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Abstract

In an optical lattice clock, neutral atoms are trapped in an optical lattice while an
ultra stable laser repeatedly probes a narrow (<1 Hz) transition. Nowadays the
optical lattice clocks can average down to a fractional stability in the 10−16 range at
1 s, with a possibility of reaching the 10−18 range for longer integration times. The
main effect limiting the stability is the sampling of the residual frequency noise of the
laser probing the narrow metrological transition. This sampling, known as the Dick
effect, arises from the cyclic operation of the clock. I will present my work at LNE-
SYRTE, going towards ultra stable lasers through transferring the stability from a
1542 nm ultra stable laser to target metrology frequencies at 698 nm (strontium) and
1062 nm (mercury) used to probe the atoms of the clocks. This involves rethinking
the construction of the frequency chain, and the establishment of the setups for
transfer of spectral purity to strontium and mercury optical lattice clocks.
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B the beat note between a laser and an optical frequency comb 77

C Gaussian beams in a cavity 79

D Vacuum chamber for the dispatching of the ultra stable cavity 81

E Vacuum chamber for the transfer of spectral purity 82



Glossary

AM Amplitude Modulation.

AOM Acousto-Optic Modulator.

comb optical frequency comb.

CSO Cryogenic Sapphire Oscillator.

CUS Cavity Ultra Stable.

DC Direct-Current.

DDS Direct Digital Synthesis.

EDFA Erbium-Doped Fiber Amplifer.

H-maser hydrogen maser.

Hg mercury.

HNLF High Non-Linear Fiber.

IR Infra-Red.

MOT Magnetic Optical Trap.

NLPR NonLinear Polarization Rotation.

OADM Optical Add-Drop Multiplexer.

PBS Polarization Beam Splitter.

PLL Phase-Locked Loop.

PM Phase Modulation.

RF Radio-Frequency.

iii



Glossary iv

SHB Spectral Hole-Burning.

SHG Second Harmonic Generation.

SNR Signal to Noise Ratio.

Sr strontium.

VCO Voltage-Controlled Oscillator.



Chapter 1

Introduction

1.1 Context

What is the limit to the uncertainty of a measurement? The question of units
is a central point of Physics, as they must be universal and based on unchanging
references, if it is for time, length, mass, temperature, etc. A meter of platinum
was made in 1792 [1] that should define the length, it was meant for calibration of
tools, so that everyone had the same length for one meter. However, this method of
measuring the meter was neither stable nor repeatable. When defining an universal
unit, the ability to duplicate a measurement in another place and time with equal
outcome is one of the pillars science is built upon. Nowadays the meter is redefined,
so it is the distance light travels in vacuum for an interval of 1

299,792,458
seconds [2],

the length will then be interlinked with the measurement of time and the definition
of the speed of light.

The energy between two electronic states is universal, the frequency of the source
necessary to excite this transition is therefore fixed. This is the power of using the
caesium atom to define time, so the measurement can be reproduced with equal
outcome. Today time is defined using a hyperfine splitting in a caesium-133 atom,
where the second is defined as 9,192,631,770 periods measured from the ground
state hyperfine splitting [3]. The definition of the second is best realized by the
microwave fountains, with a fractional accuracy that can reach 2 · 10−16 [4]. The
stability is the noise of the frequency for the measurement. The statistics must be
accumulated in order to progressively refine the knowledge of the mean frequency.
The uncertainty (called the accuracy in case of cesium) is the interval of confidence
around this mean frequency after corrections of all the systematics (frequency shifts
due to temperatures, dipole-shifts, magnetic-fields, etc).

The pursue of clocks with even better accuracies have pushed the uncertainty on
the clocks to even lower levels, where new prospects are arising;

• Search for a possible drift of fundamental constants, to which atomic frequen-
cies are connected (electron to proton mass ratio, fine structure constant, re-
duced mass of the light quark). Tracking the ratio Sr/Cs for instance was

1
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started 15 years at SYRTE, and has already allowed demonstrating that the
change is anyway smaller than 10−16/year.

• Test of Lorentz invariance: Using comparisons between multiple clocks on earth
(connected via the European optical fiber network in charge of disseminating
an ultra stable optical reference at 1542 nm) and/or in space (PHARAO-ACES
mission, starting from 2020).

• Chronometric geodesy: Using optical clocks to determine the geoid and detect
temporal variations of the gravitational potential.

• In a more prospective way: Search for dark matter[5] as proposed recently,
by correlating events resulting in a brief and sudden change of frequencies of
clocks spread on the surface of the Earth.

Strontium optical lattice clocks have shown a capability of reaching fractional
accuracies in the 10−18 range, as the optical lattice clocks utilize the reduced light
shifts and ultra cold atoms in order to achieve high accuracies. Strontium has a
narrow optical transition (< 1 Hz) to be probed with a large lever arm due to its
high frequency compared to the hyperfine microwave splitting of the caesium atoms.
Optical frequencies are necessary for reaching ultra low levels of fractional stability,
because the stability ∆ν

νn
is renormalized by the nominal clock frequency ∆ν

ν
to get

the fractional stability. In perspective to the stability of the atomic clock; We could
imagine placing a strontium optical lattice clock at the beginning of time - 14 billion
years ago. If the clock ran to reach our present time from 14 billion years ago, the
stability of the clock would reach an uncertainty of time that is less than 1 second,
which is incredible to think about and it illustrates the amazing stability of the
strontium optical lattice clock.

How to measure 429 Terahertz

There are no detectors that are fast enough to detect anything at 429 THz (the fastest
existing detectors have a bandwidth of 100 GHz), so for a long time, the development
of optical atomic clocks was hindered by the quasi impossibility to connect the optical
frequencies to the definition of the second/hertz.

With the invention of the so-called frequency comb a new era started. An optical
frequency comb is like a ruler for frequencies. The spectrum of an optical frequency
comb is composed of frequencies displaced with equal spacing as peaks just like the
lines on a ruler. The optical frequency comb can then be measured against differ-
ent laser frequencies, and a relative frequency between between the laser and the
frequency comb can be counted by the number of teeth separating the frequencies.
The spacing between adjacent teeth in the Radio-Frequency (RF) domain are less
than 1 GHz, where all the frequencies are small enough to be measured easily with
conventional methods. An analogy to the optical frequency comb could be the mea-
surement of the thickness of a piece of paper, where the measurement of a paper
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would be hard to do, due to it being so thin. But by measuring the thickness of
a large pile of identical papers, the measurement of the paper’s thickness suddenly
becomes possible like the measurement of the optical frequencies with an optical
frequency comb.

1.2 Taking full benefit of ultra narrow lasers

I have been working towards improving the stability of the optical lattice clocks at
SYRTE1 by improving the probing laser. The biggest limitation to the stability is
the Dick effect (see section 2.3.4), an effect linked to the residual frequency noise
of the probing laser. The Dick effect arises because of the limited probing time
due to the decoherence induced by the clock laser, and also mainly because of the
cyclic operation of the clock over a cycle time of Tc: The frequency noise at Fourier
frequencies equal to harmonics of the clock cycle frequency 1/Tc (with Tc typically
0.5 or 1 s) average much more slowly, because it is experienced by the atoms in a
”stroboscopic” way.

Transfer of spectral purity between lasers has the goal of achieving ultra stable
lasers at desired frequencies. One of the benefits of this method is that lasers can be
built at target metrological frequencies, in order to match the needs of various atomic
clocks. My predecessors built a master laser at 1542 nm, because it is a range that
is convenient, where it matches the central frequency of an erbium comb. Any slave
laser within reach of the comb’s spectrum after broadening (from 1 µm to 2 µm)
can be phase locked to the master laser via the transfer of spectral purity. Another
advantage of linking the systems on an ultra stable master laser in the C band2 is
that it may be distributed by a network of propagation-stabilized optical fibers in
Europe and used as a common mode reference by several ”clock” laboratories.

We want to transfer the spectral purity to the clock lasers driving the strontium
(Sr) and mercury (Hg) optical lattice clocks, in order to reach better stabilities for
optical lattice clocks than our present fractional stability of 10−15 at 1 s with the
target of 10−16 at 1 s, when going to more stable lasers. This would result in a
gain of 100 in terms of integration time, since the atomic clocks are dominated by
white frequency noise, where the stability averages down with the square root of the
integration time (τ−1/2).

We want to transfer the most stable laser that we have available to target metro-
logical frequencies. One of our best lasers is called Cavity Ultra Stable (CUS), which
is an ultra stable laser at 1542 nm. The optical frequencies are too far separated for
us to measure a beat note between any of our metrology lasers - Sr, Hg or CUS. We
are able to measure the individual beat notes, when using an optical frequency comb
(comb) as a comparison tool between the frequencies to transfer the spectral purity.

1SYRTE stands for Sytèmes de Référence Temps Espace, it is a department under Observatoire
de Paris - Université PSL

2The C band has an interval of 1530-1560 nm in the Erbium window[6]
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Figure 1.1: Measuring the beat notes with two lasers to an optical frequency comb
on two photodiodes. The blue, green, red line is the path of the CUS, comb and the
slave laser respectively. The Acousto-Optic Modulator (AOM) is used to make small
frequency changes to the slave laser with a transfer signal created by the transfer of
spectral purity.

On figure 1.1 the idea behind the transfer of spectral purity from an ultra stable
laser to a clock laser is illustrated. The master laser called the CUS is stabilized to an
ultra stable cavity, the light is afterwards combined with the comb on a photodiode.
The slave laser is stabilized to a stable cavity, where it is measured with the comb
on another photodiode. The comb will act like a ”ruler” relating the two beat
notes to each other, so the two frequencies can be compared. A frequency chain
after the photodiodes will rescale the beat notes, so that the noise of the technical
parameters of the comb are eliminated and the spectral purity can be transferred
without degradation to the slave laser. The signal to stabilize the slave will be fed to
the Acousto-Optic Modulator (AOM) placed after the slave laser, this will close the
loop, phase locking the slave to the CUS. The light going to the atoms will then have
the inherited spectral purity of the CUS (under the assumption that the comb, laser
paths and frequency modulation are not contributing to the noise). This thesis will
give a detailed explanation of the setups I have installed at SYRTE to transfer the
spectral purity between our metrology lasers and my work involving the comparison
of state of the art optical lattice clocks.

In chapter 2 (Framework of optical clocks), I will layout the fundamental knowl-
edge behind optical lattice clocks with tool (like an optical frequency comb) that
are needed to assess them. In chapter 3 (Metrological connections between atomic
clocks), I will describe the operational setups that connects the lasers and atomic
clocks, the improvements on the frequency chain to reach even better stabilities,
and a new methods to detect the offset of the optical frequency comb. In chapter 4
(Transfer of spectral purity), I will layout my main results for the transfer of spec-
tral purity, and the results for the elimination of the Dick effect with the help of the
transfer of spectral purity. Finally, I will conclude in chapter 5 and give an outlook
on how we can further improve the setups, as well as the ideas we would like to
implement.



Chapter 2

Framework of optical clocks

This chapter will give a description of the theory and components needed to under-
stand the following chapters. This chapter will go into the basics behind a Fabry-
Pérot interferometer, the physics of an optical frequency comb and the fundamental
knowledge of atomic clocks. This is necessary in order to understand the reasoning
behind going to more stable lasers with the help of transfer of spectral purity.

2.1 Fabry–Pérot interferometer

There are many areas in optics where a Fabry–Pérot interferometer are being used,
but two essential areas that will be presented in this thesis are to create an ultra
stable laser and to create an optical lattice for an atomic clock.

Imagine having two plane mirrors separated at a distance L with the mirrors
parallel to each other. If we had some light bunching between the two mirrors, and
if we were to assume perfect mirrors with no losses in the system. The light would
accumulate a phase on each round trip bouncing between the mirrors, this phase
can be expressed as; ϕ = k2L. If the wavenumber k does not fulfill ϕ being equal
to an integer number of 2π, the phase on each round trip would be accumulated,
resulting in constructive and destructive interference between the light fields creating
zero intensity between the two mirrors for wavelengths not fulfilling k = π

L
m, where

m is an positive integer. The only solution to this problem would be a standing wave
between the two mirrors. The separation between the allowed frequencies (the free
spectral range) would then be νFSR = c

2L
. The allowed frequencies would then be;

νm = mνFSR + ν0, (2.1)

where m is a positive integer, and the equation illustrates a ”perfect” Fabry–Pérot
interferometer (when discarding ν0). The beams are gaussian shaped, and the mirrors
need to adapt to the phase front of the beams, the most commonly used configuration
are plane-concave or concave-concave mirrors. The light could otherwise not be
confine between the mirrors. The gaussian modes gives rise to an offset on the

5
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interferometer’s resonance; ν0, which can be calculated from the geometry of the
cavity (see appendix C).

We can describe the cavity a bit more explicit, because the mirrors are in practice
not perfect reflectors without loses. The transmission through the cavity can be
expressed as;

IT
I0

=
1

1 + (2F/π)2 sin2(ϕ/2)
, (2.2)

where F is the finesse and r is the amplitude reflection coefficient. The explana-
tion/derivation of equation 2.2 is shown in appendix A.

The finesse is defined for the linewidth of the resonator modes to follow;

δν =
νFSR
F . (2.3)

This is fulfilled when having the following relation for a symmetric cavity;

F =
π
√
r

1− r . (2.4)

The finesse is a very important parameter of a cavity. A high finesse means that
the cavity has a narrow linewidth, this is greatly used to stabilize oscillators to the
sharp modes of the cavity. There are also other purposes for high finesse cavity like
multiple interactions with atoms.

Figure 2.1: The transmission of a cavity following equation 2.2 for different values
of the finesse (F).

Figure 2.1 shows the transmission through the cavity following equation 2.2. We
can see that for higher value of F , the narrower is the linewidth of the resonator
modes, the center of the resonance is at ϕ equal to a multiple of 2π (In non gaussian
mode). The phase can be described from the frequency and the free spectral range;
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ϕ = 2π ν
νFSR

. The free spectral range is defined, so it is the amount of times that the
phase is equal to m2π (m is an integer) at a round trip in the resonator. We can
now write the complete equation for the transmission by rewriting equation 2.2;

IT
I0

=
1

1 + (2F/π)2 sin2(πν/νFSR)
. (2.5)

It physically makes sense that this ratio is at most 1 due to the energy conservation.
The equation assumes that all the light is mode-matched to the cavity, which is a
bit more tricky in the case of a gaussian beam. It is also assumed that both mirrors
have the same reflexion coefficients, which is not always the case. It is now clear
the power of the Fabry-Pérot interferometer with its ability to create stable signals.
This is especially true when having a high finesse, where an ultra stable signal can
be created from narrow modes that are allowed within the interferometer [7, 8].

2.2 Optical frequency comb

An optical frequency comb is a light source containing a lot of different frequencies
as narrow peaks with all the peaks equally separated. An illustration of an optical
comb is shown on figure 2.2, which illustrates a comb within the visible domain. The
comb can only generate its teeth within the gain medium that the comb is using to
generate its light.

Figure 2.2: Illustration: Spectrum of an optical frequency comb in the visible domain.

We are using NonLinear Polarization Rotation (NLPR) combs that create a mode
lock in a pulsed laser, many modes are lasing simultaneously, and the NLPR leads
to a phase locking between all the modes: this is the base of a frequency comb
[9]. When having a mode lock between the modes in a resonator, a constructive
interference occurs every T, where T is the time for the light to make one trip in
the cavity. These pulses will then go through an optical fiber inducing NLPR so
the polarization changes. The polarization of the pulses will be filtered away by a
Polarization Beam Splitter (PBS), so the output of the comb only will take place
having a mode lock. If the modes are not mode locked the NLPR will not take place,
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because the intensity will not be high enough (not having the pulses), this means
the light will be transmitted through the PBS, going around the system again until
a mode lock occurs [10].

The comb has very short pulses with a separation in the low nanoseconds range
between each pulse. The Fourier transform of the envelope containing the pulses are
the frequencies emitted by the comb. The time between each pulse (T ) decides the
separation between each tooth in the frequency range. This is seen as the separation
between each tooth on figure 2.2. We call this separation between the frequencies
the repetition rate, which can be calculated from; frep = 1

T
. There is a small phase

shift of the pulse with respect to the envelope (∆ϕev), it corresponds to having a
small offset in the frequency domain (f0), it is equal to f0 = ∆ϕev

2π
frep. Taking all this

into account, the frequency offset (f0) and the repetition rate (frep), an equation for
the frequency spectrum can be expressed as;

fN = Nfrep + f0, (2.6)

where N is an integer expressing the number of the tooth.
The width of the comb’s spectrum is only a few tenths of nanometers after creating

the comb, so a broadening of the comb is necessary for the self-referencing of the
comb (the derivation of f0). The light of the comb is being sent through a Erbium-
Doped Fiber Amplifer (EDFA) to amplify the light before it is sent through a High
Non-Linear Fiber (HNLF). A nonlinear effect is going to broaden the comb called
the four-wave mixing [11];

fijk = fi + fj − fk. (2.7)

The comb has a separation between the teeth of Nfrep, this means the four-wave
mixing generates new frequencies that has the same repetition rate, but now in the
gain of the medium. This process of creating new frequencies is called stimulated
Raman scattering [9]. The EDFA gives us the possibility to have a frequency comb
going from ∼ 1 µm to ∼ 2 µm.

The interference between a comb and a laser can be measured on a photodiode.
We can use equation 2.6 for the frequency of the comb and νL as the laser frequency
to express the beat note between them;

fL = Nfrep + f0 − νL. (2.8)

The explanation to the above equation is done further in appendix B. The parameters
of the comb can then be measured to calculate the frequency of the laser from the
measured beat note of equation 2.8.

We can measure the repetition rate of the comb on a photodiode, where all the
teeth will do self-interference with each other creating a signal at frep, 2frep, 3frep....
This can be seen as the beat note;

nfrep = fN − fN−n, (2.9)

where the N and n is only restricted by the spectrum of the comb.
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Figure 2.3: Illustration: How to measure f0 in an optical frequency comb with the
f − 2f method.

Measuring f0 is more complicated than measuring frep. It is crucial for the
detection of f0 that the comb is octave spanning (having a gain spanning from
tooth N to 2N). Frequency doubling of the tooth N will create a signal at 2fN
corresponding to; 2fN = 2Nfrep + 2f0. This is illustrated as the red tooth going
through the Second Harmonic Generation (SHG) medium on figure 2.3. The light
then does interfering with the the already existing tooth at f2N = 2Nfrep + f0;

f0 = 2fN − f2N = 2(Nfrep + f0)− (2Nfrep + f0). (2.10)

This is called the f − 2f method, because the comb does self interference with twice
the frequency, and it is important to add that many ”couples” of teeth contribute
to the strength of the signal. It is a bit different in practice than I have shown on
figure 2.3, since the whole comb is being sent through the SHG medium. The SHG
is only optimized for the 2 µm of the comb, so the rest of the transmitted light goes
unchanged through the SHG medium having both 2fN and f2N in the spectrum of
the light.

To measure the tooth number of a beat note with the comb, a controlled modu-
lation of the repetition rate needs to occur. We can use equation 2.8 to describe the
change in a beat note, when changing the repetition rate of the comb with ∆frep;

fL + ∆fL = N(frep + ∆frep) + f0 − νL. (2.11)

The beat note will change with ∆fL = N∆frep as seen on equation 2.11, when
changing the value of the repetition rate. The N value can then be calculated
from the relation; ∆fL/∆frep. We just need to have a low enough uncertainty to
distinguish the integer numbers that N can take. How the comb is operated in
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practice will be explained further in section 3.1, where the experimental operations
are described.

2.3 Atomic clocks

The sections to atomic clocks will give a better idea of how to measure the stability of
an atomic clock, and analyzing the data with the method called the Allan variance.
The sections will also give a general description of the different types of optical
lattice clocks we have at SYRTE, the interrogation method used for atomic clocks
and an explanation of the Dick effect. The Dick effect is the big limiting factor
when it comes to the stability, and it is therefore why the project described in this
manuscript explores new methods to increase the laser’s stability in order to decrease
the impact of the Dick effect.

2.3.1 Allan variance

We need a tool to calculate the stability of atomic clocks, where we can distinguish
the different types of noises in our system. This tool is called the Allan variance
which is widely used for analyzing sources of noise.

The stability of a frequency can be characterized by the two correlated variables
x(t) and y(t), the time error function and the fractional frequency respectively. The
error time function is related to the phase fluctuation by ϕ(t) = x(t) ·2πνn, where νn
is the nominal frequency. The fractional frequency is y(t) = ν(t)−νn

νn
. To explain the

concept of the time error and the fractional frequency, we could imagine an oscillator
with the signal;

V (t) = V0 · sin(2πνnt+ ϕ(t)), (2.12)

where V0 is the amplitude of the oscillation, and ϕ(t) is the phase fluctuation. The
relation between the phase fluctuations and the frequency of equation 2.12 is;

ν(t) = νn +
1

2π

dϕ

dt
. (2.13)

Inserting this into the equation for the fractional frequency;

y(t) =
1

2πνn

dϕ

dt
=

dx

dt
. (2.14)

The time error function appears, when we integrate over the fractional frequency,
so we can calculate the error in time from the frequency stability. This relates the
fractional stability of our measurement to the time error of the clocks.

The Allan variance is taking the variance between adjacent sample averages as a
function of sample sizes. it is using M samples and taking the variance between the
samples by the following;

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)2. (2.15)
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The Allan variance looks at the Shot to shot fluctuations at 1 second, and for the
next points it makes sub- averages under the form of sets, and then compare the
shot to shot fluctuations between the adjacent sets. While a moving average would
erase progressively any type of time structure, the Allan variance tells you exactly
on which time scale you have frequency fluctuations.

Figure 2.4: Power laws for the one-sided power spectral density of the phase fluc-
tuations, the normalized frequency fluctuations and the Allan deviation. The two
quantities, Sϕ(f) and Sy(f), are the one-sided power spectral density of the phase
fluctuations and the normalized frequency fluctuations, corresponding to a Fourier
analysis of the samples.

In general, we can encounter 5 main types of noise, white phase, flicker phase,
white frequency, flicker frequency and random walk noise [12]. Even if we would
build a system insensitive to any kind of external perturbation, we would always
have a floor that we can not exceed, due to this white phase noise. This is the reason
why the Signal to Noise Ratio (SNR) sets a limit to the best result you can achieve.

If we were to imagine that we only had white frequency noise, the stability mea-
sured by the Allan variation would go down as σ2

y(τ) ∝ 1/τ , where τ is the averaging
time (the time span of the average over the samples). This is because of the variance
of an average goes down as 1/N for white frequency noise. Figure 2.4 shows the
power density spectrum for the various noises, where we can see that the white fre-
quency noise has a slope of f 0 in the power density spectrum of the frequency noise.
A white noise is random noise, which means you have all the Fourier components in
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the spectrum of the noise. The power laws for the other frequencies can be seen as
well on figure 2.4.

To distinguish the flicker phase noise from the white phase noise the modified
Allan variation can be used, where the slope of the white phase noise decline with
τ−3/2 instead of τ−1, so the phase noises can be distinguished.

The experiments done in our laboratory are using two kinds of averaging for the
frequency counting with dead free time counters. The counters are collecting data
every millisecond, but storing this amount of data for all the experiments would be
an extensive challenge of data storing. The counter does internal averaging of the
data, so we have a data point for every second. The two methods commonly used
for averaging are the Π-counters or Λ-counters. The Π-counters determines the data
point at 1 s from an average, which resembles the method that the Allan deviation
is taking the averages. The Λ-counters determines the data point at 1 s from a Λ-
weighted average, which resembles the method that the modified Allan deviation is
taking the averages, which differs for the two methods when averaging white phase
noise [13]. This means that it is advantageous to use Allan deviation when using the
Π-counters, and the modified Allan deviation when using the Λ-counters, so all the
data is averaged with the same method.

2.3.2 Optical lattice clocks

SYRTE has built 3 operational optical lattice clocks, two based on 87Sr and one based
on 199Hg. A keystone of optical lattice clocks is the confinement of neutral atoms in a
so-called magic optical lattice. This ensures a tight confinement and therefore makes
the frequency measurement immune to atom motional effects. The magic features
ensure that the light shift induced on both clock states is identical, and therefore
the frequency measurement is immune, to first order, to power fluctuations of the
laser providing light for the lattice. An optical lattice uses the interaction potential
of the dipole moment (p) in the field (E) of the light. The interaction potential can
be written as;

Udip = −1

2

〈
pE
〉

= − 1

2ε0c
Re{α(ω)}I(x, y, z), (2.16)

where ε0 is the vacuum permittivity, c is the speed of light and α is the complex
polarizability [14]. The potential is negative for a red detuned wavelength (ωlaser <
ωatom), the atom will then always go towards the lower potential - towards the higher
laser power. The optical lattice uses the potential to catch the atoms by creating a
standing wave in a cavity. The lattice and the atoms confinement can be seen on
figure 2.5. The standing wave is slicing the atoms spacial displacement into discs with
a separation of half the wavelength of lattice light along the longitudinal direction
(λl/2). In the transverse direction, atoms are confined by the gaussian profile of
the beam (x and y on figure 2.5). The confinement is more ”loose”, but it hardly
matters, it is the confinement in the direction along which the clock laser is probing
that matters (z on figure 2.5).
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Figure 2.5: An illustration of the intensity profile for an optical lattice, and the
atoms’ confinement in the intensity peaks of the lattice. λl is the wavelength of the
laser, and U0 is trap depth of the lattice. The figure was taken from [15].

The advantages of having such a lattice is the high number of atoms (∼ 104) that
is obtainable, and the motional suppression that is achievable. The regime for the
motional suppression is called the Lamb-Dicke regime, where the average quantum
motional number in the direction of strong confinement is smaller than n = 1 (most
of the atoms in the fundamental motional state n = 0), which means that the Doppler
effects becomes negligible [16].

The atoms need to be cooled before they can be caught in an optical lattice,
since the band of the optical lattice is too narrow to catch the hot atoms. The
optical levels to cool Sr and Hg are shown on figure 2.6. Even if Hg is an ideal
metrological candidate for a clock (very heavy = very immune to residual motional
effects, very low sensitivity to the black-body radiation shift and spin 1/2 making the
tensor correction of the differential polarizability zero, etc.), it is an atomic species
cumbersome to manipulate: indeed the large energy differences between the levels
must be addressed by lasers in the UV domain, which are always difficult to operate
and to maintain [17]. The Hg laser is stabilized to 4 times the wavelength of the
clock transition at 1062 nm, which makes the comparison and stabilization of the
clock laser much easier. This is achieve by frequency doubling the 1062 nm clock
laser twice in two frequency doubling crystal to from the necessary wavelength at
266 nm for the clock transition of Hg.

The first cooling stage of Sr is to catch the atoms in a Magnetic Optical Trap
(MOT). The MOT is a 3-dimensional trap based on the combination of a magnetic
field gradient (with a 0 at the center), and 6 pairs of contra propagating beams red-
detuned from a strong internal transition. If an atom moves away from the 0 of the
magnetic field, the frequency of the transition is changed by the Zeeman effect so
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that the atom eventually absorbs a photon (radiation pressure), which kicks it back
towards the center. The process is confining along all the direction of space, creating
a cloud of cold atoms around the 0 of the B-field.

Figure 2.6: Diagram to show the most important transitions for the Sr and Hg optical
lattice clocks. The atoms, Hg and Sr, are based on two electron atoms which gives
the possibility to have broad and strong cooling transitions (BLUE) and narrow clock
transitions (RED) for further cooling and clock interrogation. Data and inspiration
was taken from [16].

The cooling transition for Sr is |1S0〉 → |1P1〉, which captures the atoms in the mK
range. Atoms are captured directly from the blue 461 nm MOT, thanks to a technique
called atomic drain: Two additional lasers overlapped with the center of the lattice
”shelve” the atoms in the metastable state, where the Sr atoms do not experience
the blue MOT light any more in this case, therefore they accumulate. They are this
way captured in the lattice, where they are repumped back to the ground state, and
then there is some further cooling taking place with the |1S0〉 → |3P1〉 transition to
accumulate as much as possible in the fundamental motional state in the z direction.

The scheme is a bit modified for Hg. The only cooling stage for Hg is to catch
the atoms in a MOT with the transition |1S0〉 → |3P1〉. This can still work for Hg,
because of the broader linewidth for the transition. The temperature of the captured
atoms are of the order of 30 µK for a Hg MOT, which is sufficient for catching the
atoms in a lattice [16].

Sr and Hg both comes from the same species - alkaline earth like atoms (two
valence electrons). This is critical for optical lattice clocks since there exist a magic
wavelength, where the polarizability is the same for both the |1S0〉 state and the
|3P0〉 state. The light shift is then rejected to first order due to the polarizability,
when capturing the atoms at the magic wavelength. This can be seen for strontium
on figure 2.7, where the magic wavelength is at 813 nm for the lattice light to first
order [18]. The clock transition is |1S0〉 → |3P0〉 for both Sr and Hg due to the
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existence of the magic wavelength. The clock transition also has the needed sub Hz
linewidth - the clock transition is in principle forbidden since there is no change in
the electron’s angular momentum J = 0 → J ′ = 0, and because it is a singlet to
a triplet transition. The transition towards |3P0〉 is only allowed due to a hyperfine
mixing of the pure states |3P 0

0 〉, |3P 0
1 〉, |3P 0

2 〉 and |1P 0
1 〉 [19] (the raised 0 denotes a

pure state).

Figure 2.7: The light shift of the 1S0 and the 3P0 states for Sr. Showing the the
magic wavelength of 87Sr at the crossing of the blue curve (1S0) and the red curve
(3P0), where the first order polarizability of the two states matches at 813 nm for
the magic wavelength [18].

If it was not for the magic wavelength, the differential light shift would depend
on the intensity of the lattice light. If there was a coupling of the frequency to the
trapping intensity, the stability would degrade a lot, but thanks to the existence of
this magic wavelength for alkaline-earth like atoms, the effect can be decreased by
many orders of magnitude. The magic wavelength still depends on the intensity for
higher order dipole moments, but the higher order terms are weaker, so the frequency
are less affected.

2.3.3 Clock interrogation

There are two common methods to interrogate the atoms of an atomic clock, the
Rabi interrogation, the Ramsey interrogation and the Dick effect (see 2.3.4), which
is directly linked to the interrogation method.
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Rabi interrogation

Rabi interrogation of an atomic clock uses the transition probability to see, if we are
on resonance with the atoms. The transition probability between two atomic states
without any decoherence effects can be expressed as;

P2 =
χ2

Ω2
sin2(

Ω

2
t), (2.17)

where χ is a frequency also known as the resonant Rabi frequency, and Ω is the
Rabi frequency. The Rabi frequency can be written as; Ω =

√
χ2 + ∆2, where ∆ is

the detuning from the resonance (∆ = ω − ω0). The Rabi frequency is proportional
to the experienced E-field, and the transition dipole moment; 〈1|x |2〉 [20]. The
transition probability as function of probing time can be seen on figure 2.8. The blue
curve represents the transition probability with no detuning, where the probability
oscillates between 0% and 100% excitation. we are able to excite all the atoms by
having a pulse of light at a duration of χt = π, this model is of course theoretical
assuming no decoherence effects. The orange curve (∆ = 1

2
χ) and green curve

(∆ = 10χ) show the Rabi model with some detuning, where the Rabi frequency
and the amplitude of the transition probability changes accordantly. We can express
the excitation of atoms to the maximum for a given detuning as; Ωt = π, such an
operation is called a π-pulse.

Figure 2.8: The figure shows excitation probability as a function of interrogation
time for the the Rabi model, calculated from equation 2.17. The blue curve is with
no detuning, the orange curve is with a detuning of ∆ = 1

2
χ and the green curve is

with a detuning of ∆ = 10χ.

The Rabi interrogation uses a π-pulse to excite the atoms and by changing the
detuning of the laser, so the atoms’ resonance can be calculated.
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Ramsey interrogation

Ramsey interrogation is a bit different from the Rabi interrogation, but they are
using the same principles to measure the laser detuning to the resonant of the atomic
transition.

The first step of the Ramsey interrogation is to excite the system with a π
2
-pulse of

duration τ . The π
2
-pulse excites the atoms to a superposition of the ground state and

the excited state; |g〉+i|e〉√
2

. This excitation can be seen on figure 2.9 as the red points.
There will be a free evolution time after the first excitation, during which the phase
of the oscillator and the phase of the atomic coherence are evolving independently.
This evolution in this time window (T ) will accumulate the phase; e−iT∆ |e〉 as an
evolution around the Bloch sphere’s equator, which can be seen on figure 2.9 as the
green points. To see the effect, I chose a big detuning of T∆ = π/6 to give a visual
example, to show what happens on the Bloch sphere. At the time τ +T a second π

2
-

(a) (b)

Figure 2.9: Illustration of Ramsey spectroscopy: In (a) the Rabi frequency (the laser
intensity) is shown as a function of time for Ramsey spectroscopy, where the colors
correspond to the atom states shown on figure b. In (b) Ramsey spectroscopy on a
Bloch sphere with an evolution time and detuning equal to T∆ = π/6.

pulse will rotate the pseudo spin around ê1 again, so that the effect of the detuning is
turned into a population difference, which can be easily detected. This is illustrated
on figure 2.9 as the pink points.

We can describe excitation percentage of the entire Ramsey interrogation by the
approximating formula;

P2 = 4
|χ|2
∆2

sin2(
1

2
∆τ)cos2(

1

2
∆[T + τ ]) [8]. (2.18)
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(a) (b)

Figure 2.10: Comparison of Rabi and Ramsey spectroscopy on a two level atom:
In (a) the Rabi model is plotted as a function of the detuning from equation 2.17
with a π-pulse (t = π/χ). In (b) the Ramsey interrogation is plotted as function of
detuning for equation 2.18 with T = 6τ .

The equation shows that by extending the evolution time T , the system becomes
more sensitive to detuning. The behavior of the equation for the Ramsey model can
be seen on figure 2.10b as a function of detuning. The system is very similar to
the Rabi interrogation shown on figure 2.10a, but the system is even more sensitive
to detuning for the Ramsey model; which makes the frequency discrimination even
better. The fast oscillating term seen on figure 2.10b comes from the waiting time T
between the two π

2
-pulses, which becomes faster for larger values of T .

2.3.4 The Dick effect

The stroboscopic measurement due to dead time and cyclic probing in the atoms
interrogation loses a part of the information about noise of the probing laser. The
effect of sampling of the residual noise due to the stroboscopic measurement is known
as the Dick effect. It is the biggest limitation to the stability of optical lattice clocks,
limiting them at best to a stability of 10−16 at 1 s (with the best laser), while
the quasi-fundamental limit due to quantum projection noise allows in principle for
stabilities in the 10−18 range at 1 s (104 atoms), where the quantum projection noise
would set the limitation to the stability.

The large dead time is due to the fact that the detection of the excitation of the
clock transition is a fluorescence detection. The fluorescence detection is probing the
ground state by lasing on a strong transition [21], where a ratio between the ground
state and the excited clock transition can be established. The advantage of this
method is that it gives a strong signal. The disadvantage with the fluorescence
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detection is that it kicks the atoms out of the optical lattice, which means the
trapping procedure has to start over again. The decoherence of the laser is the
limitation to the interrogation time, since the atoms have to be interrogated before
the information of the excitation is lost due to the residual noise of the probing laser.
The Sr optical lattice clocks have an interrogation of approximating 150 ms with a
cycle time of 700 ms. This gives a duty cycle (η = Tint/Tc) of around 20%. We want
to have as little dead time as possible, because the residual noise of the laser is lost
within this window. The Dick effect can therefore also be reduced by increasing the
duty cycle.

There will be a change in the excitation probability (δP ) of the atoms when
having frequency fluctuations (δω) of the probing laser. The change in excitation
probability during the interrogation can be expressed as;

δP =
1

2

∫
g(t)δω(t)dt, (2.19)

where g(t) is the sensitivity function, which is defined from this formula [22]. The
sensitivity functions is the sensitivity to the frequency fluctuation, it will be 0 during
the dead time, since the atoms will be insensitive to the residual noise of the probing
laser during this period. The sensitive will then vary depending on the type on the
interrogation which is used, and on the duty cycle of the clocks.

The change in the stability due to the Dick effect then takes the form of;

σ2
y =

1

τg2
0

∞∑
m=1

|gm|2SLO(m/Tc), (2.20)

where SLO is the one-sided power spectral density of probing laser’s frequency noise,
Tc is the cycle time, and gm is the complex Fourier components of the sensitivity
function;

gm =
1

Tc

∫ Tc

0

g(t)e−2πimt/Tcdt [16]. (2.21)

The fractional uncertainty due to the Dick effect is only affected by the Fourier
frequencies equal to m/Tc, because the residual noise of the probing laser repeats
itself with the Fourier components matching the cycle time of the atomic clocks.

The stability of the probing laser is the biggest technical limitation to the Dick
effect (SLO). The need for an improvement of the probing laser’s stability is therefore
vital for the advancement of the optical lattice clocks.

A thorough explanation of the Dick effect can be read in the PhD thesis of Pierre
Lemonde [23](in French), else a pure theoretical impact of the Dick effect can be
read from the article [22].



Chapter 3

Metrological connections between
atomic clocks

A chain is as strong as its weakest link. The phrase is very true when dealing with
high stability lasers, where it is the component with the worst stability that will
set the limit of the system. This chapter will go through the setups around our
cavities and optical setups for measuring metrological frequencies. This involves the
dedrifting of cavities, a new dispatching of our ultra stable lasers, a new method
to measure the offset of the comb and the automation of the experimental setups
(feedback loops in particular).

3.1 Frequency chain

The frequency chain is the ensemble of oscillators and connections that is necessary
to form the frequency ratio between the two references (e.g clocks and lasers) that
must be compared. This involves how our stable µ-wave reference is generated and
how it is referencing our equipment in order to achieve better stabilities. SYRTE is
using two sources to generate the µ-wave reference - a Cryogenic Sapphire Oscillator
(CSO) and a hydrogen maser (H-maser). The CSO has a fractional stability of
2 · 10−15 at 1 second, but drifts for longer integration times. The H-maser is locked
to the 21-cm line of the spin transition in a hydrogen atom, which is far more stable
for long periods of time than the CSO. The H-maser’s short term stability is a lot
worse than the CSO, but the fractional stability of the H-maser is a few 10−16 within
a day. In order to benefit both from the short term stability of the CSO and from
the long term stability of the H-maser, the ultra stable reference is generated by
phase locking with a large time constant (1000 s) the CSO frequency to the H-maser
frequency. This way, after showing a stability at (1-2) 10−15 up to 1000 s, where the
stability starts dropping and hits the 10−16 range for longer periods. It is vital to
have an external reference on synthesizers, Direct Digital Synthesis (DDS), counters,
etc, so all the equipment share the same ultra stable source in common mode. The
µ-wave reference is therefore rescaled to a RF signal at 10 MHz or 1 GHz to drive

20
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the equipment.

Figure 3.1: The frequency chain used for generating a stable frequency source, and
locking of the comb. OADM is an optical add-drop multiplexer, PLL is a phase
lock loop and µ is the µ-wave reference. All the synthesizers and counters are being
referenced to the µ-wave reference as well. The ETTUS is a special DDS to generate
RF signals.

Figure 3.1 shows the setup for stabilization of our ultra stable cavity (the CUS)
as well as the locking of the comb to the CUS. The setup stabilizes the CUS to the µ-
wave reference for long term stabilities, since cavities have poor long term stabilities,
because of frequency drifts due to temperature fluctuations. The drift is a problem
because:

• When the beat note crosses an RF filter, it explores the phase of the gradi-
ent, therefore a frequency drift turns into a phase gradient, and therefore a
frequency bias.

• There is a problem with the atoms also: if the laser is drifting too hard, it
leads to a bias called ”servo error”, which simply means that you are always
running after the resonance.

• Finally a residual drift makes the synchronization of the measurement in Paris,
Strasbourg, PTB1, NPL2, much more stringent: if it drifts, it must be measured
exactly at the same time to avoid a bias. At the contrary, if the quantities to
measure are stationary, the constraint on the synchronization is relaxed a lot.
This will be mentioned further in section 3.2.

1PTB (Physikalisch Technische Bundesanstalt) is the German’s national metrology institute
2NPL (National Physical Labratory) is the UK’s national metrology institute
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The challenge of the stabilization of the CUS to the µ-wave reference is the
difference in frequency between the two. The µ-wave reference has a frequency of
∼ 8.985 GHz, and the CUS has a frequency of ∼ 194 THz (1542 nm). To overcome
this challenge we use a frequency comb to compare the two frequencies. I will split
the explanation of the dedrift of the CUS into 3 segments, which can be followed on
figure 3.1 where each segment is numbered to ease the understanding:

1. Locking of the slave laser to the CUS. The master laser has a wavelength
of 1542.14 nm, and it is locked to the CUS. The master laser will then have the
stability of the CUS. The cavity is free running and can have large excursion
(several MHz in a week), the drift must therefore be compensated, which can
be done with an offset lock to a slave laser: We form a beat note between The
CUS and the slave laser on a photodiode, where an offset Phase-Locked Loop
(PLL) acts back on the current of the slave laser to stabilize it to the CUS.
The PLL will act on the slave laser the following way; νs = νCUS +fETTUS. The
frequency of the ETTUS is explained in the 3rd segment.

2. Locking of the comb to the slave laser. We want to transfer the spectral
purity of the CUS to the comb, so that all the optical beat notes will be narrow.
The approach for f0 is: We mix it out everywhere. The approach for frep is:
We lock it to an ultra stable laser.

The slave laser is being combined with the comb, where it goes to an Optical
Add-Drop Multiplexer (OADM)3. The beat slave vs comb is reflected in a nar-
row band, while all the rest (rest of the spectrum of the comb) is transmitted.
The reflection sees the signal in a narrow band and does not suffer from the shot
noise that all the other teeth of the comb would bring, while the many teeth
transmitted will yield a strong signal at the harmonics of frep. The reflected
light of the OADM that contains the beat note is then detected on a photodi-
ode. f0, detected elsewhere, is mixed out of the beat note, yielding a f0-free
beat; f̃S = Nfrep− νS. The f0-free beat note is then being rescaled to decrease
the amplitude of the phase excursion, so the repetition rate of the comb can
be locked to the frequency of the slave laser. The PLL locking the repetition
to the frequency of the slave laser is expressed as; Nfrep−νs

8
= 110 MHz.

3. Dedrifting of the slave laser by the µ-wave reference. The transmitted
light through the OADM is detected on a photodiode. It only detects the light
of the comb, which has the interference between the teeth creating a signal of
frep, 2frep, 3frep... The signal we are interested in is 36frep which gives a signal of
∼ 9 GHz, since the repetition rate is ∼ 250 MHz. The µ-wave reference at 8.985
GHz is then mixed with the signal at 36frep. There is a problem with this signal:
The noise to detect is smaller than the resolution of the counter. The solution:
A DDS signal close to 15.275 MHz is subtracted, which gives a result around

3An Optical add-drop multiplexer is the fibered equivalent of an interference filter
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275 kHz that is multiplied by 200 (giving a frequency at 55 MHz) in order to
get a signal whose noise can be resolved by the counter. This can also be seen
from the following equation; Ch1 = −200 · (36frep− µreference− 15.275 MHz) '
55 MHz.

The repetition rate is locked to the frequency of the slave laser, which means
the signal detected on the dead time free counter is the drift between the slave
laser and the µ-wave reference. In order to counteract this drift, a counter drift
(”dedrift”) is applied to the offset of the lock between the master and the slave,
which updates the slope of the dedrift every 30 s, where the stability of the
µ-wave reference exceeds the stability of the slave laser. The dedrift is imposed
on the ETTUS, which is a special DDS programmed by a FPGA, which is a
very fast microcontroller (it is made by the company ETTUS).

The optical scheme explained above has two purposes; the first is to create an
ultra stable laser that we can use for measurements and distributions to other lab-
oratories. This ultra stable laser is now the slave laser, which has the short term
stability of the CUS and the long term stability of the µ-wave reference. I will refer
to this signal as the CUS in the rest of the thesis, since it has the stability of the
CUS. The second purpose is to create an ultra stable comb that has a stable repeti-
tion rate. All of our other ultra stable lasers like the clock lasers for Hg and Sr are
also dedrifted. They are dedrifted by measuring the frequency difference between
the laser and the atoms. This means the lasers are not drifting in respect to each
other, which makes measurements over long periods of time a lot easier, as we do
not have to change any frequencies or filters due to drifts.

3.1.1 Noise compensation

Fiber noise

A few centimeter of optical fiber can easily be the limiting factor when it comes to
the noise floor of a system operating below a fractional stability of 10−17 at 1 s. It is
therefore essential to do fiber noise compensation whenever using optical fibers for
ultra stable lasers.

An illustration of how fiber compensation works is shown on figure 3.2. A laser
is injected into a fiber, where it is split up by a beam splitter into the two paths
B and D. Path B is going to a mirror that retro-reflects the light back to path C,
where it hits a photodiode. Path D is going to an AOM that shifts the frequency
with a few MHz. The light then proceeds to a new beam splitter E and F. Path E
goes to the desired location (the optical setup). Path F is going to another mirror
that retro-reflects the light back through the same path it came from - it first goes
through the AOM again shifting the frequency of the light again, where it goes to
path C and hits the same photodiode.

The light will accumulate a phase shift along the fiber in the form of phase
noise. We can write the phase of the light reflected on the first mirror in path B,
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Figure 3.2: The optical setup needed for fiber compensation, with the the phase ϕ
shown as the phase change over the given distance.

and hitting the photodiode as; ϕ1 = ϕlaser + ϕA + 2ϕB + ϕC . The light goes two
times through path B, which gives the factor 2 of the phase ϕB. We can write the
light going to the second mirror, and reflected back to the photodiode as; ϕ2 =
ϕlaser +ϕA + 2ϕAOM + 2ϕD + 2ϕF +ϕC . The signal from the interference between ϕ1

and ϕ2 on the photodiode can be written as;

ϕPD = ϕ2 − ϕ1 = 2ϕAOM + 2ϕD + 2ϕF − 2ϕB. (3.1)

Figure 3.3: The setup needed for fiber noise compensation. The dashed optical paths
are the uncompensated paths that will affect the noise of the propagation of light.
The error signal detected on the photodiode goes to a RF chain, which sends the
correction through a PLL to the AOM for the fiber noise compensation.

The RF chain of the fiber compensation can be seen on figure 3.3. The beat note
detected by the photodiode (ϕPD) is going to a mixer whose other input is fed by
an ultra stable source (e.g DDS, synthesizer), close to the central value of 2ϕAOM.
The signal then goes through a PLL yielding a feedback to a Voltage-Controlled
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Oscillator (VCO) that drives the AOM. The PLL will lock the mixed signal between
ϕPD and ϕsynth to a Direct-Current (DC) signal creating the PLL;

2ϕAOM + 2ϕD + 2ϕF − 2ϕB = ϕsynth. (3.2)

ϕsynth is stabilized to the µ-wave reference which has a fractional stability of
2 · 10−15. The synthesizer is working in frequencies of ∼ 100 MHz which gives a
stability in the sub-µHz level, so we can discard the noise of the synthesizer. The
noise of the paths that will be corrected in equation 3.2 are the paths D, F and B.
The light we want to correct is taking the path A→D→E. The output phase (ϕout)
going to the optical setup when exchanging the phase ϕAOM with the phase of the
PLL shown on equation 3.2;

ϕout = ϕlaser + ϕA + ϕAOM + ϕD + ϕE

= ϕlaser + ϕA +
[1
2
ϕsynth − ϕD − ϕF + ϕB

]
+ ϕD + ϕE

= ϕlaser + ϕA +
1

2
ϕsynth − ϕF + ϕB + ϕE.

(3.3)

There will be an over correction to the paths F and B, which will add noise to the
compensation. The length of paths B and F are in practice a few centimeters, and
the fiber compensated path D is usually in the orders of meters or more, which is
the power of the fiber compensation making it very favorable. The uncompensated
paths on figure 3.3 are all the paths marked with dashed lines. The principles for
the fiber noise are general, and they can all be applied for free-space noise, some
refinements to fiber noise compensation will be explained in the next sections.

Using this setup for ultra stable lasers would not be optimal, since there would
be too much fiber noise added along the fiber. I will in the next sections explain a
better way of designing the setup.

We have made some measurements of the consequence of the fiber noise. The
optical setup we used to measure the fiber noise is shown on figure 3.4. The setup
is similar to the setup shown on figure 3.3, but another branch is added with the
objective of making an out-of-loop measurement. The setup is constructed so we
have interference between path A and B on the photodiode to the right on figure 3.4.

The first measurement we did was to do fiber noise compensation on both path
A and B, so we had a control/reference measurement, where we tried to make the
compensation as perfect as possible, and we see where we are at in this case. All
the paths that usually would be considered uncompensated (like the red paths on
figure 3.3) would not be in this case. The uncompensated paths are in common
mode for this measurement, since they share the same uncompensated paths for the
fiber compensation. The only paths that are not in common mode are the paths A
and B, and they are compensated. The result can be seen on figure 3.5 as the green
data with a fractional stability of 9 · 10−18 at 1 s. This measurement is a control
measurement of how it would look with fiber noise, but there is a limit to the noise
compensation. The reason why the stability is limited to 9 ·10−18 at 1 s could be due
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Figure 3.4: Experimental setup for measuring the fiber noise: Path A is always fiber
compensated. Path B has the option to be fiber compensated, and a changeable
length for the fiber.

to small retro-reflection after the AOMs along the fiber of path A and B due to light
reflection after the AOM. This will for instance have the same frequency as the light
reflected by the last Faraday mirror, therefore there can be an interference, aka: you
do not compensate exactly the right thing because there is a contamination in your
error signal by something you do not want to compensate. This is a known problem,
and I will explain how to go around it later in this section.

We stopped the noise compensation of path B in the next measurement. We did
this by powering the AOM in path B with a synthesizer, without having a PLL acting
on the fiber compensation, because we want to measure the fiber noise in a given
length of optical fiber. We will have the sum of noise from the fiber AOM and the
uncompensated fiber with the total length of path B being 10 m. We got a stability
of 7 · 1016 at 1 s, which is shown as the red data on figure 3.5. We can clearly see
that the system becomes a lot less stable without any fiber compensation, where the
stability is almost two orders of magnitude worse than with path B compensated.

We also did this measurement where we removed the AOM to see the contribu-
tions from the thermal fluctuations of the AOM. The black data shows the setup
without the AOM in path B, but the stability does not look affect by the AOM’s
thermal fluctuations. We also extended the fiber to 30 m which is seen as the pink
data. The data was a bit noisy due to activity in the laboratory, probably due to
polarization changes, which can cause fluctuations in the SNR. Therefore I only took
the stretch of data corresponding to no activity in the laboratory. The data removed
for the black and the pink data have been marked on the time trace graphs.

Theoretical speaking, the standard deviation decreases with
√
L for uncorrelated

noise, where L is the length of the fiber [24]. The stability of the pink data for a
30 m fiber would be expected to have a

√
3 worse stability than for the black data

with a 10 m fiber. This is also the case when having a stability of 2 · 10−15 at 1 s for
a 30 m uncompensated fiber. The same logic can be used to imagine shorter fiber
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Figure 3.5: Measurement of the degradation in stability due to fiber uncompensated
paths. The experiment is measured from the setup shown on figure 3.4. The removed
data is shown on the time trace data to the left. The measurements have been
measured with a frequency counter in Λ-mode (see section 2.3.1).

lengths, where 1 cm of uncompensated fiber would add an instability contribution
of 7·10−16
√

1000
= 2 · 10−17 at 1 s. This is of course a very rough estimate, but it illustrates

that just 1 cm of uncompensated fiber is enough to limit the stability of a high level
stability setup like the transfer of spectral purity.

Free-space noise

I have measured the free-space noise to know the limitation of our setups when
changing the setups from fiber to free-space optics. The setup needed for noise com-
pensation in free-space is shown on figure 3.6. The setup shows noise compensation
in free-space when a beat note with the comb is acquired. The setup for free-space
compensation is very similar to the fiber compensation explained above. The light we
want to compensate in this example is the clock laser from one of the atomic clocks
to create a beat note with the comb. The idea of a free-space noise compensation
setup is to have the uncompensated path in free-space, where the amount of added
noise is lower. This is because of the index of refraction is smaller in air than fiber,
where the fluctuations of the index will be much smaller, which will cause much less
phase noise for the propagating light.

On figure 3.6, the phase front of the light after AOM2 is gaussian shaped as shown
by the black curves on the red beam. The whole phase front would not be reflected
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identical to itself, if we were to retro-reflect the light at this point when the phase
front is not flat. A cat’s eye is used for the reflection of the phase front, so we achieve
a flat phase front on reflection. A cat’s eye is composed of two lenses displaced by the
sum of the two focal lengths of the lenses. The waist of the light will be at the focal
length away from the lenses, where a retro-reflecting plate is placed to reflect the flat
phase front. The retro-reflecting plate in the cat’s eye does not need to reflect a lot,
as it reflects in the order of 10% of the light (∼ 50µW ). The transmitted light will
be collimated after the cat’s eye, because it works as a telescope. The light after the
cat’s eye will be combined with the comb to form a beat note. The reflected light of
the retro-reflection plate will go back through the AOMs to the photodiode, where a
beat note with the local oscillator is detected to do the noise compensation between
the two interferometer arms.

Figure 3.6: RF and optical system needed for a compensation of the fiber and free-
space noise when acquiring a beat note with the comb. The setup starts in the
bottom right corner, where the clock laser first goes to a beam splitter to reflect
the light for the local oscillator of the noise compensation. The transmitted light
goes to AOM1, which will be responsible for the noise compensation. The setup
is illustrating a transport of the clock laser between two laboratories (or between
two optical setups within the same laboratory). The light after AOM1 will go to an
optical fiber that delivers the light between the two independent laboratories, lab. 1
to lab. 2. The light to be compensated is done on the retro-reflecting plate, where
the transmitted light is combined with the comb.
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The detected beat note on the photodiode will be at a frequency of 2(F1 + F2),
since we are double passing the light through both AOMs. The signal will be mixed
with a synthesizer at a fixed frequency, so a PLL can act on a VCO to correct the
frequency of AOM1.

The stray reflection in the fibers and the reflection on the cat’s eye would be at
the same frequency, so there would be no way to distinguish them and it create a
delusion to the error signal that would be used for locking. In order to fight that,
AOM2 creates a frequency shift between the stray reflection in the fibers and the
reflection on the cat’s eye. The stray reflection in the fibers would create a beat note
on the photodiode at 2 · F1. This would not be seen on the compensation, since the
reflection on the cat’s eye will be at a frequency of 2(F1+F2). The frequency would
be the same of both reflection, if AOM2 was not placed. This would add some noise
in the system, which makes AOM2 critical to have installed.

The setup shown on figure 3.6 can still be modified a bit, if the noise compensation
of the fiber is taking place within the same laboratory. The fiber compensation can
act on AOM2 instead of AOM1, where you can remove AOM1. This will only require
one AOM, and you will still overcome the reflection problem, since the reflections
in the fiber would not have any frequency shift, and the frequency lock would be at
2 ·F2. This would not work with a transport of the frequency over a long distances,
because the RF signal to correct the AOM also has to be transported to AOM2,
where the RF signal could accumulate noise over the long distance.

There are two types of noise sources: The first type of noise is the interferometric
noise which is added to the low frequencies that comes from the free-space interfer-
ometer. The noise we see here comes from optical length fluctuations induced by
the sensitivity of the refraction index to vibrations, pressure change, temperature
change and so on. In my effort to limit this kind of noise in our setup, I have made
a distribution chain, which will be discussed in section 3.4. The second type of noise
is for the higher frequencies, which comes from the small time delay of the reflected
light traveling back and forth. This reflection noise would not be compensated be-
yond frequencies of c

n2L
, where cn is the speed of light in the medium of propagation

and L is the length of the compensated path [25]. The compensation will not work
at those frequencies since the time constant for the compensation is slower than the
frequencies. When we are transporting a fiber between laboratories, the length is a
maximum of 30 meters long. This would cause a delay bump in the compensation at
3 MHz, which is beyond the tracking bandwidth of the compensation. The tracking
usually has a bandwidth of 100 kHz, so these fast processes occurring at a few MHz
are not compensated, which will not affect the compensation. The limit to the band
of compensation would most likely come from the propagation of sound in the AOM.
We would not expect any noises to be added by the propagation, since most com-
mon noise sources will be in the low kHz range. The noises we will see in the fiber
compensation are thermal and mechanical sources. The thermal noise will be in a
band of 100 Hz, which we easily can remove, and the mechanical noises are acoustic
noise and vibrational noise, which have band of approximating 50 kHz.
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The atomic transition also works as a perfect low-pass filter, because the atoms
only catch the low Fourier frequencies around the resonance frequency, which is
important when considering the noise to compensate for the transfer of spectral
purity. We can write the excitation probability in the Rabi model from the following
equation; P2 = χ2

χ2+∆2 sin2(Ω
2
t) (see equation 2.17). The amplitude of the excitation

at a detuning ∆ is therefore: χ2

χ2+∆2 ' χ2

∆2 for χ � ∆. This is the case when
we have frequency noise larger much larger than the Rabi frequency of close to 1
Hz. The atoms will therefore see the 1 kHz noise with an excitation attenuated by;

1 Hz2

106 Hz2
= 10−6, which is negligible for an atomic ensemble of around 104 atoms.

The band of tracking is more critical for comparing atomic clocks from distant
laboratories through fiber links. The travel distance can be several hundreds of
kilometers, where the delay bump will affect the tracking, which gives a band at a
few 100 Hz. The fiber links will be discussed briefly in section 3.2, when discussing
the comparisons with PTB and NPL.

Figure 3.7: Setup for measuring the free-space noise with the option of changing the
length of the uncompensated interferometer arm (marked as a red line). The setup
starts in the upper left corner where the light at 1542 nm is sent to a beam splitter.
The Reflected light is our reference light that is being sent directly to another beam
splitter, where the two light paths later will be combined again to measure the noise
of the uncompensated paths. All the uncompensated paths are marked by a dashed
line. The black arrow is a RF signal imposing the correction on the AOM for the
fiber compensation.

I have designed a test setup to measure the free-space noise when doing noise
compensation with a fiber and a free-space local oscillator arm (the red path). The
setup is shown on figure 3.7. The transmitted light through the first beam splitter
is going to our noise compensation setup which is the same setup as shown figure
3.6, where the light is being split up to do the local oscillator for the compensation,
and the transmitted light is going through to a fiber. After the fiber an AOM is
placed to act on the noise compensation. The cat’s eye is placed shortly after with
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the retro-reflecting plate placed at the waist in the cat’s eye. The two light sources
are now combined again on a photodiode. The frequency of the beat note fsynth/2
is decided by the synthesizer mixed with the compensation error signal for the PLL
controlling the fiber compensation.

The noise of the optical setup shown on figure 3.7 will have the noise of all
the uncompensated paths drawn as dashed lines. When the small local oscillator
arm marked as red for the noise compensation is made as small as possible, the
total uncompensated length reaches 13 cm, where the blue uncompensated paths
correspond to the 9 cm out of the 13 cm of uncompensated paths. The reference
light and the fiber path are combined just before the photodiode. The noise will be
negligible after recombination as the lasers will be in common mode.
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Figure 3.8: Measurement of the degradation in stability due to free-space uncom-
pensated paths. The setup for the measurements is shown on figure 3.7. The legend
states the total length for the uncompensated path. The optical setup was placed
in a room with air-conditioning. The measurements have been measured with a
frequency counter in Λ-mode.

Results for the effect on the stability due to the amount of free-space uncompen-
sated paths are shown on figure 3.8. All the results show that the uncompensated
paths are dominated by flicker phase noise for the first 20-30 seconds of integration
time. The bumps are then caused by temperature fluctuations, because the temper-
ature is changing the path lengths of the uncompensated paths. The influence of
vibrations is set to a minimum (placed on a anti-vibration table), and is expected to
hardly contribute in a free-space setup any way. The setup is close to the worse case
scenario since there is an air-condition hood placed a few meters from the optical
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setup. This is not really how the optical setups are installed, since the uncompen-
sated paths are installed in plastic or metallic boxes to limit the air and temperature
fluctuations.
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Figure 3.9: Protected setup: Measurement of the degradation in stability due to
free-space uncompensated paths. The setup for the measurements is shown on figure
3.7. The legend states the total length for the uncompensated path. The optical
was setup protected with a blanket. The measurements have been measured with a
frequency counter in Λ-mode.

The experiment was repeated where a thermal blanket made from metallic polyester
was placed over the experiment. The measurement was rather sensitive to placement
of the blanket, because it was difficult to shield equally all the parts of the optical
setup. The results for the protected setup measuring the stability of the free-space
uncompensated paths are shown on figure 3.9. The stability got a lot lower, with
at least a factor of 3 for the stability at 1 s; e.g going from a fractional stability
above 10−17 to below 3 ·10−18 at 1 s for 13 cm of uncompensated paths. The blanket
also isolated the thermal fluctuations of the optical paths, which can be seen by the
much lower stabilities, where the bump kicks in due to the thermal fluctuations. The
stability changed a lot depending on the time a day for the protected measurement,
because the behavior of the temperature depends on the time a day the measurement
has been done. The long term stability changed the most, which can be seen on the
35 cm of uncompensated path, which had a better long term stability, because it was
taken through the night, where the temperature fluctuations are smaller.

The measurement of the free-space uncompensated paths shows that the amount
of uncompensated path hardly depends on the length for a stability at 1 s when
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the paths are well protected, and the thermal fluctuation are also suppressed a lot
from the protection. This shows the importance of protecting the optical setup, not
having air floating through the setups. We were able to reach a fractional stability of
4 · 10−18 at 1 s with 75 cm of free-space uncompensated paths. This gives an upper
bound on the stability for 75 cm of uncompensated paths in our optical setups due to
air fluctuations, since the uncompensated paths of the optical setups are protected
in more isolated environments like 1-3 cm of plastic/metal instead of a thin blanket.

3.2 Clock comparison

One of the fundamental pillars of science is that you should be able to repeat an
experiment at any given time and place, and to obtain the same result within the
theoretical frame work’s description of the experiment. The atomic clocks are built
exactly with this as the reason for their existence, and it is therefore important to
compare the atomic clocks around the world.

Figure 3.10: Optical fiber links of the French network for frequency comparisons
within Europe. The map of fiber link network was taken from [26, 27].

We are comparing our optical lattice clocks with NPL and PTB via an interna-
tional network of optical fibers distributed to the European laboratories a common
mode ultra stable reference at 1542 nm (see figure 3.10). The comparison between
the clocks allows measurements of the residual biases as well as assessing of the
operational limits of the clocks.
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We could e.g have a bias from the fact that we have two Sr optical lattice clocks.
They are both operated by the same clock laser, and the most of the electronics,
temperature, etc. We could have a bias originating from the spectrum of the clock
laser, e.g a sideband that would pull the resonance systematically on one side on
both clocks. We could also have a mistake on the estimation of the gravitational
redshift, which would cause a systematical frequency shift on all the optical lattice
clocks. There could be many similar cases, which need to be investigated through
comparisons of clocks in different locations with different designs.

The light from clock lasers can not be sent directly through the optical fiber
links. The optical fiber links transmit best in the C-band, with attenuation as low
as 0.2 dB/km around 1550 nm. We need to translate the frequency of the clock
laser into a frequency in the C band in order to compare the clocks. We use the
CUS at 1542 nm (in the C band) to compare the frequencies. Figure 3.11 shows the
comparison between SYRTE’s and PTB’s atomic clocks via the optical fiber link,
described below:

1. The clock laser is first compared with the atoms to measure the resonance
frequency of the clock transition.

2. The clock laser is then measured against the frequency comb, where it is pos-
sible to compare it to the CUS. The ratio in frequency between the clock laser
and the CUS can then be calculated.

3. The CUS light is sent towards Strasbourg, where a beat note with the equiv-
alent laser on the German side is counted. We compensate all the noise in
the Fourier band of interest (up to 100 Hz), there are repeater laser stations or
amplifiers along the fiber links. The 1542 nm laser is a common mode reference
for the different laboratories, its therefore possible to compare all the clocks to
this common mode reference.

The frequency ratio between the compared atomic clocks are derived in post-
processing by combining the measurements atom vs laser and lasers vs lasers. The
measurement of lasers vs lasers involving the comb are measured with the ”transfer
oscillator” method, which removes the parameters of the comb from the comparison
of frequencies, so it is a ”all-optical” measurement (the ”transfer oscillator” method
is explained in section 4.1).

3.2.1 Automation

In our efforts to prepare for the implementation of a continuously running system for
the optical lattice clocks, an automation of the electronics has been a lengthy process
when being in the process of making a completely continuous running laboratory.
This is especially important because SYRTE will be one of the key laboratory in-
volved in the PHARAO-ACES mission, projected to start in 2020. A large fraction
of the data acquisition and processing will be performed by the laboratory, therefore
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Figure 3.11: The comparison between SYRTE (Paris, France) and PTB (Braun-
schweig, Germany). The comparison between the clock lasers and the frequency
combs can be seen in both Paris and Braunschweig, where the final comparison be-
tween the 1542 nm lasers of SYRTE and PTB are measured in Strasbourg (France).
The figure was taken from [28].

justifying the need for a high degree of automation. The PHARAO is the first ever
cold-atom clock to orbit earth, which is going to be used for clock comparison and
metrology experiments. The clock comparison between the caesium clock on board
the PHARAO has to be compared multiple times a day when it passes over Paris.
The laboratories need to run automatically for the clocks to be measured on each
round trip. Continuity is in general important when we are talking about atomic
clocks, and it is also one of the things requested if we are going to have a redefinition
of the second based on the optical lattice clocks.

It has been my responsibility to automate frequency controls of DDSs called
”AD9912” and a beat note monitoring system, which can be used to control and
correct other devices in the laboratory. We have also made a software that re-lock
phase lock loops, which we are using to re-lock our frequency combs.

To ease the redevelopment of software, we are now programming everything in the
programming language python. This ensures that everyone uses the same program-
ming language, which makes it easier for others to make changes in old softwares.
My softwares are made into executable files, which makes them easier to distribute
due to the need for different python packages will harm the flexibility, as well as the
need for a python console to be open.
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Controlling the DDSs: AD9912

It is vital for a fully automated laboratory to control synthesizers over the Internet,
so we can re-center the beat notes, send new lock frequencies, etc. This can be
controlled automatically by a monitoring software or be done manually without any
presence in the laboratory. One of the DDSs we have been using is called AD9912
(datasheet AD9912). It is a DDS with 48 bits and it calculates the frequency from
the formula:

fout =
fin

2k
n, (3.4)

where k is the number of bits, fin is the input frequency, and n is the tuning word.
The tuning word is an integer that can be between [0, 2k−1]. The DDS can take
any given input, and create a rescaling of the signal. We are mostly using the DDS
for generating stable RF signals by having the input signal derived from the µ-wave
reference. We have also used the DDSs for the transfer of spectral purity, where
we rescale beat notes with the DDSs, which is described in section 4.1. The user
interface of the AD9912-software can be seen on figure 3.12. The user interface of

Figure 3.12: Graphical interface for the software controlling the AD9912s.

the program is to ease the usage of the software. Any monitoring software can then
talk to the program, if a new frequency or rescaling is needed like a new frequency
for an AOM, re-centering of a frequency, etc.

The commands for the DDS are sent as the tuning word in hex-decimals. There
is just the concern, that the order of the hex-decimals are changing depending on the
AD9912 for an unidentified reason. I have therefore made an encryption function to
customize the encryption of the hex-decimals to the DDS.

https://www.analog.com/media/en/technical-documentation/data-sheets/AD9912.pdf
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There is a flaw with the AD9912: That it can not take any uneven numbers for
the tuning word. We have therefore decided that we always want a frequency ”below
or equal to” the requested frequency for an even tuning word.

We have rescaled our µ-wave reference to 1000 MHz, as it is the maximum input
frequency. An example of how the program makes decisions on the frequency could
be following: If we want a tuning word that matches a frequency of 200 MHz, and
we were to calculate the tuning word; 200

1000
248 = 562 949 953 421 31.2. We would

then get the closest tuning word to be an uneven number instead of an even. The
desired tuning word would be at n = 562 949 953 421 30, because it would give us
the closest frequency below the requested frequency of 200 MHz. I have gone with
this code line to reach the requested tuning word;[

int
(fout

fin

247
)]
· 2, (3.5)

where int is taking the closest integer below or equal to. I then multiply by 247

instead of 248, so I can multiply by 2 after I have calculated the integer, since an
integer number multiplied by 2 always gives an even number. The int-function always
rounds down, so we get the desired tuning word. Putting a frequency of 200 MHz
into equation 3.5 a tuning word of n = 562 949 953 421 30 is achieved, which was
the desired tuning word. The achieved frequency would be 199 999 999.999 996 Hz,
with a hexadecimal of ”333333333332”.

Beat note monitoring

Another important feature is to monitor the beat note between the comb locked to
the CUS and the clock lasers on the one hand, as well as the lattice lasers on the other
hand. I have made a software that talks to a RF switch and a spectrum analyzer to
monitor the beat notes. The RF switch has 6 input ports and 1 output port, and
an Internet control to change the input port. The output port is then connected to
the spectrum analyzer to analyze the spectrum of the signal. This gives the option
to change individual beat notes to check their frequencies. The user interface of the
program is shown on figure 3.13.

The program is streaming the data and the controls on the servers of SYRTE. This
allows the user to control the program anywhere. This program is vital when it comes
to continuous measuring the optical beat notes, because it grants the possibility for
problem shooting without being present in the laboratory. It also gives the possibility
for an automatic re-centering of the optical beat notes to the counters, since the
program can measure the frequency of the beat notes.

Re-locking of phase lock loops

We have also made a software for automatic re-locking of PLLs, because some PLLs
have tendencies to unlock. The software is used for re-locking the phase lock loop
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Figure 3.13: Graphical interface for the software controlling and monitoring beat
notes.

between the frequency combs and the CUS. Whenever the phase lock loop unlocks,
the software starts to scan over the error signal until it finds the lock point, where it
locks. It then checks if the repetition rate is the right one, by checking the frequencies
of the beat notes that are known. It will then start the search all over again, if it is
turns out to be the wrong lock point. The offset of the comb also drifts out of the
filters used for filtering of the signal. The software also acts on the current for the
offset of the comb, so the offset is re-centered to the central frequency of 70 MHz for
filter, that is filtering any additional peak away from the signal.

3.3 A new method to detect the offset of the comb

The frequency peaks of an optical frequency comb are not ultra stable, as a beat note
between an ultra stable laser and a comb would have a broad linewidth around 1
MHz, because it still contains the carrier-envelope offset frequency in the beat note.
The offset is left free running, and it is therefore not ultra stable. This means the
beat note has the same linewidth of the offset of the comb (f0), but the stability
becomes ultra stable when f0 is mixed out with the beat note (if the measured laser
is ultra stable as well as the repetition rate). The detection of the offset is crucial,
since we want to remove exactly the same offset as in the beat note of the comb.

The setup for the detection of f0 in the usual way is seen on figure 3.14. The setup
starts by having the whole octave spanning spectrum after the EDFA, which goes to
the SHG medium (the theory behind the detection of f0 has been explained earlier
in section 2.2). After the SHG the signals to detect f0 are within the spectrum of the
light, which will be at the highest frequencies of the spectrum. f0 comes from the
interference between the spectrum at 1050 nm and the frequency doubled spectrum
at 2100

2
nm. The spectrum is then split up with a PBS, where it reflects some of the
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Figure 3.14: The optical components in the comb for the detection of f0, and the
detection of the optical beat note between the comb and the Hg laser. HNLF is a
highly non-linear fiber, The SHG medium is optimized to frequency double around
2100 nm. The mirrors, lenses and lambda plates are not shown. The spectrum shown
before/after the HNLF is to illustration the broadening of the spectrum.

spectrum for the detection of f0, and it transmits the rest for the detection of the
beat note between the comb and the Hg laser.

We detect f0 in a dedicated RF output of the comb, coming from the photodiode
named ”Detection of f0” on figure 3.14. On top of that we discovered, by chance,
that a spectral peak corresponding to f0 was also present in the detection of the
optical beat notes formed with the same EDFA as the one used to detect f0. The
presence of f0 there makes sense, because the same spectrum to detect the offset
of the comb is also transmitted through the beam splitter cube, propagating with
the comb’s full spectrum for the detection of the beat note with the Hg laser. We
realized we could use it at our benefit, and we started an investigation of the what
we started calling ”magic-f0”.

We have tried different self-modulating RF chains for the demodulation of the
beat notes with magic-f0. This involves multipliers, mixers, amplifiers which all are
non-linear components. The best solution we found for the most clean signal in the
RF chains was a splitter and a mixer, where the signal first is split up and mixed
with itself again. The two big question then arise; ”can we trust the accuracy of this
approach? And do we achieve a better stability by the self-modulation scheme than
the usual way of demodulating with f0?”

The two methods for the demodulation of f0 are shown on figure 3.15. The signal
is filtered and amplified after the detection of the beat note between the comb and
the Hg laser. The frequency for the beat note is; fbeat = Nfrep + f0 − νHg. The beat
note is then split up into fbeat1 and fbeat2, where they are propagating for the two
different demodulation chains. fbeat1 is mixed with f0,EDFA, which is the f0 detected
just after the EDFA shown on figure 3.14. We will then obtain the signal;

fbeat1 = Nfrep − νHg + f0 − f0,EDFA. (3.6)

The signal is finally demodulated by a DDS in order to produce a beat close to 10
kHz, filtered by a narrow (1 kHz band) filter box centered at 10 kHz. The filter box
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Figure 3.15: The setup for measuring a beat note the usual method with f0,EDFA seen
on the RF chain; fbeat 1, Hg, and measuring the beat note with the magic-f0 method
(self-demodulating) seen on the RF chain; fbeat 2, Hg (f0,magic). After the photodiode
the RF signal first goes to a high-pass filter then an amplifier before being split up
into fbeat 1, Hg and fbeat 2, Hg.

creates a square signal of the sinusoid to help the counting, because it makes sharp
0 crossings. The signal is at last counted by a dead time free counter.

We have two signals in fbeat. We got both a signal at the frequency of f0,magic

and Nfrep + f0 − νHg. We can have the two signal mixed by splitting up fbeat2 and
mixing it again with itself. We will then obtain the signal;

fbeat2 = Nfrep − νHg + f0 − f0,magic. (3.7)

The signal is centered to the filter box and counted as well.
The intention is to eliminate f0, but which value is the smallest f0 − f0,EDFA or

f0−f0,magic. The measurements of fbeat1 (red data) and fbeat2 (green data) are shown
on figure 3.16. The two datasets are limited by the stability of the comb against the
Hg laser, since it is the stability of the comb against the Hg laser we are seeing.
We can instead compare the difference between the two methods; fbeat2 − fbeat1,
where the parameters of the comb will cancel each other. This is shown as the pink
data on figure 3.16, which are has an fractional stability of 8 · 10−19 at 1 s. The
measurement averages down dominated by the white frequency noise for the first
100 s. The accuracy is within the uncertainty of the stability with a mean offset of
the frequency to be 21.44 µHz. The statistical uncertainty of the mean value would
approximating be 15 µHz, which is comparable with the mean offset within 1.4σ.
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Figure 3.16: Measurement of the differential noise between the two methods for
detecting the offset of the comb (fbeat1 and fbeat2). The measurement is done using
the RF setup shown on figure 3.15. Two data point of the pink data have been
removed due to cycle slips (8 and 16 mHz away from the central frequency). The
measurements have been measured with a frequency counter in Λ-mode.

3.3.1 The effect of the pointing instability

The pointing instability is introducing Amplitude Modulation (AM) noise for the
detected beat notes, because the laser beam can fluctuate over the active area of
the photodiode. The detection of f0,magic is done on the same photodiode as the Hg
beat note, where the noise due to the pointing instability could be common for both
beat notes, reducing the noise of the detection of f0. The detection of f0,EDFA is
detected on a different photodiode, which could add an uncorrelated noise source to
the demodulation chain.

The setup to measure the pointing instability is shown on figure 3.17. The setup
is combining the Hg laser and the comb on a 50/50 beam splitter, where the combined
lasers proceed to two photodiodes. The advantage of this measurement is that the
two photodiodes will have separate pointing instabilities, but the Hg laser and the
comb will be in common mode on both photodiodes, because they are in common
mode when they are split up. There are created two signals on each photodiode,
which are fEDFA and fmagic that are the equivalent of fbeat1 and fbeat2 respectively.

We see the results of the measurement on figure 3.18. The measurement has
been done in Π-mode, which explains that the stability is a bit worse than shown
on figure 3.16, where the pink data is the equivalent of the black and pink data on
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Figure 3.17: Setup to measure the difference in noise between two photodiodes due to
the pointing instability. Both photodiodes have two different demodulation chains to
demodulate with f0,EDFA and f0,magic. The violet and green lines are optical signals,
and the black is the RF signals.

figure 3.18. It can be seen that the result for all the configurations are fairly close in
stability. The brown data is showing another measurement, where two identical RF
chains fed by the same photodiode are being demodulated by f0,EDFA and compared
on two counters. This measurement is a test of the limit to the setup, since we would
expect the two branches to have the same noise. the measurement shows a small
improvement in the stability, but we would expect a complete correlated dataset,
which means the limit of the setup comes from the the end of the RF chain in the
detection (either the filter boxes or the counters).

We have tested the signals after the filter boxes, and it shows that the filter boxes
are treating the noise a bit differently, where the sensitivity to the noise varies for the
filter boxes. This could very well be the limit to the chain, but the limitation can be
overcome by feeding more stable signals to the filter boxes, because the sensitivity
depends on the noise of the compared beat notes.
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Figure 3.18: Measurement of the pointing instability affecting the offset of the comb:
Measurements show all the combination of signals seen on figure 3.17. The brown
data is showing a new combination, where two identical RF chains with f1,EDFA

are made and compared. The measurements have been measured with a frequency
counter in Π-mode (see section 2.3.1).

3.3.2 Direct measurement of differential effects of the offsets

f0 can not be measured directly by the counters, because the width of the signal is
too broad to send it through the filter boxes. The different f0 signals can instead
be mixed together to create an ultra stable signal, but the problem is that it would
create a DC signal, so we have designed the RF chain shown on figure 3.19. The RF
chain mixes f0,EDFA with DDS1 too put an offset on f0,EDFA before it is mixed with
f0,magic. The RF signal is then mixed with DDS2, which centers the RF signal to the
filter box at 10 kHz to be counted.

There are several advantages of using this method to count our signals. The first
is that we can measure the values for f0 directly without involving the Hg laser,
where its SNR could set the limit of the measurement. The statistical noise depends
a lot on the SNR of a measurement, which easily can be the limitation to the counted
signals. The SNR will in the end set the limit to the stability of a measurement due to
the white phase noise, which sets the noise floor of the measurement, which sets the
limit depending on how easily the measured carrier frequency can be distinguished
from it. The second is that the signal we are feeding the filter box has extremely low
noise, where the filter boxes have shown to be less sensitive to the low noise signals.
The measurement of the frequency chain on figure 3.19 shows not to be limited by
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Figure 3.19: Setup used for comparing two signals that have the same mean fre-
quency, where they are ultra stable when compared, which is the case for f0,EDFA

and f0,magic.

the filter boxes, because we are hitting the noise floor of the counters. This can be
seen on figure 3.20, where the gray data shows the noise of the counter, because
a quantization of the measured frequency starts to show. The noise are common
among the channels of the counter, which can be seen on the black data, where the
differential noise between two channels are measured.

The measurements on figure 3.20 show that when comparing f0,EDFA with itself
(the blue data) and f0,magic with itself (the green data) the noise of the counter (the
gray data) sets the limit to the measure for short term stabilities, which is what
we would expect when comparing identical signals. There is some flicker for longer
integration periods for f0,magic − f0,magic, which could come from the SNR, since the
SNR sets the noise/stability floor of the measurement. This would explain the result
for f0,magic − f0,magic measurement, since we had some problems improving the SNR
of the measurement.

We can therefore conclude that the limit to the difference in stability between
f0,EDFA and f0,magic are at 3 · 10−19 at 1 s seen as the red data on figure 3.20, because
the RF chain is not the limit to the measurements. The comparison between f0,EDFA

and f0,magic has an offset of the mean value by -1.11 µHz. This is within the statistical
uncertainty of 2.8 µHz. The result shows that the accuracy is not affected by the two
methods of demodulating with f0, since the statistical uncertainty and the offset are
comparable. An offset at the µHz level is very small compared to the best published
uncertainty budgets, which are at the mHz level. Therefore this possible very small
offset between f0,EDFA and f0,magic are orders of magnitudes away from affecting this
budgets.

The advantage of detecting f0,magic is that we can have more power for the detec-
tion of optical beat notes. The beam splitter for splitting the light for detection of
f0,EDFA (see figure 3.14) can be removed, since we do not have to detect f0 the usual
way anymore. This gives us the option to send all of the spectrum’s power towards
the optical setups giving us greater SNRs for the optical beat notes.
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Figure 3.20: Measurements of the limitation to the frequency chain and to the offset
of the comb. The red, blue and green data are measured using the setup shown on
figure 3.19. The gray data is the noise introduced by the counter, which has been
measured by feeding an ultra stable RF source to the counter, where the quantization
of the output starts showing. The black data is the noise when identical signals are
compared on two channels of a counter. All the fractional stabilities are measured
against the Hg frequency, since the stabilities in the end will affect the stability of Hg
when demodulated with f0 in the RF chain. The measurements have been measured
with a frequency counter in Λ-mode.

3.4 The dispatching of an ultra stable laser

The dispatching of the CUS has been done in fiber optics, so the CUS could be
delivered to the optical setups at SYRTE. The optical setup for the dispatching can
be seen on figure 3.21. The uncompensated paths are marked as dashed lines. The
additional noise is from the fiber bringing the ultra stable laser to the dispatching
setup and the small local oscillator arm for the reflection. The uncompensated paths
will add noise to system, and the noise added needs to made as small as possible, so
we can achieve the best oscillator for us to transfer the spectral purity to the Sr and
Hg optical lattice clocks.

Some details can be improved further to the optical setup shown on figure 3.21:

1. All the branches are compensated on the same photodiode, which may result
in a saturated photodiode. It will also be hard to amplify the beat notes for
the fiber compensation, because the spectrum will be like a forest of beat notes
that has to be filtered out, since the spectrum features many peaks, nonlinear
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effects (in amplifiers,, mixers) may result in the apparition of unwanted peaks.

2. The local oscillator arm is an uncompensated fiber, which could be made in
free-space to reduce the noise due to uncompensated paths.

Figure 3.21: The optical setup used for distributing the frequency of the CUS. The
uncompensated paths are marked as dashed lines. All the outputs (to the right) go
to optical setups with retro-reflecting plates, so the light can be retro-reflected for
the fiber compensation.

In order to minimize the impact of these issues, we decided to design a setup with
uncompensated paths in free space, and multi-photodiodes. The optical setup of the
free-space dispatching setup is shown on figure 3.22. In order to have more power and
an average frequency that can be steered easily, a slave laser is locked to the master
laser, with an adjustable offset. The lock is based on a beat note slave-master formed
by the photodiode referred to as ”Master lock” on figure 3.22. The compensation
will then have an offset PLL acting back on the current of the slave laser. There will
be three branches to be compensated on three separate photodiodes for each slave
laser, instead of using one single branch with one photodiode to compensate all paths
for one slave laser. This allows us to avoid saturation of the photodiodes. All the
dashed lines are the uncompensated paths of this setup. The ultra stable points of
the slave lock is at the beam splitters combining the master and Slave 1, and beam
splitters combining the master and Slave 2. This means that the stability will be
the best at Output 3 for Slave 1, and the best at Output 1 for Slave 2, because they
have the shortest uncompensated path to the stable point.

We have also improve the locking of the master laser to the cavity, where we have
almost no uncompensated paths involved. This means that the ultra stable point of
locking to the cavity is noise compensated from the point of fiber compensating the
light going to the ”Cavity (output)”. The noise compensation of the master laser
uses the first local oscillator arm after the input of the master, where the error signal
for the noise compensation is measured on the photodiode named ”Cavity”.

The setup is not only limited to 6 outputs (3 for each slave laser), because we
can split up each output with a fiber beam splitter. This will create two fiber
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Figure 3.22: The frequency dispatching made to distribute the light of the slave
lasers that are locked to the master laser, to distribute the light to the optical setups
at SYRTE. The dashed lines are the uncompensated paths, Master lock is the pho-
todiode for the locking of Slave 1 and Slave 2 to the master laser. The color of Slave
1 is Navy-blue, Slave 2 is light-blue, and the master laser is pink. ”Cavity output”
is the fiber bringing the master laser to the cavity setup. The beam splitters used
for the local oscillator arm (for noise compensation) are green instead of blue (beam
splitter for splitting the power of the slave lasers). The black box around the optical
setup is the walls of the vacuum chamber surrounding the uncompensated paths.

compensations for each output, but it will not affect the stability of the setup or
saturate any photodiode, since we only have two beat notes on each photodiode with
low powers (∼ 300 µW).

We still have some short distances, between light splitting and the splitters where
the interferometric detection of the propagation noise is performed, which can not be
compensated by definition. To address this issue, we have made a vacuum chamber
around all the uncompensated paths of the setup. This will remove some of the
air fluctuations that would normally be in an optical free-space setup. We need to
take all the precautions that we can, as we are striving to reach a flicker floor in the
10−17 level for the future cavities. We reached a stability below 4 · 10−18 at 1 s for
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75 cm of uncompensated path (see on figure 3.9). The amount of uncompensated
paths within this optical setup will be much less than 75 cm, and the uncompensated
paths will be more protected from air-fluctuations and temperature fluctuations (in
vacuum). Therefore the residual noise due to the uncompensated path will be lower
than 4 · 10−18 at 1 s. I have designed the vacuum chamber in the software ”Solid
Works”, a 3d drawing of the vacuum chamber is shown in appendix D.



Chapter 4

Transfer of spectral purity

The field of transfer of spectral purity is a key technique within metrology physics,
which has been pushed forwards by the new near-infrared that has shown to pro-
duce new even more ultra stable cavities. This chapter will go through the transfer
oscillator technique, which is the method used to transfer the stability between the
optical signals. There will also be presented the optical setups needed to create ultra
stable beat notes, and the results we have gotten from the transfer.

4.1 The transfer oscillator technique

The transfer oscillator technique is used to phase link two oscillators together. The
transfer is made via an optical frequency comb, but the technical parameters of the
comb (frep, f0) are eliminated. The technique is very favorable, if you have one super
good cavity, its stability can be transfered to metrological target lasers (slave lasers),
for instance at the wavelengths necessary to probe atoms in optical lattice clocks.
This arguments is made stronger by the fact that cavities are better in the infra-red
domain (waists are larger on the cavity mirrors, which means better averaging of
the thermal noise), while clock frequencies are rather in the visible domain. Even
if one cavity is not better than the other, the technique can be used to phase link
two oscillators, and therefore the Dick effect is rejected when two clocks are probed
synchronously, where the noise is averaged faster down for the comparison (see section
4.3).

The transfer oscillator technique consists of 6 steps that can be followed on figure
4.1. The 6 steps are the following:

1. The first step is to detect the beat notes between the comb and each of the two
oscillators at play: the master laser (source of stability) on the one hand and the
slave laser (in need of stability) on the other hand. The detections can be done
on the same photodiode, or two different photodiodes. The detection of the
two beat notes after detection will have the frequencies; fM = νM−NMfrep−f0

and fS = νS −NSfrep − f0.

49
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2. We want to remove the parameters of the comb, so the first thing is to remove
f0 from the beat notes. This is done by mixing out f0. The detection of f0 is
preformed with the f-2f method (see section 2.2). The f0-free beat notes after

mixing are denoted as; f̃M = νM −NMfrep and f̃S = νS −NSfrep, both signals
are shown on figure 4.1.

3. We want to rescale both beat notes with the intention of removing frep, but
first we need to clean up the signals in a tracking oscillator, because a DDS
with several inputs would not be able to distinguish the clocking frequency. A
tracking oscillator consists of a VCO that is phase locked to the signal being
tracked, and the locking bandwidth is adjusted to be as small as possible while
satisfying the requirements of the experiment. This way, the signal and the low
frequency Fourier noise are ”copy and pasted” while the rest of the spectrum,
often populated with multiple peaks, is disregarded. This is a simple and
adjustable way of ”cleaning” a RF signal. To this end, the signal from the
VCO is mixed with the beat note and the resulting error signal is used to
phase lock the VCO to the beat, with a bandwidth of a few kHz.

4. We can now rescale the beat notes. The rescaling is done with a DDS, and it
uses the formula to compute the output signal: fout = fin

2k
n = fin

M
, where n is

an integer in the range [0, 2k−1], and the number of bits (k) is 48. The master
and the slave signals will be rescaled with the factors MM and MS. We want
to do a rescaling, so the following is fulfilled; NM

MM
= NS

MS
.

5. The beat notes are now rescaled in such a way that frep will be rejected, when
the signals are mixed with each other. We get the transfer signal to be;

ft =
f̃S
MS

− f̃M
MM

=
νS
MS

− νM
MM

. (4.1)

6. All the technical parameters of the comb have been eliminated in equation 4.1,
therefore the comb was used only as an intermediate oscillator, or ”transfer
oscillator”.

The final step of the transfer is to correct the frequency of the slave laser, so it
has the spectral purity of the master. The transfer signal is being mixed with
a synthesizer that is fixed to a frequency close to the frequency of the transfer
signal. The signal is then going through a PLL to a VCO that is correcting
the frequency of the slave laser with an AOM (But it could also be done in
e.g an offset lock instead of an AOM). The transfer of spectral purity scheme
is now giving the slave laser the spectral purity of the master laser, when we
disregards the noise in transfer scheme.

The transfer oscillator technique is locking the transfer signal to the synthesizer,
so we need to make sure that the synthesizer is not adding any noise to the transfer.
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Figure 4.1: The transfer oscillator technique used for transfer of spectral purity. The
transfer signal (ft) formed after the rescaling of the beat notes is sent to the AOM
to close the PLL to transfer the spectral purity to the slave laser from the master
laser.

Once the PLL is closed, we have the following relation:

νS
MS

− νM
MM

= fsynth. (4.2)

Note that this approach connects directly the master laser and the slave laser. The
transfer oscillator approach is also used in post-processing of data to derive frequency
ratios when clocks are compared, locally or in international campaigns, to neglect
the parameters of the comb.

The frequency νM is typical in the order of a few 1014 Hz, where the frequency
of fsynth is in the order of 107 Hz. We have 7 orders of magnitude difference between
the two quantities. The synthesizers of our laboratory are referenced to the µ-wave
reference, which has a fractional stability of 2 · 10−15 at 1 s, which is sufficient to
discard the noise of the synthesizer. The noise of the slave laser after the transfer
can be calculated from equation 4.2, which is the following;

σ(νS) = MS

√
σ2(νM)

M2
M

+ σ2(fsynth) ' MS

MM

σ(νM) ' νS
νM

σ(νM). (4.3)

The number NSfrep is very close to νS usually within 125 MHz, and the rescaling is
trying to fulfill the quantity; NM

NS
= MM

MS
, which justifies the approximation MS

MM
' νS

νM
done in equation 4.3. The equation shows rescaling of the noise with νS

νM
, which

means the slave laser is copying the fractional noise of master.
The next thing to consider is how precise can we achieve the ratio NM

NS
= MM

MS
. We

want to rescale our master laser, which is for the moment the CUS, so a rescaling of
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other beat notes can be rescaled to match the ratio; NM

NS
= MM

MS
. For practical reasons

we have chosen the value MCUS = 2.5, since νHg/νCUS is about 1.5, and the DDSs
can be rescale by at least 2, it would not be sufficient to rescale only the Hg beat, it
is necessary to rescale both beats. We want to choose the right tuning word of the
DDS, so we have as little as possible of frep in our transfer signal. The amount of frep

in our signal can be expressed by the ratio; ε = NM

MM
− NS

MS
. We can therefore rewrite

the frequency of the slave laser from equation 4.2 including the repetition rate as;

νS = MS

( νM
MM

+ fsynth + εfrep

)
. (4.4)

The number for the tooth of the comb (N) is in the order of 106, and for a DDS with
k = 48 bits, ε can mostly vary with NS/2

48, which is at most 10−8. The fractional
stability of frep is in order of 10−15 at 1 s, because it is referenced to the CUS.
The noise contribution to the transfer signal from the repetition rate can then be
calculated to be a fractional stability in the order of 10−29 at 1 s, where the repetition
rate easily can be discarded as a noise source in the transfer oscillator technique.

4.1.1 Noise of the transfer

Every noise source has to be thought of when the goal is to reach fractional stabilities
in the 10−18 level at 1 s for the transfer of spectral purity. We have two systems that
we have to optimize, which are the RF setup and the optical setup. The RF setup
starts at the detection of the beat notes on the photodiode, and to point where the
frequency change has been imposed on the slave laser. To cover some of the noise
components that should be thought of, when making a RF scheme for the transfer
of spectral purity, the following elements have to be considered;

RF noise sources
Non-linear com-
ponents:

Mixers, multipliers, amplifiers and filter boxes

Tracking oscilla-
tor:

The band of the tracking, and the SNR of the beat notes

Ground loops: Grounds connections between different laboratories, and
many connections to same power source

AM to PM con-
version:

Filter boxes, counters, photodiodes and mixers

Table 4.1: Noise components for the RF chain of a transfer scheme that can con-
tribute to the noise floor.

One of the noise sources that has to be thought of is the band of the tracking. We
want to track the noise of both the master laser and the slave laser, because we need
to have instantaneous information on the differential noise between the master laser
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and the slave laser in order to induce a correction to servo this differential noise to
the reference synthesizer. The band of tracking should not be to wide, because the
tracking would pick up to much background noise. The band of the tracking also has
to be the same for both lasers, since the noise would otherwise be tracked differently,
and this would introduce a differential scaling of the noises, which would degrade
the tracking. There are a lot of components like the filter boxes and counters that
are involved in the assessment of the tracking, which are important to evaluate the
level of the transfer. The AM to Phase Modulation (PM) conversion are often talked
about due to the pointing instability, and we have not been able to understand the
conversion in the filter boxes and counter in details.

The optical setup can easily be the limiting factor to a measurement (see section
3.1.1). The following table gives an overview of the noise components that should
be thought of when making an optical scheme for the transfer of spectral purity;

Optical noise sources
Pointing insta-
bility:

AM noise on the photodiode from mechanical fluctua-
tions

Path length fluc-
tuations:

Phase drift between the optical signals from temperature
fluctuations, air fluctuations or mechanical vibrations

Back reflections: Parasitic reflections at the same frequency as the peak
carrying information about the path length fluctuations

Table 4.2: Noise components for the optical setup of a transfer scheme that can
contribute to the noise floor.

Many of the noise sources mentioned above are of course mostly due to the fact
that all the paths can not be compensated. The environment is very important when
there are uncompensated path, so we want to minimize the temperature fluctuations,
air fluctuations and mechanical vibrations of the optical setup. The measures we have
been taking to prevent all of these things will be explained in the following sections.

4.1.2 Out-of-loop assessment

To assess the noise of the transfer, an out-of-loop measurement is necessary, because
it is the only measurement that shows all the residual noise, while a measurement of
the in-loop signal gives access to the noise of the locking signal within the bandwidth
of the tracking, and the residual noise beyond the bandwidth of the tracking.

An out-of-loop measurement compares the locked quantity to the reference via
an independent measurement device. The two measurements are then compared by
the differential noise, which gives us an estimate of the noise of our system. The
method used to evaluate the noise of the transfer is shown on figure 4.2. We have
the transfer on the left hand side on the figure, where the transfer of spectral of
purity from the master laser to the slave laser is completed. Another identical setup
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is prepared to assess the technical noise added by the transfer process. The setup
uses the slave laser, the master laser and another comb to decouple the transfer from
the assessment. It is important to use another comb to decouple the two systems
from any bias noise added by the comb.

Figure 4.2: Out-of-loop measurement of transfer of spectral purity from the slave
laser to the master laser. Comb 1 is transferring the spectral purity to the slave laser
from the master laser, where Comb 2 is used for measuring the master laser and the
slave laser to assess the noise of the transfer.

We can write the frequency of the slave laser after the transfer of spectral purity
as;

νS = MS

( νM
MM

+ fsynth + εtrans

)
, (4.5)

where εtrans models the total noise added by the transfer. The readout setup will
measure the two beat notes directly as f0-free beat notes. We can do the same
rescaling in the post-processing of the readout data, as we would do in the tracking
oscillator technique. The noise of the transfer signal f ′t for the readout setup is;

f ′t =
νS
M ′

S

− νM
M ′

M

+ εdetect, (4.6)

where εdetect models the total noise added on the readout side. The readout setup
will measure the frequency of the slave laser after the transfer as written in equation
4.5. The equation of the detections can be rewritten as;

f ′t =
( MS

M ′
SMM

− 1

M ′
M

)
νM +

MS

M ′
S

(
fsynth + εtrans

)
+ εdetect. (4.7)
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The noise of the synthesizer is negligible as discussed earlier. The coefficient in front
of νM is small, because the ratios between the tooth numbers for the assessment and
transfer comb are almost the same for both setups, since we are dealing with the same
lasers and almost the same repetition rates. We can therefore do the approximation;
NS

NM
' N ′S

N ′M
→ MS

MM
' M ′S

M ′M
. This makes the noise of νM negligible as well, because

the pre-factor is insignificant. We can write the noise of the transfer signal that is
detected at the readout as;

σ(f ′t) =

√(MS

M ′
S

)2

σ2(εtrans) + σ2(εdetect) '
√
σ2(εtrans) + σ2(εdetect). (4.8)

The total noise is the quadratic sum of transfer noise and the detection noise, because
we see the two noise sources as uncorrelated systems. The transfer noise and the
detection noise can be similar or completely different, depending on the part of the
setup the noise comes from: The RF-chain of the two systems are not symmetric,
because one deals with the transfer and the other with the detection. The noise could
come from either the tracking oscillator, the filter boxes, etc. which are different
components needed in the separate RF chains. The only thing we would be able to
say in the scenario of being limited by the RF chain is that the noise of the transfer
is below the total measured value, because of the asymmetry of the setup. Some of
the asymmetry could be overcome by creating a new analog transfer beat, instead of
doing it by post-processing, and measure the stability of the transfer signal directly.

The optical setup are made, so they are as similar as possible. If the measured
noise would originate from the optical setup, we can assume the transfer noise and the
detection noise equal to each other; εtrans = εdetect. The total noise of the transfer
can then be seen as; σ(εtrans) = σ(f ′t)/

√
2, so the noise is the square root of the

detected stability. In fact σ(f ′t) is the noise of transfer at the worst case scenario,
where we would be in case of having; σ(f ′t) = σ(εtrans).

4.2 Optical setup

The optical setup for the transfer scheme needs to be designed with the consideration
of noise in every aspect of the design. The transfer of spectral purity can be designed
in two methods called ”single-branch” and ”multi-branch” transfer of spectral purity,
which are important to understand for the reduction of noise introduced by the
EDFA. The single-branch transfer of spectral purity is straight forward, the two beats
are formed with the same output of the comb, so the comb’s noise is in common mode
between the 2 signals. Reminding that the comb is an erbium comb, so the frequency
span goes from approximating 1050 to 2100 nm after spectral broadening. The CUS
(1542 nm) and the Hg laser (1062 nm) are both in the range of comb, so they can be
measured and transferred directly by the comb. This is the single-branch transfer of
spectral purity, because we are using the same output of the same EDFA to measure
both frequencies.
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In the multi-branch setup, the two beat notes are formed with independent out-
puts of the comb, therefore there is uncorrelated noise between the two frep, and it
can not be removed completely. An illustration of a multi-branch setup is shown
on figure 4.3, where the transfer of spectral purity is between Hg and Sr. The light
of the comb needs to be frequency doubled to populate the spectral region around
698 nm, because the erbium comb does not reach the frequency of a Sr clock laser
at 698 nm. EDFA 2 needs to be optimized at a frequency of 1396 nm, so we have
more power for a SHG of the comb’s light. The beat note between the Sr laser and
the comb will be at fSr = 2mfrep + 2f0 − νSr. The beat note will contain two times
f0 due to the frequency doubling of the comb’s light. The beat note with the Hg
laser is formed with the light of the comb coming from EDFA 1, where the transfer
is directly done between Hg and Sr.

Figure 4.3: Illustration of an optical setup for multi-branch transfer of spectral purity
between Hg (1062 nm) and Sr (698 nm). The transfer signal is form directly between
the two EDFAs.

The results we got for the multi-branch transfer of spectral purity in free-space
was a fractional stability of 3 · 10−16 at 1 s. This result will be shown later on figure
4.10 as the pink data. The result is a lot worse than for the best lasers reaching
stabilities of 4 · 10−17 at 1 s [29]. The result for multi-branch is not sufficient for
the transfer of spectral purity, and the only option is therefore to do single-branch
transfer of spectral purity.

4.2.1 Single-branch transfer between 1062 nm and 1542 nm

The band of an InGaAs photodiode covers both 1062 nm and 1542 nm. The transfer
of spectral purity will therefore be performed on the same photodiode for both beat
notes. We have based the noise compensation setup on a technique developed by the
PTB team ”Working group unit of length”. The setup we have designed is shown on
figure 4.4, where it shows all the metrology lasers combined on the same long-pass
1400 dielectric before noise compensation. All the lasers then proceed to be combined
with the comb to form the beat notes on the same photodiode. We have added an
extra laser for the Spectral Hole-Burning (SHB). The purpose of the SHB project is
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to use rare-earth doped crystals to achieve better short term stabilities than possible
with a cavity, because of the length fluctuations seen in a cavity (see reference [30]).

Figure 4.4: Optical setup for transfer of spectral purity from an Infra-Red (IR) laser
(1542 nm) to the Hg laser (1062 nm), and with the option of using the SHB laser
(1160 nm) for transfer of spectral purity. All the lasers are fiber compensated on
the same retro-reflecting plate, where they are combined with the comb on the same
50/50 beam splitter before detection on a photodiode.

All the branches for the lasers on figure 4.4 starts by going through an AOM. This
AOM will be used for propagation noise stabilization (see section 3.1.1). The AOM
makes the retro-reflection for the fiber compensation distinguishable from any small
reflection in the fiber, which makes a more robust fiber compensation. The Hg laser
is combined with the SHB laser on a short-pass filter at 1100 nm, where they are met
by a long-pass filter at 1400 nm to combine all the lasers. The lasers then go through
a cat’s eye, where 10% of the light is retro-reflected for the noise compensation. The
light transmitted through the retro-reflecting plate is being combined with comb’s
light on a 50/50 beam splitter, where the beams follow each other to the photodiode.

The only uncompensated path in the optical setup will be right after the retro-
reflecting plate until the lasers hit the photodiode. The comb will be in common
mode with the lasers, when they are combined on the 50/50 beam splitter. The
tooth of the comb and the lasers will be separated by frequencies less than 250 MHz,
and it implies that differential dispersion effects can be neglected when the comb and
the lasers are in common mode. We can discount any noise when the beams are in
common mode, because the noise added will be equal for both frequencies, and the
obtained beat note will therefore be unchanged.

A better understanding of the system

The path that is marked as a dashed line on figure 4.4 has often been expressed as the
path, where the noise will be added to the optical setup. After a lot of consideration
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when writing my thesis, I got to the conclusion that this path would not be the main
contributor of noise in the optical setup. The reason is that the transfer of spectral
purity will not see noise added in the dashed line, because the noise of the Fourier
components will be added to all the lasers. The noise will then be mixed out when
comparing the beat notes in the transfer scheme.

A counterargument to my reasoning could be that the index of refraction would
differ due to dispersion of the different lasers frequencies. The small phase change
due to a difference in index of refraction can be written as;

δϕ =

∫ L

0

∆n(s)
ω

c
ds =

ω

c

∫ L

0

∆n(s)ds ' ω

c
∆nL, (4.9)

where ∆n is the change in index of refraction for the given wavelengths, c is the speed
of light and L is the length of the distance, where the light will have accumulated
the phase shift.

The residual noise of the transfer between the Hg laser and the CUS due to phase
changes δϕ can be written as;

ϕHg + δϕHg −NHgfrep

MHg

− ϕCUS + δϕCUS −NCUSfrep

MCUS

=
( ϕHg

MHg

− ϕCUS

MCUS

)
+
(δϕHg

MHg

− δϕCUS

MCUS

)
,

(4.10)

The repetition rate will be rejected due to the rescaling of the signals. We get a
constant term and a fluctuating term from equation 4.10, where we can evaluate the
constant frequency change due to the uncompensated path to be;( ϕHg

MHg

− ϕCUS

MCUS

)
=
( ωHg

MHg

nHg −
ωCUS

MCUS

nCUS

)L
c
' ωHg

MHg

(nHg − nCUS)
L

c
. (4.11)

We can do the approximation
ωHg

MHg
' ωCUS

MCUS
, because the M values are chosen to reject

frep, where we have a the same relation with ω, since ω is close in frequency to frep.
The index of refraction for air to the respective wavelength are n1542 = 1.000 273
and n1062 = 1.000 274 (for 15 Co and 101325 Pa) [31]. Evaluating the constant phase
shift of equation 4.11 gives a phase shift of 2 mHz for the 8 cm of uncompensated
paths after the noise compensation. This is only the constant phase change, which
would not change the stability of the transfer, since it is constant. It is only the phase
fluctuations δϕ that we care about, but they would be several orders of magnitudes
smaller, since the change of air pressure and temperature would give an even smaller
differential change in the air’s index of refraction for the two wavelength. The noise
added in the dashed lines on figure 4.4 can therefore be discarded.

There is just one thing to keep in mind when making this reasoning; ”the comb
also has a huge span of frequencies, and the same kind of dispersion will affect
it as well”. The light of comb first goes through a 1 m optical fiber where it is
collimated into free-space for 5-10 cm before it is combined with the lasers on the
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50/50 beam splitter. An Optical fiber has a much larger sensitivity to temperature
and pressure changes than air, which is also why light that is propagating in free-
space will accumulate less noise than in a fiber. The comb’s light would dependently
accumulate a lot more noise going from EDFA 1 to the 50/50 beam splitter than the
light would accumulate in the dashed path shown on figure 4.4.

We want a good mode-matching when the beams are combined, the same noise
will else not be seen by both beam, and it will then not be rejected when the beat
note is detected. But it seems unlikely that the limit would be due to mode-matching
of the beams, because the intensity profiles have similar waists within 25% and the
beams overlap is as good as the human eye can distinguish. The beams are also
hitting the same mirrors and photodiode, so the beams would see the same noise due
to vibrations.

Figure 4.5: The optical setup for the transfer of spectral purity just after the lasers
and comb are combined on the 50/50 beam splitter, where they are heading for
detection on a photodiode. flens is the focal length of the lens.

To illustrate why a pointing instability would occur, the optical setup right before
the beat notes are detected on the photodiode is shown on figure 4.5. There is one
mirror between the photodiode and the point of combining the comb with the lasers,
so the beams can be directed towards the photodiode. This mirror could be shaking
a bit, where the beam would start to move across the photodiode. We want to
overcome the problem of fluctuations of the detecting intensity due to a moving
beam, which would be detected as AM noise. The first reason of placing a lens
before the photodiode is to focus the beams down, so the waist is smaller than the
radius of the active area of the photodiode. We want to place the lens at the focal
length away from the photodiode, so the phase front is flat on detection. The beams
also become very robust to mirror vibrations, when having a lens placed at the focal
length away from the photodiode, since a beam coming far away to hit the lens will
”almost” be seen as a plane wave, even for a moving beam with small angles. This
means that the lens always will try to focus the beam into the focal point, which
implies that we need to place the lens as close as possible to the focal length.

The transfer signal between the Hg laser and the CUS is locked to the following
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PLL;
νHg

MHg

− νCUS

MCUS

= fDDS, (4.12)

where the Hg laser and the CUS will be locked to the synthesizer.

Results

The results for the stability of the transfer of spectral purity from Hg to CUS is
shown on figure 4.6. The fractional stability of Hg and the CUS are 10−15 at 1 s,
when measured against the assessment comb, which are shown as the green and the
red data respectively. The stability should be the same when having the transfer
of spectral purity, which we are seeing. We use the following equation to assess the
transfer beat;

f ′t/νHg = (f̃ ′CUS

N ′Hg

N ′CUS

− f̃ ′Hg)/νHg, (4.13)

where f̃ ′ is the detected f0-free beat notes, and N ′ is the tooth number for the
assessment comb. The transfer beat (f ′t) is divided by νHg to get the fractional
stability.
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Figure 4.6: The results for the transfer of spectral purity between the Hg laser (1062
nm) and the CUS (1542 nm). The fiber length for bringing the comb’s light to the
transfer of spectral purity setup was changed to 11 m instead of 1 m for the pink
measurement. All the measurements have been measured with a frequency counter
in Λ-mode.
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We got a fractional stability of the transfer of spectral purity between Hg and
the CUS to be 9 · 10−18 at 1 s. This result is by far better than any laser has shown,
which is of 4 · 10−17 at 1 s.

We wanted to test, if the dispersion effects in the optical fiber bringing the comb’s
light to the optical setup could have an impact on the stability. The frequency of Hg
is at 1062 nm, and the optical fiber bringing the comb is optimized for 1542 nm, we
could therefore lack SNR when extending the fiber due to loses. It turns out that
neither the SNR nor the stability at 1 s were affected when extending the fiber with
10 m, which is shown as the pink data on figure 4.6.

4.2.2 Single-branch transfer between 698 nm and 1542 nm

A significantly different approach was necessary to transfer from/towards 698 nm.
We are using EDFA 2, which is optimized for 1396 nm, so we can frequency double
the 1396 nm of the comb to reach the 698 nm of the Sr clock laser. The frequency
doubling in the SHG medium depends a lot on the temperature, as it can be seen on
figure 4.7, where the spectrum of the SHG for various temperatures is shown. The
Sr clock frequency is marked as the dashed yellow line at 698.4 nm, which is the
frequency that we want to optimize the temperature of the SHG for.

Figure 4.7: The spectrum of the SHG for various temperatures. The Sr clock fre-
quency is marked at 698.4 nm. The data is for the SHG of the assessment comb. The
spectrum has been measured with a USB2000 from ocean optics. The wavelength
measured has an uncertainty of 1.5 nm.

The optimal temperature is around 125 Co for the SHG medium, since the spec-
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trum for 125 Co is centered around the clock frequency. The curves of the spectrums
are for the SHG of comb in the assessment setup. The temperature can vary for
SHG medium, as the SHG in the transfer setup has an optimal temperature of 80
Co. The SHG was all ready optimized at my arrival for the transfer setup, because
it was used for the multi-branch transfer of spectral purity in the past.

Figure 4.8: Optical setup for transfer of spectral purity from the IR laser (1542 nm)
to the Sr laser (698 nm). The light of the comb is split up on a short-pass filter
at 1000 nm to be combined with the IR laser and the Sr on different 50/50 beam
splitter. The IR laser and the Sr laser have their own retro-reflecting plate for the
noise compensation before combined with the comb, where they are detected on
different photodiodes.

The optical setup is shown on figure 4.8, where we can see the light of EDFA 2
goes to the SHG. It creates different waist sizes of the 1542 nm light and the generated
698 nm light. This leads to a problem, if we want to do noise compensation of all
the lasers on the same retro-reflecting plate, since the beams of the cw lasers must
be mode-matched with the comb light. We would also have a problem with the
cat’s eye, if we were to use it for both Sr and the IR laser, because of the 2 lenses
would change accordantly to the wavelengths due to their large frequency separation
(dispersion effect). The decision was instead to split up the comb’s light after the
SHG on a short-pass filter at 1000 nm. The detection of the 698 nm light and
the 1542 nm light must be performed by photodiodes of different technologies, so it
anyway complicates the setup. The light of the comb can not be seen as compensated
when the teeth for the 698 nm and 1542 nm are split up, because the added noise
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has become uncorrelated when the beams are not in common mode any more. The
mode matching is sub-optimal after the SHG because the lenses focusing the comb’s
light towards the SHG medium can not collimate the beams equally afterwards due
to dispersion effects in the collimation lens.

I have designed a vacuum chamber to place the uncompensated paths within.
It will be placed just after the SHG, so the noise accumulated due to bad mode
matching is as small as possible. The Sr and the IR laser have their own cat’s eye
and retro-reflecting plate, where they are combined with the comb on independent
50/50 beam splitters. This setup will have a few centimeters of uncompensated paths,
and the vacuum chamber around the uncompensated paths are therefore crucial for
the design of this setup. The total amount of uncompensated paths are shown as
dashed lines in the setup, and the total length is around 20 cm of uncompensated
paths, which is a bit more compared to the Hg setup, which can be argued to have
0 cm of uncompensated paths.

(a) (b)

Figure 4.9: The optical setup for the transfer of spectral purity: In (a) the optical
setup and the optical paths within the vacuum chamber. The optical paths are only
an illustration and not the exact paths. In (b) the whole optical setup for the transfer
of spectral purity is shown to give a better overview of the optical setup.

Pictures of the optical setup for the transfer of spectral purity between Sr and
the CUS are shown on figure 4.9. The base of the vacuum chamber is installed
underneath the breadboard shown on figure 4.9a, the 3d drawings of the vacuum-lid
and the vacuum-base are shown in appendix E. The vacuum-lid is going to be placed
on top of the breadboard and vacuum-base. The windows are going to be tilted with
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a small angle to avoid unwanted reflections. The whole optical setup can also be
seen on figure 4.9b to give a better overview of the optical setup.

The transfer signal between the Sr laser and the CUS is locked to the following
PLL;

νSr

MSr

− νCUS

MCUS

= fDDS, (4.14)

where the Sr laser and the CUS will be locked to the synthesizer.

Results

The results for the stability of the transfer of spectral purity from Sr to CUS is shown
on figure 4.10. The stability of the Sr laser frequency against the CUS frequency was
2 · 10−15 at 1 s for this measurement (normalized by Sr frequency), which are shown
as the green (Sr) data and the red (CUS). The noise of the green data is much larger
than the red data seen on the time trace, but they are rescaled with the frequency
of their laser showing that the fractional stability is the same for the transfer.
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Figure 4.10: The results for the transfer of spectral purity between the Sr laser (698
nm) and the CUS (1542 nm). All the measurements have been measured with a
frequency counter in Λ-mode except the multi branch measurement, which was done
in Π-mode. This has not affected the stability of the multi-branch transfer, since
it only averages faster down for white phase noise, where we are getting the same
result in Λ-mode.

The transfer beat is rescaled the same way as Hg, which was done in equation
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4.13. The transfer beat for Sr;

f ′t/νSr = (f̃ ′CUS

N ′Sr

N ′CUS

− f̃ ′Sr)/νSr, (4.15)

The f0-free beat note is achieved a bit differently for Sr than the other beat notes.
The beat note of Sr after detection on a photodiode; fSr = νSr − Nfrep − 2f0. The
signal contains 2 times f0 that we have to mix out, which are done by sending the
f0 signal through a multiplier before mixing. This mixes out the 2f0 to achieve a
f0-free Sr beat note.

The stability of the transfer of spectral purity from the Sr to the CUS laser
achieved a fractional stability of 3.5 · 10−17 at 1 s, which is seen as the black data
on figure 4.10. This is a very good improvement from the multi-branch transfer of
spectral purity, which has a fractional stability of 3 · 10−16 at 1 s. The multi-branch
transfer of spectral purity was done directly between Hg and Sr, where EDFA 1 and
EDFA 2 were used respectively for the transfer. The assessment was then measured
with a Ti:Sapphire comb, which has an operational range of 0.5 − 1.1 µm, so the
assessment measured single-branch, since both the Sr and Hg frequencies are within
the operational spectrum.

The design of the distribution of the Sr laser also adds some uncompensated paths
to the transfer of spectral purity. The Sr laser is distributed on two different fiber
compensations for the transfer setup and the assessment setup. There is approxi-
mating 20 cm of uncompensated path between the two distributed paths. We have
the option for the future to put these paths under vacuum as well, but the paths
was not under vacuum during the recorded data on figure 4.10. The results shown
were also measured without any vacuum chamber around the uncompensated path
of transfer setup and assessment setup, because the vacuum chamber was finished
later than the measured result.

4.3 Dual single-branch transfer of spectral purity

In this section, we transfer the spectral purity directly from the Hg laser to the Sr laser
without suffering from the comb’s multi-branch noise as described before. To this
end, the dual single-branch transfer of spectral purity has the goal of establishing a
direct phase relation between Sr and Hg, after elimination of the noise of the different
outputs of the comb. This would then lead to common mode Dick noise and therefore
to a large rejection of the Dick effect when probing synchronously the Sr and the Hg
clocks with their respective lasers now having a phase relation.

The Dick effect can then be rejected by several orders of magnitude when com-
paring the atomic clocks, if the atoms are experience the same residual noise of their
clock lasers. The limitation to how free of the Dick effect the clock comparison can
be is decided by the stability of the transfer between Hg and Sr on the one hand,
and by the uncompensated phase degrading effects from delivering the lasers to the
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atoms (propagation noise, thermal noise in doubling crystals for the case of Hg, etc)
on the other hand.

We can transfer the spectral purity between the lasers; Sr, Hg or CUS. We can
form the two transfer signals, which were described in the previous sections;

νSr

MSr

− νCUS

MCUS

= fDDS1. (4.16)

νHg

MHg

− νCUS

MCUS

= fDDS2. (4.17)

The best stability at SYRTE is for the moment the Hg laser. Instead of locking
these 2 error signals individually, we mix them to form an unique error signal that
is νCUS free and it can therefore be an advantage to do the transfer from Hg to Sr
directly. The transfer signal we would get in this case would then be;( νHg

MHg

− νCUS

MCUS

)
−
( νSr

MSr

− νCUS

MCUS

)
=

νHg

MHg

− νSr

MSr

= fDDS. (4.18)

It is very important for this operation to have νCUS rescaled by the same value
MCUS in the transfer of Sr and Hg. This will make sure that νCUS will be rejected,
when mixing the two transfer signals. The Sr laser can then be locked to the Hg
laser, implying a similar stability for both of them if the transfer noise is negligible.
The CUS will then have the stability unchanged, since we are not acting on the laser,
where it is only used for comparing the noise of EDFA 1 and EDFA 2 to complete a
transfer which is immune to the differential noise of the EDFAs.

Figure 4.11: Illustration of an optical setup for dual single-branch transfer of spectral
purity with Hg (1062 nm), Sr (698 nm) and an IR laser (1542 nm). The transfer
oscillator technique is forming the transfer signal between the Hg laser and the IR
laser on EDFA 1, and it is forming the transfer signal as well between the Sr laser
and the IR laser on EDFA 2.

The illustration of an optical setup for the dual single-branch transfer of spectral
purity is shown on figure 4.11, where the transfer of spectral purity uses both the
single-branch transfer of spectral purity setups.
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A rejection of the Dick effect can also be performed by transferring the spectral
purity from the CUS to both the Hg laser and the Sr laser by two PLL (see equation
4.16 and 4.17). This is the intention when the new IR laser is installed, where we
can transfer the best stability at SYRTE to the Sr and Hg lasers. The IR laser is
expected to have a noise floor in the 10−17 level.

Results

The stability between the Hg and Sr clocks are measured by taking the fractional
ratio between the measured clock frequencies. The ratio is measured from;

y =
νHg

νSr

/ν0
Hg

νoSr

, (4.19)

where
νHg

νSr
is the measured ratio, and it being renormalized by the acknowledged

frequency ratio;
ν0Hg

νoSr
, between the Hg and Sr frequencies.
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Figure 4.12: Measurement of the renormalized ratio between the frequency of the Hg
clock and one of the Sr clocks: The green data is the unsynchronized measurement
between the atomic clocks, and the red data is the synchronized interrogations with
the dual single-branch transfer of spectral purity from the Hg laser to the Sr laser.

The frequency ratio between the unsynchronized clocks compared to the Hg and
Sr synchronized for the clock cycles with transfer of spectral purity gives a stability
improvement from 8.9 · 10−16 to 2.6 · 10−16 at 1 s, and an improvement with at least
a factor of 2 for longer integration times (see figure 4.12). This clearly shows the
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elimination of the Dick effect through the transfer of spectral purity. This is the first
ever result showing single-branch transfer of spectral purity between Hg and Sr clock
lasers (to the best of our knowledge).

An investigation of the noise in the paths delivering the clock lasers to the atoms,
could further improve the result. This would especially involve an analysis of the
noise introduced by twice frequency doubling the Hg laser (1062 nm to 266 nm), but
also a compensation or protection of the uncompensated paths for bringing the Hg
and Sr clock lasers to the atoms.



Chapter 5

Conclusion

The Dick effect is the limitation to the stability of optical lattice clocks at a few
10−16 at 1 s. There is no doubt that we need to make better lasers to probe the
atoms. The advancement within the field of ultra stable infra-red cavities gives the
short term stabilities that gives an extended coherence time such that the duration
of the probing of the clock transition becomes a larger part of the clock cycle time,
and reduces the residual noise, all which is needed to reduce significantly the Dick
effect. In order to provide optical clocks with an improved stability, the technique of
transfer of spectral purity transfers state-of-the-art stabilities obtained in the infra-
red domain towards target metrological wavelengths.

5.1 Summary

The stability of clocks at SYRTE is at the 7 · 10−16 level at 1 s at best. The strategy
we follow is on the one hand to build a new long cavity at 1542 nm, and on the other
hand to use erbium frequency combs to transfer the stability of the cavity to 698 nm
and 1062 nm. In order to evaluate the entire technical noise brought by this process,
we had to measure numerous effects that I will now summarize:

The degraded stability due to 10 m of uncompensated paths in optical fibers
showed a fractional stability of 7 · 10−16 at 1 s. This can be compared to the stabil-
ity due to 75 cm of uncompensated paths in free-space, which showed a fractional
stability of 4 · 10−18 at 1 s. The stability is therefore less degraded in free-space
optical setups, with approximating two orders of magnitude. The decision of going
to free-space optical setups instead of optical fiber is therefore advantageous.

Among the steps to transfer the spectral purity, the beat notes are all set free
of f0 by mixing out this quantity. We have investigated the following strategy: The
new method to detect the offset of the optical frequency comb showed at least a
fractional stability of 3 · 10−19 at 1 s, which was compared to the usual method
(detected in a dedicated output just after the EDFA). The accuracy was comparable
to the statistical uncertainty within 0.4σ. The results show that this method is
compatible with even the best published uncertainty budgets of optical lattice clocks
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at a few 10−18. The advantages of having more power sent for the detection of
optical beat notes (increasing the signal to noise ratio) by removing usual method of
detecting the offset is also favorable, especially for the Hg laser (1062 nm) being on
the edge of the erbium comb’s spectrum.

In order to improve the reliability of the frequency chain to allow long measure-
ment times (days, if not weeks, if necessary), we have focused our efforts on the
automatic re-lock of the phase lock loops (e.g: Locking of the frequency comb to
the 1542 nm reference cavity), controlling of DDSs and monitoring of optical beat
notes as well as automatic re-centering of frequencies, all controllable via the Inter-
net, all paves the way for a completely automatized laboratory without the need of
human interaction. We are therefore almost ready for the the PHARAO-ACES mis-
sion, which demands an automatized laboratory taking measurements of the clocks
multiple times a day all around the year.

The dispatching of an ultra stable cavity can easily put the restrains of the stabil-
ity. The stability of the new dispatching setup for distributing the ultra stable lasers
is crucial for the transfer of spectral purity to optical lattice clocks. This especially
comes into play for the installation of a new ultra stable cavity, since the expected
stability (down to an order of magnitude better), requires even better performances
from the links in order to dispatch the signal without significant degradations. The
result for the stability of 75 cm of uncompensated paths has shown that the new
dispatching will be restrained to a stability below 4 · 10−18 at 1 s.

Finally, the core of my work was focused on the transfer of spectral purity: The
transfer of spectral purity between the frequencies 1062 nm to 1542 nm reached a
stability of 9 · 10−18 at 1 s, and between the frequencies 698 nm and 1542 nm a
stability of 3.5 ·10−17 at 1 s. The level of performance that is reached by the transfer
of spectral purity is compatible with the level of performance for the best lasers in
the world that have reached a stability floor at 4 · 10−17. The stability of our new
long cavity will for sure not be limited simply by the transfer itself, having such good
stabilities for the transfer of spectral purity.

The dual single-branch transfer allows us to derive a direct relation between the
phase of the Sr laser and the phase of the Hg laser, which simplifies the locking
procedure (no intermediate lock to the infra-red cavity): The dual single-branch
transfer of spectral purity showed an improvement of the stability between the Sr
and Hg optical lattice clocks. The stability improved with a factor between 2 and
3.5, because of the rejection of the Dick effect due to synchronized clock cycles with
the transfer of spectral purity.

5.2 Prospect

The stability floor of the long cavity will clearly not beat the ”worst” transfer at
3.5 · 10−17 at 1 s, so the transfer will not be the limiting factor.

We are now ready to build the long cavity, we hope a floor somewhere in the
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10−17 range, which (by calculation) should result in a stability of 10−16/
√
τ . We

would still be more than 1 order of magnitude away from the ”limit” fixed by the
quantum projection noise, but still, we would gain a lot in terms of averaging time.

On top of that, we already saw an improvement when we probed the two clocks
synchronously, we will progress further on this technique, that will help to decrease
even more the impact of the residual noise. At some point, when the duty cycle
becomes > 80% (possible, hard but possible), then it starts to make sense to use
Ramsey spectroscopy instead of Rabi spectroscopy (before that the stability is hardly
improved).

We will also be able to generate ultra stable microwave signals with the new
cavity. This will be done by locking the frequency comb to the long cavity, which
would improve the comb’s stability. The detection of the repetition rate would
then generate an ultra stable microwave signal, which can be used to probe caesium
and rubidium in the atomic fountains. This could replace the cryogenic sapphire
oscillator, since it is cumbersome to maintain.

All these things will also help us in the test of fundamental constants, Lorentz
invariance and the search for dark matter. We are also going to implement a trans-
portable clock, with an excellent fiber link, which could lead to a clock that would
not need a local cavity, which simplifies many things (transportable is not necessar-
ily compatible with having a super well isolated cavity). This would also raise the
prospect of using transportable optical clocks for chronometric geodesy.
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Appendix A

Deviation of the transmission
through a Fabry–Pérot cavity

We can describe the strength of the reflected field of a cavity to understand how a
Fabry–Pérot interferometer works. We can consider U0 as field of the incident wave
hitting the cavity. If the field U0 is being reflected of the first cavity mirror, the field
reflected would be;

U1 =
√
reiπU0 = −√rU0, (A.1)

where r is the reflection coefficient. We can also consider the field U0 entering the
cavity and being reflected on the second mirror and transmitted back through the
first mirror;

U2 = −√rTeiϕU0, (A.2)

where T is the sum of first entering the cavity, and the field later being transmitted
back through the first mirror again. The phase eiϕ comes from the accumulated
phase on a round trip. We can describe the coefficient doing an extra round trip in
the cavity with R = reiϕ, this is assuming a symmetric cavity. We can describe the
N’th reflection from the cavity as;

UN+2 = RNU2 (N ≥ 0). (A.3)

We want to sum over all the reflections to see the behavior of the cavities total
reflection;

UR
U0

= −√r(1− [Teiϕ
∞∑
N=0

RN ]). (A.4)

We can use this for the infinite series;

∞∑
k=0

Rk =
1

1−R (|R| < 1). (A.5)

The energy is conserved in the resonator, this implies that the relation between the
transmission and the reflection follows from Fresnel formula; r + t = 1. We can use
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equation A.5 to rewrite the equation for the total reflection of a cavity as;

UR
U0

= −√r
(

1− Teiϕ

1−R
)

= −√r 1− eiϕ
1− reiϕ . (A.6)

The result of the reflection is called the reflection coefficient of a cavity. We can now
calculate the intensity as the amplitude of the field squared, I = |U |2:

IR
I0

=
∣∣∣UR
U0

∣∣∣2 = r
∣∣∣ 1− eiϕ
1− reiϕ

∣∣∣2 =
4R sin2(ϕ/2)

(1−R)2 + 4R sin2(ϕ/2)
. (A.7)

The transmission through the cavity can be calculated by using Fresnel formula
on equation A.7;

IT
I0

= 1− IR
I0

=
1

1 + F sin2(ϕ/2)
, (A.8)

where F = 4r
(1−r)2 = (2F/π)2 [8].



Appendix B

the beat note between a laser and
an optical frequency comb

To explain the frequency of a beat note between a laser and an optical frequency
comb, an understanding of the interference between light fields has to be explained.
The electric field of light at a point can formulated as;

E1(t) = A1cos(ω1t), (B.1)

where A1 is the amplitude of the field, and ω1 is the frequency. The intensity from the
interference between two light fields (E1 and E2 propagating in the same direction)
can then be expressed as;

I = |E1 + E2|2 = |A1cos(ω1t) + A2cos(ω2t)|2
= A∗1A2cos(ω1t)cos(ω2t) + A1A

∗
2cos(ω1t)cos(ω2t) + |A1|2 + |A2|2

(B.2)

We can now use the cosine relation; cos(ω1t)cos(ω2t) = cos([ω1+ω2]t)+cos([ω1−ω2]t)
2

[32], to get the final expression for the beat note between E1 and E2;

I = Re{A1A2}cos([ω1 − ω2]t) + Re{A1A2}cos([ω1 + ω2]t) + |A1|2 + |A2|2. (B.3)

There are two oscillating terms in equation B.3. A slow oscillation ([ω1 − ω2]t) and
a fast oscillation ([ω1 + ω2]t). The fast oscillation will be several of hundreds of
THz when dealing with optical signals, which is extremely far from what we are able
to detect. The slow oscillating term will oscillate with the difference in frequency
between the optical signals, which we can detect for optical signals on a photodiode.

The optical frequency comb can be written as;

fN = Nfrep + f0. (B.4)

We will only detect the frequency of the beat note for the optical comb frequency vs
the laser when their frequencies have opposite signs, following the logic of equation
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B.3. This gives us the frequency fN − νL. The final beat note between the laser and
an optical frequency comb will then become;

fL = Nfrep + f0 − νL. (B.5)



Appendix C

Gaussian beams in a cavity

The cavity curved mirrors results in a gaussian shaped phase front, this is illustrated
on figure C.1.

Figure C.1: Illustration of a cavity. The black lines is the phase front of the light
inside the cavity. The red is the spatial distribution of the wave, disregarding the
standing wave. L is the length of the cavity.

The phase of a gaussian beam propagating along the z direction is ζ(z) =
tan−1(z/z0), where z0 is the Rayleigh length. We only need to look at the phase
change within the optical axis of the cavity, because the phase front is the same
at each point hitting the mirror illustrated on figure C.1. This means that we can
calculate the phase change between each mirror and not consider the transverse axis
putting it equal to zero for x, y=0;

∆ϕ = kL−∆ζ, (C.1)

where ∆ζ = ∆ζ(z2)−∆ζ(z1) is the accumulated phase for a round trip in the cavity,
because of the gaussian properties. L is the length of cavity as seen on figure C.1
and k is the wavenumber. The phase change must be a multiple of π for the standing
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wave to have the minimal intensity at the surface of the mirrors. Taking equation
C.1 into account to calculate the allowed frequencies;

νm = mνFSR +
∆ζ

π
νFSR. (C.2)

We can see from equation C.2, that we have an offset from having spherical mirrors
[7]. ∆ζ can be calculated from the Rayleigh length knowing the geometry of the
cavity.



Appendix D

Vacuum chamber for the
dispatching of the ultra stable
cavity

Mechanical drawing made (in Solid Works) for the vacuum chamber used for the
dispatching of the ultra stable cavity;
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Appendix E

Vacuum chamber for the transfer
of spectral purity

Mechanical drawing made (in Solid Works) for the vacuum chamber used for the
transfer of spectral purity;
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