of νB has been observed, which indicates an offset of the atom

position with respect to the laser waist. We could reduce this
effect by moving the waist to the atom’s position.

Finally, a study of the contrast decay as a function of the IR
laser parameters was performed. A simple model allows us to
quantitatively reproduce the measurements, provided that an
additional source of loss is added, which we attribute to the
lattice laser.
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