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Abstract
We study theoretically and experimentally the influence of temporally shaping the light pulses in an
atom interferometer, with a focus on the phase response of the interferometer.We show that smooth
light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and
thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving
the interferometer. The light pulse shape is also shown tomodify the scale factor of the interferometer,
which has to be taken into account in the evaluation of its accuracy budget.We discuss the trade-offs
to operate when choosing a particular pulse shape, by taking into account phase noise rejection,
velocity selectivity, and applicability to largemomentum transfer atom interferometry.

1. Introduction

Precisionmeasurements rely on a careful analysis of the relevant noise sources and systematic effects. In the field
of inertial sensors, instruments based on light-pulse atom interferometry allowmeasurements of gravito-inertial
effects such as linear accelerations [1–3], rotations [4–6], Earth gravityfield [7, 8] and of its gradient [9] or
curvature [10]. They have also been used for precise determinations of fundamental constants [11, 12] and tests
of theweak equivalence principle (see, e.g. [13–21]), and have been proposed for gravitational wave detection in
the sub-10 Hz frequency band [22, 23]. These sensorsmost often use two counter-propagating laser beams to
realize the beam splitters andmirrors for the atomicwaves associated to two differentmomentum states. The
stability and accuracy of the sensors critically depends on the control of the intensity and of the relative phase of
these two lasers, both spatially and temporally. For example, the spatial profile of the relative laser phase is the
main source of systematic effects inmost accurate atomic gravimeters [7, 8], and is an important concern in the
design of future gravitational wave detectors based on atom interferometers (AIs) [24].

The temporal shape of the light-pulses (i.e. of the laser intensity)driving anAIdetermines the efficiency of the
beam splitters andmirrors acting on the twomomentumstates of theAI.More precisely, for velocity selective
transitions, the transfer efficiency of the pulse is given by the convolution between the velocity distribution of the
atoms and the Fourier transformof thepulse shape [25]. Efficient transitions (i.e. high contrasts) can thus be
achieved by temporally shaping the pulse intensity andphase, as shown in [26, 27].Moreover,whendriving an
interferometerwith largemomentum transfer (LMT) atomoptics, it has been shown that pulses ofGaussian
temporal shape significantly improve the transfer efficiencywith respect to rectangular pulse shapes [28, 29].
Adiabatic rapid passage (see, e.g. [30])was also considered inLMT interferometry, butwas shown to require
stringent control of the laser phase noise compared topulse shaping [31].

In addition to the influence on the contrast of the interferometer, the temporal shape of the pulse is expected
to affect the (frequency-dependent) response of the interferometer to phase fluctuations, which is an important
source of instability in AIs. Furthermore, as the phase response of the AI ismodified, pulse shaping should
introduce a correction to the scale factor of the interferometer, which has to be accounted for in the accuracy
budget of atomic sensors.
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In this article, we study the phase response of anAI driven by arbitrary temporal light pulse shapes. Ourmain
interest is to highlight the strong difference in the phase response of anAI driven by rectangular and smooth
pulse shapes.We concentrate on a fewpulse shapes that are representative for the optimization of the following
criteria: rejection of high-frequency laser phase (or frequency)noise, velocity selectivity of the pulse, and
applicability to LMT interferometry. Experimentally, we focus on the comparison of the phase sensitivity
function (section 2) and of the rejection of laser phase noise (section 3) between the twomostly employed
rectangular andGaussian pulses, in order to validate our calculations. In addition to the rectangular and
Gaussian pulses, we discuss two other representative pulse shapes: (i) theGSinc pulse, which is the product
of aGaussian and a cardinal sine, and (ii) theGaussian-Flat pulse (labeledGFlat thereafter)which is aflat pulse
withGaussian edges. For completeness of the presentation, we study in section 4 the influence of pulse shaping
on the frequency selectivity, in linewith previousworks [26, 27]. Finally, we present in section 5 a correction to
the interferometer scale factor associatedwith pulse shaping, and discuss its relevance for different precision
measurements involving AI based sensors.We conclude our paperwith a discussion of the trade-offs to operate
when selecting a given pulse shape for a particular application (section 6).

2. Sensitivity functionwith arbitrary pulse shape

2.1. Theory
The sensitivity functionwasfirst introduced to study the degradation of an atomic clock due to the phase noise
of the local oscillator [32], but the idea ismore general. It describes the response of an atom interferometer phase
to infinitesimal changes of external parameters.We investigate here the response of the AI phase dF to an
instantaneous variation df ( )t of the relative phase between the two lasers driving the AI, occurring at a given
time t. As in previous works [33], we define the sensitivity function as
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where W( )t is the Rabi frequency seen by the atoms during the interferometric sequence [34], with W =( )t 0 for
<t t0. The overall shape of ( )g t depends on the AI configuration, i.e. on the number of light-pulses. In this

work, ourmain interest lies in the effect of temporal pulse shape. Therefore, we consider without loss of
generality, a two-light pulse interferometer, i.e. a Ramsey configuration. For a Ramsey sequence with two
rectangular p 2 pulses characterized by a Rabi frequency WR and duration τ separated by Ramsey timeT, the
sensitivity function reads
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where the origin of the time axis is (arbitrarily) alignedwith the center of the first light pulse.
We show ( )g t as a dashed line infigure 1(a). In the limit of infinitely short laser pulses, ( )g t is box-like, as the

interferometer copies the phase jitter of the interrogation laser ( =( )g t 1) between the two laser pulses.
We show infigure 1(b) a zoomof of the rising slope (i.e. during the first p 2 pulse) of ( )g t for a sequence

based on rectangular pulses (blue dashed line) andGaussian pulses (red dashed–dotted line).We have chosen to
use the same peak intensity in our calculation (and our experiments later), and adjust the pulse duration to
obtain the desired Rabi angle. This ismotivated by the fact that the peak laser intensity depends on the total
power available, which is often the limiting experimental factor. Themain difference in the sensitivity function
takes place around t= -t 2, where τ denotes the duration of the rectangular p 2 pulse. The sudden intensity
variation of a rectangular pulse gives rise to a fast rise in the sensitivity function, and a discontinuity in its
derivative. This fast rise is in contrast with the gradual change induced by a smooth intensity variation of a
Gaussian pulse. Such a difference results in different spectral behaviors of ( )g t for the two pulse shapes, as we
will discuss in section 3.

2.2.Measurement of the sensitivity function for rectangular andGaussian pulses
Wemeasure ( )g t using the experimental setup described in [6, 35]. Briefly speaking, we use an atomic fountain
to prepare cold cesium-133 atoms. At each experimental cycle, about 106 atoms are prepared into the
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magnetically insensitive = = ñ∣F m4, 0F ground state and launched into the interferometric zone. The
Ramsey pulses are realized via stimulated Raman transitions, using a doubly seeded tapered amplifier [36]. The
seeding external cavity diode lasers have afixed phase relation bymeans of an optical phase locked loop (PLL)
close to theCs clock transition frequency. Both lasers are about 500MHz red-detuned from the excited state of
the D2 line to reduce spontaneous emissions during the Raman transition. At the end of the interferometer
sequence, the population in each of the hyperfine ground statesN3 andN4 is detected byfluorescence, and the
transition probability is obtained by = +( )P N N N4 4 3 4 .

The laser phase jump is implemented by applying aDCvoltageVoffset to the feedback port in the PLL through
a voltage controlled switch, which is triggered at different times. See figure 2 for the control schematics. The
voltage offset corresponds to a phase jump of about 340mrad. The switch has a delay of m0.3 s, whereas the PLL
has a locking bandwidth of 1.6MHz. Thus, the total delay in the phase jump implementation is under m1 s,
much shorter than the duration of the rectangular p 2 pulse t m= 21 s (peak Rabi
frequency pW =2 12 kHzR ).

We shape the Raman light pulses by attenuating the radio-frequency signal driving the acousto-optic
modulator (AOM), which controls the intensity of the Raman pulses shone on the atoms. A commercial direct
digital synthesizer (Rigol 4620) is used to generate a waveform that takes into account the desiredwaveform (e.g.
aGaussian pulse) aswell as the response of the chain of a voltage-controlled attenuator followed by anRF
amplifier. This response is calibrated against amonitor photodiode in order to ensure that the intensity of the
Raman pulses follows the desiredwaveform.

Figure 1. Sensitivity function ( )g t of a Ramsey sequence. (a)Complete ( )g t for two rectangular p 2 pulses separated by Ramsey time
T. (b)Zoomon the rising slope for rectangular (blue) andGaussian (red) pulses.We compare calculations (lines) according to
equation (3) and ourmeasurements (points). Errorbars on themeasurements are smaller than the plot symbol.

Figure 2. Schematic of the phase jump control. The beat note of two lasers (Raman 1 and 2) is detected on a fast photodiode (PD) and
phase locked onto a reference signal at theCs ground-state hyperfine splitting frequency of about 9.192GHz. Phase jumps are
implemented by sending aDC voltage Voffset to the feedback port of the PLL through a voltage controlled switch. By appropriately
attenuating the radio-frequency signal driving theAOM, arbitrary temporal profiles of laser pulses can be sent onto the atoms.

3
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With a Ramsey time ofT=20ms, the phase noise of the clock sequence is about 30mrad Hz -1 2, which
enables amid-fringe operation of the interferometer.We further stabilize the phase offset of the interferometer
by applying amid-fringe lock [37], which converts themeasurement of the atomic transition probability directly
to the interferometric phase. This technique is immune to variations in the probability offset and reduces the
sensitivity to the noise in the fringe amplitude, thereby allowing a robustmeasurement of the interferometric
phase.

To compare the experimental data with the calculations, we offset themeasured phase shift to 0 and
normalize by 340mrad to obtain the experimental ( )g t .We display ourmeasurements infigure 1(a) for the
complete ( )g t with rectangular pulses [33]. Figure 1(b) shows the rising slope for rectangular (circles) and
Gaussian (rectangulars) pulses. The relative phase uncertainty of eachmeasurement is below 4mrad, i.e. smaller
than the plot symbol. The time axis for the experimental data is shifted by m0.22 s to account for the delay
through the switch and the PLL.Ourmeasurements confirm the temporal formof ( )g t given by equation (3),
andwell resolve the differences between the two pulse shapes implemented.

3. Frequency response of the AI to pulse shaping

3.1. Calculations
The impact of the sensitivity function on the interferometer phase noise can bemore easily understood in
Fourier space. According to [33, 35], the variance of the interferometric phase noise can be expressed as

òs
w
p

w w= fF

¥
∣ ( )∣ ( ) ( )H S

d

2
, 42

0

2

where the transfer function w w w=( ) ∣ ( )∣H G , w( )G is the Fourier transformof the sensitivity function ( )g t ,
and wf ( )S is the power spectral density of the Raman laser phase noise.

We plot infigure 3 the transfer function p∣ ( )∣H f2 2 as a function of frequency f for a 3 light pulse sequence
(p p p– –2 2) for various pulse shapes: rectangular (blue dashed line), Gaussian (red dashed–dotted line), GSinc
(purple dotted line), andGFlat (green). The peak Rabi frequency is the same for all pulse shapes. The calculation
is analytic for rectangular pulse and numerical for the other pulse shapes. TheGaussian pulse is truncated at 6
standard deviations on both sides. The definition of theGSinc andGFlat pulse shapes is given in appendix A.

Independent of the pulse shapes used, the transfer function p∣ ( )∣H f2 2 is oscillatorywith arches spanning
T1 , i.e. 50Hz for our choice ofT=20ms. This is illustrated at low frequency up to 3kHz, beyondwhichwe

plot themean value over 3kHz in order to illustrate the general frequency dependence of the envelope.
The difference between the four pulse shapes liesmainly in the low-pass cut-off occurring near the peak Rabi

frequency (here 12kHz). For a rectangular pulse, the high-frequency noise isfiltered outwith a f1 2 scaling of
H2, whereas the use of smoother pulses warrants a significantly faster decay, and therefore a better suppression of
high-frequency noise. In particular, Gaussian pulses give rise to the strongest high-frequency cut-off inH2. The

Figure 3.Transfer function p∣ ( )∣H f2 2 for a 3 pulse AIwithT=20msdriven by different pulse shapes: rectangular (blue dashed
line), Gaussian (red dashed–dotted line), GSinc (purple dotted line), andGFlat (green solid line). The peak Rabi frequency is the same
for all pulse shapes.
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GSinc pulse gives a similar behavior as theGaussian pulse around the peak Rabi frequency, before following a
f1 4 scaling at high frequency. The frequency at which the slope changes is determined by thewidth of the

Gaussian relative to the length of the sine cardinal (the smaller thewidth of theGaussian, the further the change
of slope). TheGFlat pulse gives rise to f1 6 scaling inH2 beyond the peak Rabi frequency.

To understand the asymptotic behavior of the transfer function qualitatively, we performed calculations
with various pulse shapes, including temporally asymmetric pulses, and using different shapes for the p 2 andπ
pulses.We found that the high frequency behavior isfirst determined by the steepness of ( )g t at the beginning of
thefirst p 2 and the end of the last p 2 pulses. Even faster decay of the transfer function is then related to the
steepness of ( )g t at the end of thefirst p 2 pulse, the beginning of the last p 2 pulse, and theπ pulse. Further
details on this qualitative interpretation in linewith equation (2) can be found in appendix B.

3.2.Measurements of the transfer function
Wemeasure the transfer function w( )H for different pulse shapes by realizing a Ramsey sequence (p p–2 2)
using co-propagating Raman transitions, with a Ramsey time of =T 20 ms, and aRabi frequency of 8.3kHz.
Tomeasure the transfer function, we follow the approach of [33]: we apply a sinusoidal phasemodulation of
angular frequencyω starting at the first Raman pulse and lasting during thewhole interferometer, andmeasure
its effect on the phase of the atom interferometer.We perform twomeasurements corresponding to two
quadratures of the phasemodulation, which are added quadratically in order to extract the value of w( )H . The
maximumof w( )H corresponds to a phase shift of 1.05 rad. The relative uncertainty of the phasemeasurements
are at the level of 1%. To show the asymptotic behavior of w( )H , wemeasure the position of themaxima of the
transfer function over several decades. Themeasurements are shown infigure 4(a) , together with the calculation
presented in the previous subsection, without free parameters. The experimental data and the calculation agree
well within the uncertainties of the experimental parameters (~10% on the Rabi frequency and~10% on the
position of themaxima at frequencies above 10 kHz). In particular, themeasurements resolve the difference in
asymptotic behavior of the three pulse shapes.We also observe that the positions of the zeros of the transfer
function are indistinguishable for all pulse shapes at frequencies lower than the Rabi frequency, as illustrated
around 8.3 kHz in panel (b).

3.3. Experimental demonstration of noise rejection
Todemonstrate experimentally the robustness of smooth pulses against high-frequency laser phase noise
(compared to rectangular pulses), we realize Ramsey sequences (p p–2 2)with additional relative phase noise
in the Raman lasers. The difference between the Ramsey sequence and the 3-pulse sequence (p p p– –2 2) only
lies in the low frequency behavior of the transfer function (at ~f T1 ), while the high frequency behavior (for
fon the order of and higher than the Rabi frequency) is the same for both sequences.We concentrate on the
comparison betweenGaussian and rectangular pulse shapes. Adding phase noise is achieved by sending a noisy
signal (instead of a switchableDCvoltage as illustrated infigure 2) into the feedback port of the PLL.We generate
awhite noise using a commercial synthesizer, filtered into the 40–300kHz band pass and amplified using a
commercial low-noise amplifier. By varying the amplifer gain, we control the additional phase noise of the
Raman lasers, giving rise to the power spectral density shown infigure 5(a). For each noise level, wemeasure the
short-termphase stability of a Ramsey sequence (T=20ms)with rectangular (circles) andGaussian

Figure 4.Transfer functions for a Ramsey sequence p p–2 2 with a Rabi frequency of 8.3kHz, and aRamsay time of 20ms. Three
pulse shapes are considered: rectangular (total duration of 30 μs), Gaussian, andGFlat. (a)Asymptotic behavior of w( )H , where the
experimental and theoretic data are themaxima of the arches. (b)A zoomaround the Rabi frequency. The errorbars correspond to
statistical errors at the 68% confidence interval. The dashed horizontal line in (a) corresponds to the noisefloor of ourmeasurements.
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(rectangulars) pulses, as shown infigure 5(b). In comparison, Gaussian pulses consistently rejects a significant
fraction of the additional noise.

We calculate numerically the induced phase noise according to equation (4), by numerically integrating over
the 10kHz–2.5MHz range. The contribution of frequencies out of this band is negligible. The total noise is

s s s= + Fdet
2 2 , where s = -22 mrad Hzdet

1 2 is ourmeasured detection noise. To account for the
uncertainty in the absolute phase noise level applied to the interferometer, wemultiply the phase noise PSDof
figure 5(a) by a global factor. This factor is obtain bymatching the calculation andmeasurement for upper right
point infigure 5(a), which is almost exclusively influenced by phase noise (and not detection noise). Apart from
this global factor common to both pulse shapes, there are no free parameters. The calculation followswell the
experimental data, and shows how theGaussian pulse rejects the high frequency phase noise, above the Rabi
frequency.

3.4.Discussion and applications to inertial sensors and optical clocks
The strong rejection of the relative laser phase noise by a smooth pulse (Gaussian, GSinc, GFlat) at frequencies
higher than the Rabi frequencywill help designing optical PLLs for AI experiments, as it relaxes the requirements
on the PLL bandwidth. Regarding the limitation to the sensitivity of cold atomgravimeters due to Raman laser
phase noise, we calculate the noise rejection in state of the art instruments. For thework presented in [38], we
compute a phase noise of 7.5mrad per shot (assuming aπ rectangular pulse with a duration of 15 μs), in
agreementwith themeasured short term stability. Using aGFlat pulse yields a noise of 6.1mrad, and aGaussian
pulse reduces this contribution to 5.9mrad per shot. For thework presented in [39], the rectangular pulse
corresponds to a phase noise of 1.1mrad per shot, whichwill be reduced to 0.5mrad per shotwhen usingGFlat
orGaussian pulses.

In AIs driven by Bragg diffraction, the relative phase noise between the twoBragg lasers is not a concern,
since the twomomentum states used in the two interferometer arms correspond to the same internal energy
state. However, because of propagation delay from the atoms to themirrorwhich retro-reflects the Bragg lasers,
the laser frequency noise converts into phase noise on theAI [40]. Such noise is amajor concern in long baseline
AI gradiometers, e.g. in gravitational wave detectors based onAIs [23, 41]. Smooth pulses can therefore relax the
requirements on the laser frequency noise at high frequencies (above the Rabi frequency, i.e. above typically
10–100 kHz).

We also investigate the potential interest of temporally shaping pulses to improve the stability of optical
clocks. The stability of optical clocks critically depends on the frequency stability of the interrogation laser [42],
the design of which requires careful attention [43]. In that context, we found that pulse shaping in clocks is less
interesting than inAIs. The reason is that the relevant transfer function for themeasurement of frequency
(instead of phase) is w w w=∣ ( )∣ ∣ ( )∣G H2 2 2, which scales as w-4 (for a rectangular pulse) after the cut-off given
by the pulse Rabi frequency W0. Forwhite frequency noise, the contribution of high frequencies (w > W0) is

Figure 5. (a)Power spectral density of the laser phase noise recordedwith a spectral analyzer with a resolution bandwidth of 1kHz.
The yellow line shows the spectrumwithout additional noise (gain=0 in the low-noise amplifier), whereas the purple, green and
cyan lines correspond to increasing noise levels (amplifier gain=2, 5, and 10). (b) Short-termphase stability of a Ramsey
interferometer.We overlay ourmeasurements (points)with calculations (lines) for rectangular (blue) andGaussian (red) pulses. The
errorbars correspond to statistical errors at the 68% confidence interval.
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thus 1/3 of that of low frequencies (w < W0), in power of the noise. Therefore, faster decay (than w-4) of the
transfer function does not significantly impact the stability. Pulse shaping can however be used to relax the
constraints on potential spurious high frequency noise components in the clock laser, e.g. infield applications or
compact clock design [44].

4. Frequency selectivity of the pulse

We investigate in this section the frequency selectivity of the pulse shapes studied in this article, in line with
previousworks [26, 27].Wemeasure the influence of the pulse shape on the frequency selectivity of the pulse, by
varying the Raman laser frequency difference andmeasuring the transition probability. The results are presented
infigures 6(a) and (b) for a p 2 pulse and aπ pulse correspondingly, for the four pulse shapes investigated in the
previous section: rectangular, Gaussian, GFlat, andGSinc.

TheGSinc pulse is technicallymore difficult to implement than the other pulse shapes as it requires the
introduction of phase jumps ofπ at the points in time corresponding to the zeros of the power envelope in order
to reverse the sign of the effective Rabi frequency (see figure A2 in the appendix for the time trace of the Sinc
pulse). Theπ phase jumps are applied on the relative phase between the twoRaman lasers through the phase lock
loop, in a similar way as for themeasurement of the sensitivity function presented in section 2.2. For the data
presented in panels (a) and (b), theGSinc is the product of aGaussian and of a Sinc functionwith 5 zeros on each
side of themaximum (see appendix A). The total duration of the pulse is 300 μs, and the peak power is the same
as for all pulse shapes. The standard deviation of theGaussianmultiplying the Sinc function is 1/6 of the total
duration (i.e. 50 μs).

The experimental data are in agreementwith the theoretical expectation, shown infigure 7, that the
spectroscopy is the Fourier transformof the pulse shape. In particular, the side lobes associated to the
rectangular pulse are absent in theGFlat, Gaussian, andGSinc pulses. Themeasurements also resolve the larger
width of theGFlat pulse compared to theGaussian pulse. Finally, theGSinc pulse clearly shows sharper edges
than the other pulse shapes. The asymmetry in theGSinc spectroscopy is not fully understood: we think that it is

Figure 6. Spectroscopy of different pulse shapes. (a) p 2 pulse. (b)π pulse. In both cases, the duration of the rectangular pulse is 30 μs.
The peak power is the same for all pulse shapes in (a), and the same for all pulse shapes in (b). In (c), the total duration of each pulse is

m300 s and the peak power is varied to perform a p 2 pulse. In (d), the peak power is kept constant and the pulse duration is kept
constant to 150 μs. Themaximummeasured probabilities for the p 2 andπ pulse are different from the ideal values of, respectively,
0.5 and 1 because of experimental imperfections (inhomogeneous Rabi frequency and imperfect normalization of the transition
probability).
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due to a nonlinearity in the acousto-opticmodulator which is driven for a longer duration for theGSinc pulse
(300 μs) compared to the other pulse shapes (the spectroscopywere less asymetric when using shorter pulses).

We investigate experimentally in further details the influence of the number of zeros in the Sinc pulse on the
sharpness of the spectroscopy. The results are shown infigures 6(c) and (d). Panel (c) shows themeasurements
for a p 2 pulsewhere the total duration of all pulses is kept constant to 300 μs, and the peak power is varied.
Panel (d) showsmeasurements were the peak power is kept constant and the pulse duration is kept constant to
150 μs.

In conclusion, the Sinc andGSinc pulses exhibit an almost flat response to detuning, and a sharper decay
than the other pulse shapes. They therefore optimizes the velocity acceptance of the pulse, at the expense ofmore
complexity in the implementation.

5. Scale factor of the interferometer

Thefinite duration of the light pulses influences the scale factor of atom interferometers, i.e. their response to
inertial effects. The interferometer phaseΦ is related to the relative laser phase f ( )t through the sensitivity

function as òF = f( )g t td
t

d

d
.Without loss of generality, we look at the example of aMach–Zehnder-like

interferometer sequence, where there are three light pulses (p 2–π–p 2 pulses) separated byT between each
consecutive pulse pairs. See figure 8 for an illustration. Thefinite duration τ of the p 2 (rectangular) pulses
modifies the scale factor of an atomaccelerometer from F = k T aeff

2 to F = arec , with  = +(k Trec eff

t t+ -
p( )( )) T2 4 3

2
[45]2. For experiments where the inertial effect is inferred froma phasemeasurement,

such a change of scale factor has to be taken into account when evaluating the accuracy budget.
Furthermore, bymodifying the temporal pulse shape, the scale factor  differs from that of rectangular

pulses rec. Since t T is typically on the order of -10 4 or smaller, the relative correction  



- rec

rec
scales linearly

with t T , and can be evaluated numerically with the appropriate formof ( )g t . For example, forT=100ms
and a peak Rabi frequency of 12.5kHz (t m= 10 s rectangular pulse), this correction amounts to ´ -9.4 10 6

for a sequence ofGaussian pulses, ´ -6.8 10 6 forGSinc pulses and ´ -4.2 10 7 forGFlat pulses.

Figure 7.Calculations of the line shapes. The panels correspond to themeasurement shown in figure 6. The parameters are fixed to the
valuesmeasured in the experiment (pulse duration, peak Rabi frequency). Note that themaximal probability of transition in this ideal
calculation is 0.5 for the p 2 pulses and 1 for theπ pulses.

2
The correction in themain text corresponds to equation (2.45) on page 38withTdefined as the time elapsed between the center of adjacent

pulses.
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6.Discussion

We summarize the properties of the four pulse shapes studied in this article in table 1.We report (i) the velocity
selectivity of a p 2 pulse (defined as the bandwidth in units of the peak Rabi frequency, see appendix A), (ii) the
suitability for LMT interferometry, (iii) the rejection of phase noise at high frequencies (according to section 3),
and (iv) the ease of implementation. Themain focus of this article was on the phase noise rejection. Details on
the velocity selectivity are given in appendix A.

Regarding LMTapplications [28, 29], we extended the numerical calculations performed in [46] to
implement arbitrary pulse shapes, and computed the Rabi oscillations for k10 LMT atomoptics.We found
that all smooth pulse shapes (Gaussian, GSinc, GFlat) support LMTbeam splitters for pulse durations of few
inverse peak Rabi frequency, in contrast to the rectangular pulse.

Regarding the ease of implementation, the rectangular pulse is themost simple as it only requires a digital
signal to drive, typically, a voltage controlled oscillator. The implementation of theGaussian or theGFlat pulse
shapes require awaveform generator and can be realizedwith relative ease. TheGSinc pulse (characterized by
negative values in the Rabi frequency) can be implemented experimentally by settingπ phase shifts at the points
of zero crossing. It requires awaveform generator in combinationwith a sufficiently fast phasemodulation, and
is thusmore challenging to implement.

Disregarding the implementation of the pulse shapes, theGSinc pulse is suited for all applications, as it
presents the largest velocity acceptance, can efficiently performLMT transitions, and rejects high frequency laser
phase noise. In comparison, although theGFlat pulse has a reduced velocity acceptance, it fulfills all other
criteria, and can therefore be considered as a good compromise for various applications.

As afinal note in this discussion,we remark that the interest of using an optical cavity to drive the light pulses in
anAI has been raised recently [46, 47]. The power enhancement at the cavity resonance requires sufficientfinesse
 , whichmodifies the intensity build up time t = L c2cav , and therefore the temporal shape of the pulse. The
effect on the pulse shapewill beparticularly important in long-baseline gradiometers usingAIs in an optical cavity,
as planned in [41], where tcav maybeof theorder of thepulse duration (i.e. fewμs).We computed the sensitivity
function for such a cavity-like pulse shape (see appendixC), which shows a f1 4 high-frequencybehavior.

7. Conclusion

We investigated the influence of temporally shaping the light pulses on the response of anAI. Themain focus of
our studywas on themodification of the AI sensitivity function to phase, at frequencies of the order of and
higher than the effective Rabi frequency.We demonstrated that smooth pulse shapes allow for a significant

Figure 8. Illustration of the three-pulse interferometer sequence for rectangular andGaussian pulse shapes. The pulse separationT
denotes the time elapsed between the center of two consecutive light pulses, and τ is the duration of the p 2 rectangular pulse.

Table 1. Summary of the properties of the pulse shapes studied in this article. The bandwidth is defined as the two-
photon detuning (in units of the peakRabi frequency)where the transition probability falls to 50%and 95%of its
maximumvalue. The phase noise rejection (weak/strong) is defined according to the decay of the transfer
function above the Rabi frequency, as shown infigure 3.

Pulse Bandwidth (50% ∣ 95%) LMT Noise rejection Ease of implementation

Rectangular 1.73 ∣ 0.49 Not suitable Weak, f1 2 Easiest

Gaussian 1.31 ∣ 0.36 Suitable Strong Medium

GSinc 1.73 ∣ 1.01 Suitable Strong Difficult

GFlat 1.65 ∣ 0.47 Suitable f1 6 Medium
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rejection of high frequency phasefluctuations compared to rectangular pulses.We also presented the
modification of the scale factor of the AI due to pulse shaping, which has to be considered in the evaluation of
systematic effects of AI sensors.Wefinally discussed the trade-offs between the different representative pulse
shapes considered in the article. One important conclusion of our study is that the rejection of high frequency
phasefluctuations can be achievedwith aminor effect on the velocity acceptance of the pulse by employing, for
example, aGFlat pulse shape, which can also efficiently performLMTbeam splitters.

In the context of LMT interferometry, future work should study themodifications of the sensitivity function
for AIs driven by LMTbeam splitters (see [48] for a preliminary analysis) and the influence on the rejection of the
laser frequency noise, as has been done, for example, for laser intensity noise induced light shift [49].
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AppendixA.Definition of the pulse shapes

Wedefine the time-dependent Rabi frequency as

W = W( ) ( ) ( )t f t , A10

with W0 the peak Rabi frequency. The pulses are defined by the function ( )f t withmaximal amplitude 1.
TheGSinc pulse is defined as

p= ´ a
-

( ) ( ) ( )f t t tsinc e . A2
t

t1

1
2

2

2
1
2

With =( ) ( )x x xsinc sin , t1 the time of the first zero of the sinc, at1 the standard deviation of theGaussian
modulation. The total pulse duration is defined as nt2 1. Infigure 3 the parameters of theGSinc pulse are n=6
and a = 2.4.

TheGFlat pulse is even and defined as

=
<

>
- -

⎪

⎪

⎧
⎨
⎩

( ) ( )( )f t
t t

t t

1 if ,

e if ,
A3t t

r t

0

1
2

0

0
2

2
0
2

where t0 is the half length of the plateau, and rt0 is the standard deviation of theGaussian. The total pulse
duration is defined as +t nrt2 20 0. In themain text, we consider GFlat pulses with r=1 and n=6.

The pulse shapes are illustrated infigure A1.
In section 4we study experimentally several Sinc pulse shapes with different number of zeros on each side of

themaximum.As an illustration of implementation of such pulses, a time trace of a Sinc pulsewith 8 zeros on
each side of themaximum is shown infigure A2.

Figure A1. Illustration of the different pulse shapes considered in this article: rectangular (plain blue line), Gaussian (green dashed),
GFlat (violet dotted–dashed), GSinc (dotted red). Note that the peakRabi frequency is kept constant for all pulse shapes. For ease of
illustration, we have cropped theGSinc pulse to its center part in themain panel. The inset shows the full GSinc pulse shape. The time
axis is in units of the inverse Rabi frequency.
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Appendix B.Details on the qualitative study of the influence of the pulse shape on the
transfer function

The high frequency behavior of the transfer function can be qualitatively understood from the pulse shape
according to the position of the pulses in the interferometric sequence.We recall that the transfer function is

w w w=∣ ( )∣ ∣ ( )∣H G2 2 2, where w( )G is the Fourier transformof ( )g t , which is itself the sine of the integral of the

time-dependent Rabi frequency, see equation (2).We define ò= W
-¥

( ) ( )I t u ud
t

.

Our first observation, illustrated infigure B1(left), is that a decay faster than f1 2 can be obtained by
smoothing the beginning of thefirst p 2 and the end of the last p 2 pulses. At these points in time, where

Figure A2.Time trace of the sinc pulse with 8 zeros on each side of themaximum. The blue line shows the voltage recorded by the
photodiodewhichmonitors the power of the Ramanbeam. The green trace shows the digital signal which triggers phase jumps ofπ
applied to the phase lock loop. The inset is a zoomon the zeros of the power and on the phase jumps.

Figure B1. Illustration of the behavior of p∣ ( )∣H f2 2 at high frequency using different sequences of pulses. The calculations are for a 3
pulse interferometer with 12kHz peakRabi frequency andT=20ms, using different pulse shapes. The top panel shows the
considered pulse sequences. Left: evolution from the f1 2 scaling to the f1 4 scaling, which occurs when smoothing the outer parts of
the interferometer pulses, i.e. the beginning of thefirst p 2 pulse and the end of the last p 2 pulse. Right: evolution from the f1 4

scaling to even faster decays when smoothing the inner parts of the interferometer pulses.
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( )I t 0, the sensitivity function can be Taylor-expanded as +( ) ( ) ( ( ) )g t I t O I t 3 . A rectangular pulse
results in a triangular formof ( )I t , giving rise to a f1 2 dependence in p∣ ( )∣G f2 and hence to a f1 2 dependence
in p∣ ( )∣H f2 2. In contrast, smooth pulses are characterized by a slower growth of ( )I t and hence a faster decay of

p∣ ( )∣H f2 2. This is illustrated in figure B1(left) by calculating the transfer function using half Gaussian pulses for
the p 2 pulses and a rectangularπ pulse.

Evolution from f1 4 to a faster decay is governed by the end of the first p 2 pulse, the beginning of the last
p 2 pulse, and the beginning and end of the centralπ pulse. At these positions, p( )I t 2, and the sensitivity

function can be approximated by - +( ) ( ) ( ( ))g t I t O I t1 1

2
2 4

. Here the leading order of the time-

dependence is quadratic, which explains why the influence of this part of the pulses has aweaker influence on the
high frequency behavior. The rectangularπ-pulse, for example, results in a parabolic shape of ( )I t , yielding a

f1 4 dependence of ∣ ∣H 2. Figure B1(right) illustrates the need to smooth these parts of the pulses in order to
obtain a decay faster than f1 4 in the transfer function.

AppendixC. Transfer function for an atom interferometer in an optical cavity

Wepresent in figureC1 the temporal shape (top), the velocity selectivity (middle) and the transfer function for a
pulse shape resembling the response of an optical cavity.We assumed an intensity build up time of t m= 5 scav .
Comparedwith rectangular pulses (blue), cavity pulses ismore selective to detuning but rejects better the high-
frequency laser phase noise.

FigureC1. (Top) Shape of a cavity-like pulse and (middle) selectivity to detuning for a p 2 pulse. Here t m= 5 scav .We show the
shape of a rectangular pulse for comparison. Bottom: p∣ ( )∣H f2 2 in a 3 pulse interferometer with 12kHz peakRabi frequency and
T=20ms.We showhere again the response of the rectangular andGaussian pulses for the ease of comparison.
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