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ABSTRACT

We demonstrate how simultaneously operated 39K–87Rb interferometers exhibiting a high level of correlation can be used to make
competitive tests of the university of free fall. This work provides an overview of our experimental apparatus and data analysis procedure,
including a detailed study of systematic effects. With a total interrogation time of 2T ¼ 40 ms in a compact apparatus, we reach a statistical
uncertainty on the measurement of the E€otv€os parameter of 7:8" 10#8 after 2:4" 104 s of integration. The main limitations of our
measurements arise from a combination of wavefront aberrations, the quadratic Zeeman effect in 39K, parasitic interferometers in 87Rb, and
the velocity sensitivity of our detection system. These systematic errors limit the accuracy of our measurement to g ¼ 0:9ð1:6Þ " 10#6. We
discuss prospects for improvements using ultracold atoms at extended interrogation times.
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I. INTRODUCTION
Einstein’s theory of General Relativity (GR) is a cornerstone of

our current description of the physical universe at macroscopic scales,
and provides our most complete description for the laws of gravitation.
Gravity interacts in the same way with any mass/energy, which allows
for a geometric description of gravitation as the effect of space–time
curvature. The phenomenological manifestation of this universal cou-
pling is known as Einstein’s Equivalence Principle (EEP), which
hypothesizes an exact correspondence between the gravitational and
inertial mass of any object. Precise tests of this principle can advance
the search for physics beyond the Standard Model and GR, and may
shed new light on our understanding of the universe and its constitu-
ents, especially cold dark matter and dark energy.1–4

One aspect of the EEP—known as the universality of free fall
(UFF)—states that if any uncharged test body is placed at an initial
position in space–time and given an initial velocity, then its subse-
quent trajectory will be independent of its internal structure and

composition. Tests of the UFF generally involve measuring the relative
acceleration between two different test bodies undergoing free fall
within the same gravitational field. Such tests are characterized by the
E€otv€os parameter:

g ¼ 2
a1 # a2
a1 þ a2

; (1)

where ai is the gravitational acceleration of object i with respect to the
source mass. If the UFF is satisfied, the E€otv€os parameter is zero. The
UFF has been tested with an uncertainty at the level of 10#13 with
classical test bodies, as with a torsion balance,5,6 and more recently at
2" 10#14 by comparing two electro-static accelerometers onboard the
Microscope satellite.7 So far, no violation of the UFF has been
measured.

However, it is entirely possible that a violation of the UFF will
manifest as a quantum effect that is not included in GR. This moti-
vates using quantum objects, such as clouds of cold atoms, to test the
UFF for violations that classical objects may not be sensitive to. One
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possibility may stem from the fact that the classical and quantum
mechanical descriptions of motion are fundamentally different.
Consequently, considering quantum phenomena in the context of
gravity poses many conceptual and fundamental questions that may
shed new light on this frontier of physics.8

Atom interferometry offers the possibility of measuring the rela-
tive acceleration between two different atoms with a sensitivity that
scales as nkT2, where n is the number of photon momentum trans-
ferred to the atom, k is the wavevector of the interrogation light (typi-
cally '107 rad/m), and T is the free-fall time between light pulses.
Presently, among the most precise atom interferometric tests of the
UFF between two quantum bodies, we can cite a measurement using
cold rubidium isotopes with different angular momenta (87Rb jF ¼ 1i
and 85Rb jF ¼ 2i),9 reaching an accuracy of dg ¼ 6:7" 10#10 using
n¼ 4 photon momenta and a free-fall time of T¼ 203ms. Moreover,
Ref. 10 reports a sensitivity of 5:4" 10#11=

ffiffiffiffiffiffi
Hz
p

and an uncertainty
of 3:4" 10#12 with n¼ 12 and T¼ 955ms using the two Rb isotopes
in the same internal state. A more complete account of cold-atom-
based UFF tests can be found in Ref. 11.

So far, the majority of quantum UFF tests have involved two
atoms of the same chemical species (e.g., the isotopes of Rb or Sr), and
hence they exhibit near-unity mass ratios. A relevant test of gravity
theories requires test bodies with very different masses, but for atom
interferometers this also implies increased experimental challenges.
Nevertheless, three UFF tests using 87Rb and 39K have previously been
carried out. These atoms exhibit a mass ratio of 2.13 and differ greatly
in composition—making them more sensitive to possible UFF viola-
tions than isotopic pairs of the same chemical element.4 Schlippert
et al. reported dg ¼ 5:4" 10#7 with n¼ 2 and T¼ 20ms,12 and the
same group recently improved their result to 3:2" 10#7 by increasing
the free-fall time to T¼ 41ms.11 Our group previously achieved
3:0" 10#4 with n¼ 2 and T¼ 2ms in the microgravity environment
simulated onboard an aircraft.13 One of the main limitations in each
of these experiments is the potassium source, which exhibits larger
temperatures, lower atom numbers, and lower state purities compared
to rubidium. These features decrease the interference contrast and
increase systematic effects, which limit both the statistical uncertainty
and accuracy of UFF tests.

In this work, we present a new measurement of the E€otv€os
parameter using highly correlated 87Rb and 39K interferometers. With
a modest free-fall time of T¼ 20ms in a compact apparatus, we reach
a statistical uncertainty dgstat ¼ 7:8" 10#8 after 2:4" 104 s of inte-
gration. We evaluate the main systematic effects for each atom inter-
ferometer and find dgsys ¼ 1:6" 10#6, which is the dominant
contribution to our measurement uncertainty. The focus of this work
is twofold. First, we present a detailed analysis of experimental data
using two independent methods for correlated dual-species interfer-
ometers. One method correlates each atomic sensor with a classical
one to reconstruct interference fringes in the absence of a stable iner-
tial frame, while the other relies on Bayesian inference using correla-
tions between each atomic sensor output. We show that the two
analysis methods are equivalent, while the latter shows great promise
for future high-precision UFF tests with different chemical species.14

The second focus of this work is a detailed study of systematic effects
with these atoms. We have identified several surprising effects in 39K
that limit our measurement. This study serves as a necessary precursor
for future long-baseline interferometry experiments with these species.

The article is organized as follows. Our experimental setup and
data acquisition protocol are described in Sec. II. In Sec. III, we present
two methods to extract the E€otv€os parameter using correlated interfer-
ometers and discuss their performance. Section IV provides a detailed
study of systematic effects in our present system. We identify the main
limitations and highlight specific challenges working with 39K. Finally,
we conclude and give perspectives for future measurements in Sec. V.

II. COMPACT DUAL-SPECIES INTERFEROMETER
A. Experiment setup

Our apparatus was originally designed to operate in a micrograv-
ity environment, such as onboard the Novespace Zero-G plane13 or an
Einstein elevator,15 where large interrogation times will lead to
increased measurement sensitivity. However, in standard gravity, the
maximum free-fall time is limited to T ' 20 ms due to the close prox-
imity of the detection zone to the chamber center. Here, we provide a
brief overview of the apparatus. A more detailed description of the
setup can be found in Refs. 16–18.

Our robust and transportable device is comprised of a bank of
fiber-based lasers, an ultra-stable frequency source and a titanium sci-
ence chamber shown in Fig. 1. The 39K and 87Rb atomic sources are
derived from overlapped 3D magneto-optical traps (MOTs) loaded
from a hot background vapor. Lasers on the D2 transition for both
87Rb and 39K (780 and 767nm, respectively) and one on the D1 transi-
tion for 39K (770nm) are combined and split equally into six beams.
These cooling beams then pass through separate polarization-
maintaining fibers to optical collimators attached to the vacuum
chamber.

The interferometry beams for 87Rb (39K) are derived from the
same laser diodes as the D2 cooling beams via frequency-offset locks
at a detuning of D ’ #1:1 GHz (#1.3GHz) relative to the D2 cycling
transition jF ¼ 2i ! jF0 ¼ 3i. The two phase-locked optical frequen-
cies required for Raman transitions are derived from an electro-optic
phase modulator (PM) operating at 6.8GHz for 87Rb, and a dual-pass
acousto-optic modulator operating at 230MHz for 39K. The absolute
frequency stability of both laser systems is '500 kHz, corresponding
to a relative uncertainty of '1:5" 10#9 in the wavevector k. These
beams are combined with the same linear polarization in a commercial
collimator, and are aligned through the atoms and a quarter-waveplate
along the vertical axis before being retro-reflected by a mirror to create
a lin ? lin polarization geometry. This configuration efficiently drives
velocity-sensitive two-photon Raman transitions, while suppressing
Doppler-insensitive ones.

To prepare the internal state of the 87Rb sample, we use a
6.8GHz antenna aligned in the horizontal direction. Similarly, for 39K
we employ a sequence of optical pulses using a dedicated beam aligned
at 45( relative to the vertical (see Fig. 1).

The magnetic field at the MOT location is zeroed using three
orthogonal pairs of compensation coils, and we correct a small mag-
netic gradient using a pair of anti-Helmholtz coils along the vertical
axis. During the interferometer sequence, we apply a vertical bias field
of '120 mG. Due to the proximity of the lower coil to the aluminum
breadboard supporting the experiment, Eddy currents induce a large
temporal variation in the field that decays exponentially with a 1=e
time constant of '20 ms. We compensate this effect by applying a
feedback current on the bias coils during the interferometer that locks
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the magnetic field measured by a flux-gate sensor (Bartington
Instruments MAG03MCTPB500) located near the atoms.

B. Dual-interferometer measurement sequence

A dual-species MOT is loaded from background vapor in 0.5 s,
containing approximately 6" 107 39K atoms and 3" 108 87Rb

atoms.19 The rubidium atoms are then cooled in a standard red-
detuned optical molasses while the 39K atoms are cooled in a gray
molasses using blue-detuned light from the D1 line (jF ¼ 2i
! jF0 ¼ 2i).20 Both species have a temperature of '5 lK at the end
of the molasses cooling stage (see Fig. 2). We then prepare both species
in the magnetically insensitive state jF ¼ 1;mF ¼ 0i. A quantization
field is applied along the vertical axis in the form of a magnetic bias
field of '120 mG. For rubidium, we initially pump the atoms into the

FIG. 1. Experimental setup. Left: 3D drawing of our titanium vacuum chamber surrounded by a mu-metal magnetic shield. Right: lateral section of the chamber. Rubidium
(pink) and potassium (light blue) are cooled and trapped simultaneously in the central region. Both clouds are released at the same time and their accelerations are compared
relative to a common reference frame: a mirror that retro-reflects the two overlapped Raman beams. A large pair of Helmholtz coils on the vertical axis provides a magnetic
bias field, and we servo this field using a magnetic sensor located near the atoms. A mechanical accelerometer is fixed to the rear of the reference mirror to correct for
vibration-induced phase noise on both interferometers.

FIG. 2. Experimental sequence for the simultaneous K–Rb interferometers (87Rb above, 39K below). The MOT loading and molasses phases for each species are performed
simultaneously in order to release the atoms from the same location at the same time. The pulse sequence for the two interferometers is overlapped and identical (T¼ 20ms,
s ¼ 2:5 ls). The normalized populations in jF ¼ 2i are detected in a sequential manner by applying a staggered sequence of resonant pulses (see below).
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jF ¼ 2i manifold using the MOT beams—leaving them equally dis-
tributed among the five magnetic sub-levels. We then apply a micro-
wave p-pulse at 6.834GHz that coherently transfers '90% of the
atoms in jF ¼ 2;mF ¼ 0i to jF ¼ 1;mF ¼ 0i. A near-resonant push
beam subsequently removes atoms remaining in jF ¼ 2i—leaving
approximately 18% of the initial 87Rb atom number. For potassium, in
place of a microwave pulse we use a state-juggling technique based on
a sequence of coherent Raman and optical pumping pulses.18 This
preparation sequence reduces the 39K atom number to 40% of its ini-
tial value, but increases the state purity to >90% in jF ¼ 1;mF ¼ 0i
with minimal heating.

The simultaneous matter–wave interferometers are formed by a
p=2# p# p=2 sequence of counter-propagating Raman pulses, each
separated by interrogation time T, with durations s# 2s# s. To max-
imize the signal-to-noise ratio (SNR) of our measurements, we use
optical pulses with large Rabi frequencies (corresponding to a p-pulse
duration of 2s ¼ 5 ls). This increases the p-pulse efficiency to
approximately 75% (45%)21 for 87Rb (39K)—corresponding to 4" 107
87Rb atoms and 1" 107 39K atoms participating in the atom interfer-
ometers. The interferometer pulse sequence is identical for both spe-
cies. The bias field is kept on during the interferometer to ensure that
jF ¼ 1;mF ¼ 6 1i ! jF ¼ 2;mF ¼ 6 1i Raman resonances are
well-separated from those involving jF ¼ 1;mF ¼ 0i. To compensate
for the Doppler shift during free fall, the frequency difference between
Raman beams for each species S is linearly chirped, i.e., dSðtÞ ¼ aSt,
such that the chirp rate aS ’ kSg. This phase continuous chirp is also
used as a control parameter to scan the interferometer phase and to
identify the central fringe, as we discuss below.

The normalized output population in jF ¼ 2i is detected for
each species by applying a sequence of near-resonant optical pulses.
The atomic fluorescence is then collected on an avalanche photodiode
(APD) (Hamamatsu C12703, / 1.5mm active area, 10MHz band-
width). Figure 3 shows an example of a typical detection trace. First,
the number of 39K atoms in jF ¼ 2i (labeled N j2iK ) are detected via a
50 ls pulse resonant with jF ¼ 2i ! jF0 ¼ 3i. This signal decays rap-
idly due to optical pumping into jF ¼ 1i from the nearby jF0 ¼ 2i
state, which makes it necessary to use a high-sensitivity, high-band-
width detector for 39K. We fit this signal to an exponential function
and extract the peak value as N j2iK (see Fig. 3). This is followed by a
pulse of the same duration containing optical frequencies resonant
with both jF ¼ 2i ! jF0 ¼ 3i and jF ¼ 1i ! jF0 ¼ 2i. The intensity
ratio of these frequencies is adjusted to obtain as flat a signal as possi-
ble—representing an equilibrium in optical pumping rates between
the two ground states. This signal is also fit to an exponential function
and the steady-state value is extracted as N total

K . An identical protocol is
then applied for 87Rb to obtain N j2iRb and N total

Rb . Finally, the normalized
population in jF ¼ 2i for each species is determined from

Pj2iS ¼
N j2iS # bj2iS
N total
S # btotalS

; (2)

where bj2iS and btotalS are background signals determined from a sepa-
rate measurement sequence. This background sequence involves the
same measurement protocol, except the MOT gradient coils are kept
off such that the signal is dominated by stray light and fluorescence
from background vapor. We perform one background shot for each
set of 82 interferometer shots.

FIG. 3. Typical detection signals for 39K and 87Rb. (a) Full detection trace recorded by the acquisition system ('500 kHz bandwidth). An analysis of 39K (b) and 87Rb (c) signals
is shown on the bottom row. For each species S, fluorescence signals representing Nj2iS (left peak) and Ntotal

S (right peak) are fit to a model consisting of an exponential plus a
constant, and the maximum within each fit window (marked by vertical lines) is extracted. When combined with the background measurement, we obtain the normalized popu-
lation Pj2iS with a typical statistical uncertainty of 0.62% and 1.9% for 87Rb and 39K, respectively.
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C. Measurement principle and data acquisition
protocol

The primary goal of this experiment is to measure the E€otv€os
parameter

g ¼ aK # aRb
g

; (3)

where aS is the gravitational acceleration of species S ¼ Rb, K relative
to the reference frame defined by the common retro-reflection mirror,
and g is the known local gravitational acceleration. The output of each
atom interferometer is a sinusoidal fringe pattern given by

P"#S ¼ Y"#S #
C"#S
2

cos/"#S ; (4)

where " (#) represents a momentum transfer in the forward (back-
ward) z-direction. The fringe parameters YS and CS are the offset and
contrast, and the phase shift of each interferometer is given by

/"#S ¼ 6 ðkSaS # aSÞT2
eff 6 /vib

S þ /"#;sysS : (5)

Here, the first term contains the inertial phase of interest kSaST2
eff and

a precise control phase aST2
eff from the Raman laser frequency chirp.

The second term in Eq. (5), /vib
S , is a deterministic phase shift arising

from vibrations of the reference mirror. This phase is proportional to
the wavevector kS, and hence switches sign with opposite momentum
transfer. The third term /"#;sysS contains all systematic effects, which
we describe in detail in Sec. IV.

The effective interrogation time Teff is identical for both species.
For square Raman pulses with effective Rabi frequency Xeff and p=2-
pulse duration s, Teff can be shown to be22,23

T2
eff ¼

ð
f ðtÞdt ¼ ðT þ 2sÞ T þ 2

Xeff
tan

Xeffs
2

# $% &
; (6)

where f(t) is the atom interferometer response function. In our case,
with T¼ 20ms, s ¼ 2:5 ls, and Xeffs ¼ p=2, we obtain Teff

¼ 20:004 09ms. With identical timing, the ratio of interferometer
scale factors is simply

j ) kK
kRb
’ 1:017 657: (7)

As mentioned in Sec. II B, we simultaneously scan the phase of
the 39K and 87Rb interferometers by independently varying
the chirp rates aK and aRb. We operate the dual-species interfer-
ometer by interleaving measurements with þkS and #kS every
other shot. This k-reversal technique is a well-established method
for rejecting non-inertial systematic effects by more than a factor
of 100.24

Finally, during each shot, we record the output of a three-axis
mechanical accelerometer (MA) (Nanometrics Titan, sensitivity
4.1V/m/s2, bandwidth 200Hz) attached to the rear of the retro-
reflection mirror. These data allow us to post-correct the vibrational
motion of the reference frame using the dual-species fringe reconstruc-
tion by the accelerometer correlation (FRAC) method we described in
previous work.16 Figure 4 shows the mean accelerator output and vibra-
tion phase estimates for the Rb interferometer. We make a first-order
correction of the accelerometer bias drift by subtracting linear fits from
the mean output of each axis.25 The resulting accelerometer signals are
then processed as described in Appendix A, and the vibration phase
estimate for each species is computed as

~/
vib
S ¼ kS

ð
f ðtÞ c * avibðtÞ½ ,dt ¼ cx/

vib
S;x þ cy/

vib
S;y þ ð1þ czÞ/vib

S;z : (8)

Here, avib is the AC part of three-axis MA output, and the vector of
coefficients c ¼ ðcx; cy; 1þ czÞ accounts for imperfections in the
scale factor and the alignment of each MA axis with respect to the
Raman wavevector (jcij- 1). We determine them by simultaneously

FIG. 4. (a)–(c) Example output from the three-axis MA during one data set of 82 shots. The points represent the mean acceleration over each 2T ¼ 40 ms interferometer inter-
val, and the shaded area represents the 1r standard deviation. Solid lines are linear fits which are used to correct the accelerometer data for a constant bias and a linear drift.
Here, the constant bias for the z axis is bz ’ #2:0193ð35Þ " 10#2 m/s2. (d)–(f) Vibration phase estimates for the Rb interferometer corresponding to each accelerometer
axis. These phases are multiplied by coefficients cx ¼ #0:065; cy ¼ 0:025, and 1 (cz ¼ 0) to account for imperfections in the scale factors and alignment of each MA axis.
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optimizing the signal-to-noise ratio of all reconstructed fringes (i.e.,
6 kS for each species). The phase estimate for each species is sub-
tracted from the corresponding interferometer phase on each shot of
the experiment. With this method, we are able to reduce the phase
noise on each fringe at T¼ 20ms from r/ ’ 2:2 rad (in the absence
of a vibration isolation platform) down to '10 mrad—corresponding
to a vibration rejection ratio> 200.

III. ANALYSIS METHODS FOR CORRELATED ATOM
INTERFEROMETERS

In previous work,16 we experimentally demonstrated two meth-
ods for extracting the differential phase between dual-species interfer-
ometers for precise tests of the UFF. The first method utilizes a MA to
reconstruct single-sensor interference fringes based on measurements
of the vibration-induced phase. A gravity measurement for each atom
interferometer is then performed simultaneously, and the differential
acceleration is computed. The second method is based on Bayesian
inference, which uses a statistical model and knowledge of the system
noise to directly estimate the differential inertial phase between the
interferometers. We now describe our analysis results with these two
methods.

A. Differential FRAC method
As mentioned in Sec. IIC, our measurement consists of scanning

the frequency chirp aS for each species and applying a vibration phase
correction

~aS ¼ aS þ ~/
vib
S =T2

eff ; (9)

where ~/
vib
S is an estimate of the true vibration phase given by Eq. (8).

This allows us to reconstruct the interference fringes on a shot-to-shot
basis by plotting the output of each interferometer as a function of ~aS.
We independently determine the central fringe by varying T and locat-
ing the common dark fringe. We then fit the fringe for each momen-
tum transfer direction, and we extract the chirp rates corresponding to
the central fringe:

a"#S ¼ 6 kSaS þ /"#;sysS =T2
eff : (10)

To eliminate systematic effects that are insensitive to the direction of
momentum transfer, we compute the E€otv€os parameter from the half-
difference of these central chirp rates as follows:

graw ¼ gþ gsys ¼ 1
g

a"K # a#K
2kK

 !

#
a"Rb # a#Rb

2kRb

 !2

4

3

5; (11)

where graw is the raw measured value, g is the true value defined
by Eq. (3), and gsys is the contribution from systematic effects (see
Sec. IV).

Figure 5 shows a typical data set at T¼ 20ms comprised of 82
shots (2" 41 for 6 kS). Fringes corresponding to each momentum
transfer direction are acquired over 172 s using the interleaved proto-
col described in Sec. IIC. Table I provides a summary of the fringe
parameters extracted from these data. We obtain statistical uncertain-
ties of daS=aS ’ 1:5" 10#7 (2:6" 10#7) for each 87Rb (39K) fringe,

FIG. 5. Simultaneous interference fringes for 87Rb (a) and 39K (b) as a function of the corrected chirp rate ~aS at T¼ 20 ms. Two fringes, each containing 41 points, are shown
for each species corresponding to opposite momentum transfer directions (6 kS). Data are fit to sinusoidal functions (solid lines), and the fit residuals are shown above each
fringe. Error bars correspond to the 1r statistical uncertainty obtained from individual detection traces. Vertical lines indicate the central fringe chirp extracted from the fit. (c)
Parametric plot of the two interferometer outputs—illustrating the high-level of correlation between species. Curves correspond to the same sinusoidal fits shown in (a) and (b).
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which results in an uncertainty of dgraw ’ 3:0" 10#7 for each mea-
surement of the E€otv€os parameter. These results are limited by the sig-
nal-to-noise ratio (SNR) of the reconstructed fringes, which has
contributions from the detection noise, phase noise from the laser, and
phase noise from the vibration phase estimate.26 In our case, the SNR
of the 39K interferometer is the main limitation on the differential
measurement. Yet, despite having five times fewer atoms and a lower
fringe contrast, the performance of our 39K interferometer is compara-
ble to 87Rb.

One advantage of the differential FRAC method is its simplicity—
it does not require prior information about the system, such as noise lev-
els and interferometer contrasts, nor does it require an accurate statisti-
cal model for the system response. However, it requires a high-
sensitivity MA (or seismometer) with good noise characteristics.16,23,27,28

For larger interrogation times, the self-noise of these classical sensors
becomes a limitation on the reconstructed phase, and at some point
even state-of-the-art devices will not suffice. In this case, an independent
method for extracting the differential phase is needed.

B. Generalized Bayesian method
While the differential FRAC method can be performed without

statistical correlations between atomic sensors, a Bayesian analysis
cannot.29 They rely entirely on correlations between the sensor outputs
which, when plotted parametrically, form a Lissajous curve as shown
in Fig. 5. When the ratio of scale factors j¼ 1, as it is for gravity gradi-
ometers,30–33 the Lissajous curve is an ellipse with an eccentricity
determined by the differential phase /d between the two sensors. In
this simple case, one can extract the phase by using ellipse-fitting tech-
niques,31,34 or by using a Bayesian estimation algorithm.29 The advan-
tage of Bayesian methods is that they are intrinsically optimal and
unbiased estimators, whereas ellipse fitting in two dimensions exhibits
undesired measurement bias when the differential phase differs from
p=2. In previous work,16 we developed a generalized Bayesian estima-
tor of /d for any value of j. We briefly describe the principle of this
technique in Appendix B.

Since both YS and CS can be measured independently from the
output of each atomic sensor, we begin by rescaling Eq. (4) as
n"#S ¼ 2ðP"#S # Y"#S Þ=C

"#
S :

n"#K ¼ cos ð/"#K Þ ¼ cos ðj/"#c þ /"#d Þ; (12a)

n"#Rb ¼ cos ð/"#RbÞ ¼ cos ð/"#c Þ: (12b)

This ensures that the output lies within the unit square and reduces
the number of free parameters to estimate with the Bayesian algo-
rithm. We choose /"#c ¼ /"#Rb to be the common phase between the
two sensors. The differential phase for each momentum transfer direc-
tion is /"#d ¼ /"#K # j/"#Rb, where j is the scale factor ratio given by
Eq. (7). From the full phase of each atomic sensor [Eq. (5)], the differ-
ential phase can be shown to be

/"#d ¼ 6 kKðaK # aRbÞT2
eff 7 ðaK # jaRbÞT2

eff þ /"#;sysd : (13)

We emphasize that /vib
K ¼ j/vib

Rb since we use identical pulse timing
for the two interferometers [see Eq. (8)], hence these terms cancel in
/d. The three remaining terms are the differential inertial phase
(which contains the signature of a UFF violation), the precisely known
differential laser phase, and the differential systematic phase
/"#;sysd ) /"#;sysK # j/"#;sysRb . The latter can be partially suppressed by
computing the half-difference /d ¼ 1

2 ð/
"
d # /#dÞ, which removes

direction-independent systematics. The E€otv€os parameter is then
computed from

graw ¼ gþ gsys ¼ /d

kKgT2
eff
: (14)

Both expressions (11) and (14) for the E€otv€os parameter are
equivalent.

To measure /"#d , we marginalize the likelihood distribution35

over n"#K and n"#Rb, which both implicitly depend on the common phase
/c. Due to the non-unity scale factor ratio, the algorithm requires as
input the approximate range of /c in order to estimate /d.

16 We esti-
mate this phase range based on the sum of the laser phase (a"#RbT

2
eff )

and the vibration phase (~/
vib
Rb ) estimated from the MA. The algorithm

also requires accurate estimates of the noise parameters for each inter-
ferometer. We describe our method for estimating these parameters in
Appendix C.

Figure 6 shows the Bayesian analysis results from a typical data set.
As a function of the measurement number, one can clearly observe a

TABLE I. Summary of fringe parameters extracted from the data shown in Fig. 5. The SNR is defined as the ratio of the fringe contrast C to the standard deviation of fit residuals.
The quantities rU, rY, and rC are independent estimates of the phase, offset, and contrast noise, respectively, obtained by minimizing the negative log-likelihood noise model
for each interferometer (see Appendix C). The phase noise has contributions from both the laser phase and the FRAC correction due to the MA. We note that rC is small com-
pared to the other two noise terms. Finally, the gravitational acceleration a"#S is determined from the central fringe chirp rate a"#S . We emphasize these values are not corrected
for systematic effects, and contain a residual error of a few lg due to the MA bias.

Quantity þkRb #kRb þkK #kK Unit

SNR 37.5 36.3 18.7 20.7
C 0.360(5) 0.367(5) 0.208(6) 0.196(5)
rU 0.050 7(13) 0.051 6(14) 0.056 4(28) 0.065 3(30) rad
rY 0.006 7(1) 0.006 6(1) 0.008 5(1) 0.008 8(1)
rC 0.001 1(1) 0.001 1(2) 0.004 8(4) 0.003 7(4)
a"#S =2p 25.134 532 3(48) #25.134 580 8(54) 25.578 650 7(92) #25.578 669 6(88) MHz/s
a"#S 9.805 500 3(19) 9.805 519 2(21) 9.805 616 1(35) 9.805 626 6(34) m/s2
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rapid convergence of the Bayesian estimation of /d. As each new mea-
surement is added, the uncertainty in each estimate integrates as
1=

ffiffiffiffi
N
p

—illustrating the optimal nature of the algorithm. The resulting
Lissajous figure shows excellent agreement with the scaled sensor out-
put, as shown in Fig. 6(c). We achieve a single-measurement uncertainty
d/d ’ 33 mrad for each momentum transfer direction—corresponding
to dgraw ’ 3:7" 10#7 for an interrogation time of T¼ 20ms. These
results compare favorably with those obtained using the differential
FRACmethod.

C. Correlations and long-term stability
In this section, we discuss and quantify different types of correla-

tion present in the data. We also present a time-series analysis which
reveals the long-term stability and statistical uncertainty of our mea-
surement. For these studies, we acquired a large sample of data over
13.5 h, consisting of 263 individual measurements of a"#S .

The differential FRAC method intrinsically correlates the two
atomic sensors as a consequence of using a single source of informa-
tion to reconstruct the two interference fringes (i.e., the MA). Yet,
even with this technique, optimal correlation is still realized when
making simultaneous measurements due to an efficient common-
mode rejection of the time-varying MA bias and various systematic
effects. Figure 7 shows the correlations between measurements of
a"#Rb and a"#K resulting from the FRAC method. We quantity the level
of correlation with Pearson’s correlation coefficient RRb;K

¼ covðaRb; aKÞ=raRbraK , where covðaRb; aKÞ is the covariance
between acceleration data sets faRbg and faKg, and raS is the corre-
sponding standard deviation of each set. The correlation coefficient
can also be interpreted geometrically as the cosine of the angle between
two N-dimensional vectors represented by these two data sets. Hence,
RRb;K ¼ 6 1 indicates perfect correlation (anti-correlation) when the
data are collinear, while uncorrelated (orthogonal) data produce
RRb;K ¼ 0. For the data shown in Fig. 7, we find RRb;K > 0:95 for each
momentum transfer direction. This correlation is slightly improved

(RRb;K ’ 0:98) for the k-dependent combination of accelerations
ð1=2Þða"S þ a#SÞ, due to the rejection of systematic effects that are
insensitive to the direction of momentum transfer. Conversely, the k-
independent combination ð1=2Þða"S # a#SÞ, which is insensitive to iner-
tial effects, shows very little correlation between species
(RRb;K ’ 0:20). This is expected, as this quantity is comprised primar-
ily of species-specific systematic effects.

The large degree of correlation in acceleration measurements is
strongly linked to the bias of the MA, b. Our knowledge of this slowly
varying quantity is limited during each measurement (db ' 3:6 lg,
see Fig. 4), which results in a proportional noise on a"#S . However,
since this noise is correlated between 39K and 87Rb it tends to spread
the points along a line with unit slope, as shown in Fig. 7. Since
Pearson’s correlation coefficient is a measure of the co-linearity
between data sets, jRj will tend to one the more extended the data are
along this line. Although the accelerometer bias corrupts individual
measurements of a"#S , this strong correlation reduces the uncertainty
of g by almost an order of magnitude, as we show below.

Figure 8 shows an analysis of UFF measurements acquired over
13.5h. The Allan deviation of k-dependent accelerations follows a
1=

ffiffiffi
s
p

trend, where s is the integration time. However, due to the
aforementioned MA bias noise, the standard deviation of these data is
large (raS ’ 1:8" 10#6g) compared to the individual measurement
uncertainty ð'2" 10#7). In the presence of measurement correla-
tions, the statistical uncertainty of g should be computed as16

rg ¼
1
g

r2
aRb þ r2

aK # 2RRb;KraRbraK

' (1=2
: (15)

Using RRb;K ¼ 0:98, we find rg ¼ 3:6" 10#7—in perfect agreement
with the first point of the Allan deviation of graw shown in Fig. 8(d).
This Allan deviation decreases as 1=

ffiffiffi
s
p

until approximately 103 s.
Beyond this time, the trend deviates from the behavior of white fre-
quency noise—showing evidence of a small drift in the measurements.
We reach a long-term sensitivity of dgraw ¼ 7:8" 10#8 after 24 000 s

FIG. 6. Bayesian analysis results for a single data set consisting of 41 measurements for each momentum transfer direction. Maximum-likelihood value (a) and standard devia-
tion (b) of the differential phase estimate as a function of the measurement number. Shaded regions correspond to 1r confidence intervals. Solid lines in (a) indicate the final
estimates of /d. Solid lines in (b) indicate least-squares fits of the form Kxm, where we find K" ¼ 0:183ð6Þ rad, m" ¼ #0:47ð1Þ, and K# ¼ 0:192ð6Þ rad, m# ¼ #0:46ð1Þ.
(c) Parametric plot of the scaled interferometer output. Solid curves are Lissajous figures resulting from the final estimates /"d ¼ 0:665ð31Þ rad and /#d ¼ 0:696ð35Þ rad.
Input parameters: r/d

¼ 0:053 rad, rnK ¼ 0:110, rnRb ¼ 0:022; approximate range of common phase /c 2 ½#12;þ12, rad.
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of integration time. We note that measurements of the k-independent
accelerations [shown in Figs. 8(b) and 8(d)] feature short-term sensi-
tivities at the level of 2:5" 10#7 g for 87Rb and 3:1" 10#7 g for 39K.
These levels are much lower than the corresponding k-dependent
accelerations due to the cancelation of the MA bias. The Allan devia-
tion of these quantities also shows drift at a similar timescale to graw,
which is a strong indication that graw is limited by similar drifts of k-
dependent systematics at long term.

We now compare these results to those obtained using the gener-
alized Bayesian analysis on the same data. Figure 9 shows a time-series
analysis of the differential phase obtained from the two methods for
each momentum transfer direction, along with the deduced E€otv€os
parameter. The results are remarkably similar—to the extent that
/"#;Bayesd even reproduces the small-scale features present in /"#;FRACd .
Here, the differential phase from the FRACmethod is computed based
on the measured accelerations:

/"#;FRACd ¼ 6 kK a"#K # a"#Rb

' (
T2
eff : (16)

To more easily compare these two phases, and those from the
Bayesian analysis, we plot their magnitude in Figs. 9(a) and 9(b).
For both methods, the E€otv€os parameter is then deduced from the
k-dependent combination of differential phases according to Eq.
(14). We observe a small offset of 37 mrad between the Bayesian

and FRAC results. This may arise due to our limited knowledge of
the effective interrogation time Teff , which is derived from the
sensitivity function of the interferometer. This function assumes
the Raman pulses have a square intensity profile with fixed Rabi fre-
quency and ideal durations (Xeffs ¼ p=2). In a real experiment,
imperfections in the pulse shapes and intensities affect our knowl-
edge of the true Teff , and hence the measurement of g through /d.
A relative error of only dTeff=Teff ¼ 3" 10#7 is enough to explain
the observed offset. One advantage of working in terms of chirp
rate (as with most atomic gravimeters24,28,36–38) is that the mea-
surement of acceleration is insensitive to Teff . This is because the
interferometer is operated around the central fringe where the total
phase is zero, and a"#S ¼ a"#S =kS.

From the Allan deviation in Fig. 9(c), the Bayesian estimate of
graw shows a slight degradation in terms of the short-term sensitivity
(4:0" 10#7 at 200 s) compared to the differential FRAC method
(3:5" 10#7 at 200 s). Yet, the measured sensitivities at long term are
consistent within their respective uncertainties—indicating that they
are both limited by drifts in systematic effects.

The consistency of these results is paramount for future high-
sensitivity tests of the UFF. For the first time, we show that with highly
correlated dual-species interferometers the E€ov€os parameter can be
measured with high precision in the absence of phase stability. This
has important implications for future long-baseline tests of the

FIG. 7. Correlations between acceleration measurements for each species resulting from the differential FRAC method. On each axis, we plot the relative change in accelera-
tion Da=#a ) ða# #aÞ=#a, where #a is the sample mean. (a) and (b) Correlations for each momentum transfer direction. (c) and (d) Correlations for the k-independent and k-
dependent linear combinations of a"#S . Solid lines are linear fits to the data. We obtain correlation coefficients of RRb;K ¼ 0:954 and 0.958 for (a) and (b), and RRb;K ¼ 0:203
and 0.979 for (c) and (d), respectively.
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FIG. 9. Time-series analysis of Bayesian results, and comparison with FRAC results. (a) Magnitude of the FRAC differential phase for each momentum transfer direction. (b)
Magnitude of the Bayesian differential phase for each momentum transfer direction. (c) E€otv€os parameter deduced from each method [Eqs. (11) and (14)]. (d) Total Allan devia-
tion of graw for both methods. Error bars are computed based on a v2-distribution. Solid lines are fits of the form A=

ffiffiffi
s
p

to the first half of each data set.

FIG. 8. Time-series analysis of UFF measurements obtained with the differential FRAC method. All data are scaled relative to the local value of g ’ 9:805 642 m/s2. (a) k-
dependent accelerations for each species: ða"S # a#SÞ=2kS # g. (b) k-independent accelerations for each species: ða"S þ a#SÞ=2kS. (c) E€otv€os parameter deduced from k-
dependent accelerations [Eq. (11)]. (d) Total Allan deviation of data shown in (a)–(c). Error bars are computed based on a v2-distribution. Solid lines are fits of the form A=

ffiffiffi
s
p

.
For the k-independent accelerations and graw, we fit only the first half of the data to illustrate the long-term trend in the absence of experimental drift.
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UFF,14,39 where free-fall times>1 s are planned. At these levels,
achieving a phase-stable inertial reference frame will be extremely
challenging. Similar to ellipse-fitting methods for atomic gradiome-
ters,34,40 our Bayesian estimation method completely removes this
requirement.

IV. STUDY OF SYSTEMATIC EFFECTS
In this section, we provide a detailed description of our systematic

study. Many of the systematic effects we discuss are common to other
atom interferometers, but we highlight the additional difficulties due to
the physical properties of 39K that lead to some surprising effects.

Following the analysis from Sec. IIIA, the contribution to the
E€otv€os parameter from systematic effects can be shown to be

gsys ¼ 1
g

/";sysK # /#;sysK

2kKT2
eff

 !

#
/";sysRb # /#;sysRb

2kRbT2
eff

 !2

4

3

5; (17)

where /"#;sysS is the sum of all systematic phase shifts corresponding to a
given species and momentum transfer direction. Equation (17) can be
written equivalently in terms of differential systematic phase shifts as

gsys ¼
/";sysd # j/#;sysd

kKgT2
eff

: (18)

For each species, many of the systematic effects we discuss below are
coupled because they depend on the same physical parameters, such
as the atomic velocity, atom–mirror distance, magnetic field, and Rabi
frequency. It was therefore necessary to independently determine these
parameters, and include this coupling in our model for each systematic
effect.

A. Velocity sensitivity of the detection system
The atomic velocity is a critical parameter for most systematic

effects. We found that our detection system has a strong influence on
the atomic trajectories that contribute to our data. Most detectors
implemented on atom interferometers collect atomic fluorescence
from an observation zone defined by the geometry of the detection
optics and the photodetector—making them spatially selective to a cer-
tain degree. By flashing on a short detection pulse at a specific time,
our detector’s spatial selection converts to a velocity selection.
Although this effect is known in atomic gravimeters,41 it has not been
well modeled or quantified—particularly for dual-species experiments
where the atomic trajectories can be significantly different.

Using a statistical approach similar to Ref. 42, we have developed
an analytical model for the velocity shift produced by our detection
system. We provide a brief description of the model below, further
details will be published elsewhere. We use a phase-space representa-
tion of the atom cloud’s probability density with a 3D
Maxwell–Boltzmann distribution of velocities and a 3D Gaussian dis-
tribution of positions. This distribution is propagated in time while in
free-fall under gravity—causing the spatial width to undergo hyper-
bolic expansion and the center position to follow a parabolic trajectory
along the vertical. The detection signal at time t is obtained by inte-
grating over the density of atoms contained within a sphere of radius
rd located a distance zd below the initial position of the cloud. This sig-
nal is strongly influenced by the ratio of rd to the cloud size at the time
of detection, as well as the time at which the detection takes place. To

avoid biasing the signal toward a particular velocity class, the signal
should be acquired when the center of the cloud is located at the center
of the detection zone. However, this is not always possible (e.g., due to
geometric or timing constraints), in which case one should aim to
detect as much of the cloud as possible.

Using this model for the detection signal, we obtained an analyti-
cal expression for the velocity shift produced by the detection system
in terms of measurable parameters such as the cloud size and tempera-
ture. Based on a simple averaging argument, we consider this shift the
relevant parameter for several velocity-dependent systematic effects in
the atom interferometers. The velocity shift is given by

Dv"#S ðtÞ ¼ #
1# c1e#l2

f erfðli=1Þ
1# c * erfðliÞ

Dz"#S ðtÞ
t

; (19)

with the following dimensionless parameters:

c ¼
ffiffiffi
p
p

2li
el

2
i ; 1 ¼ R

rvt
; li ¼

rd
rr
; lf ¼

rd
R
: (20)

Here, rr is the initial cloud radius, rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=M

p
is the velocity

width of the cloud at temperature T, and RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
r þ ðrvtÞ2

q
is the

cloud width at time t. Although we have omitted the subscript S for
simplicity, all of these cloud parameters are species dependent. Finally,
Dz"#S ðtÞ is the shift in atomic position43 relative to the center of the
detection zone zd given by

Dz"#S ðtÞ ¼
1
2
gt2 6

1
2
vrecS ðt # TOFÞ # zd: (21)

To evaluate the velocity shift in our case, we require estimates of
the parameters rr and rv for each species, as well as rd and zd for the
detection system. To obtain these parameters, atoms are released after
the molasses cooling stage and subsequently imaged by the detection
system as a function of the time in free fall. Figure 10(a) shows the
resulting detection profile for two simultaneous samples of 87Rb and
39K at temperatures of TRb ¼ 5:0ð5Þ lK and TK ¼ 4:7ð5Þ lK,
respectively. These data are fit to our model of the integrated probabil-
ity density with td; rd, and rr as free parameters. The velocity width
for 87Rb and 39K was fixed at rv ¼ 31:0 and 44.8mm/s, respectively,
as determined from separate velocity-sensitive Raman spectra. Table II
lists the best fit parameters for the curves shown in Fig. 10(a). We note
that this procedure does not require any a priori information about
the detection system44 or the atomic clouds.

Using these parameters along with our experimental timing, we
estimate a detection-induced velocity shift of Dv"#Rb ' 1:5 vrecRb for

87Rb,
andDv"#K ' 1:0 vrecK for 39K, where vrecS ¼ #hkS=MS is the recoil velocity,
as listed at the bottom of Table II. The difference between the shifts for
each momentum transfer direction is due to the different spatial posi-
tions of the cloud at the time of detection. Finally, we show the varia-
tion in the velocity shift as a function of the detection time t in Fig.
10(b). The shift increases quadratically with t according to Eqs. (19)
and (21), with a zero when the clouds are at the center of the detection
zone. The effect is stronger in potassium due to its larger cloud size
and velocity spread.

In the following of this section, these velocity shifts are taken into
account in the evaluation of the following systematic errors: second-
order Zeeman effect, parasitic lines, two-photon light shift (TPLS),
gravity gradient, and scale factor.
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B. Second-order Zeeman effect
The interferometers are constructed from ground states with

magnetic quantum number mF ¼ 0. Although there is no first-order
Zeeman shift, the second-order Zeeman effect is the most significant

contribution to our measurement of g. This is because the magnitude
of this effect is '15 times stronger in 39K compared to 87Rb and, in
the presence of a spatial gradient rB, atoms following the two trajec-
tories associated with 6 kS experience slightly different B-fields.
Hence, the phase shift is not perfectly rejected by reversing the direc-
tion of momentum transfer.

The second-order Zeeman shift of the clock transition jF ¼ 1;
mF ¼ 0i ! jF ¼ 2;mF ¼ 0i is DxB

S ¼ 2pKSB2, where KS is a con-
stant that depends on the Land!e g-factors and the hyperfine ground-
state splitting DxHF

S such that

KS ¼
ðgJ # gIÞ2l2

B

2DxHF
S

¼
575:15Hz=G2 for 87Rb;

8513:75Hz=G2 for 39K:

(
(22)

We deduce the phase shift on the atom interferometers from

/"#;Zeeman
S ¼ 2pKS

ð
gSðtÞðB"#S ðtÞÞ

2dt; (23)

where gSðtÞ is the sensitivity function22 and B"#S ðtÞ is the time-varying
magnetic field experienced by species S ¼ Rb;K along the two center-of-
mass trajectories associated with opposite momentum transfer. To evalu-
ate this phase shift, the magnetic field profile is measured directly with
the atoms by making simultaneous two-photon Raman spectroscopy
with both species. We prepare both samples in a mixture of the three
internal states jF ¼ 1;mF ¼ 0i and jF ¼ 1;mF ¼ 6 1i, and we mea-
sure the spectrum of velocity-insensitive rþ Raman transitions along the
vertical axis. The frequency splitting between resonances associated with
magnetically sensitive states is directly linked to the magnetic field along
the undiffracted atomic trajectory during the interferometer sequence.
We measure the frequency splitting for each species as a function of the
time-of-flight (TOF), and we solve the Breit–Rabi equation45 to obtain
the magnetic field at each time. The results are shown in Fig. 11(a), where
the uncertainty of each measurement is '0:2 mG. At this level, we note
that the influence of the vector and tensor light shifts must be included in
order to find agreement between the magnetic field values given by each
species.46 For our experimental parameters, the sum of vector and tensor
light shifts is #4.5kHz for 87Rb and #6.7kHz for 39K—corresponding
to virtual magnetic fields of#3.2 and#4.8 mG, respectively.

The magnetic field profile shown in Fig. 11(a) consists of a tem-
porally varying component due to Eddy currents, and a spatially vary-
ing component due to a magnetic field gradient. Eddy currents are
induced in a nearby aluminum breadboard when the magnetic bias
field and the MOT gradient field are pulsed on or off. We servo-lock
the field using a flux-gate sensor near the atoms, which stabilizes the
Eddy currents produced by the bias coils '5 ms after turning on the
bias. However, a residual exponentially decaying Eddy field persists
due to the MOT coils, which we verified separately by keeping the bias
coils permanently on during the sequence.

To compute the phase shift of the atom interferometers for oppo-
site momentum transfer, it is important to isolate the temporal and
spatial components of the magnetic field. To achieve this, we fit the
data shown in Fig. 11(a) to the following model:

BðtÞ ¼ B0 þrBz v0t þ
1
2
gt2

# $
þ AEddye#CEddy t ; (24)

where B0 is a constant offset,rBz is the vertical component of the gra-
dient, v0 is the initial velocity of the sample (which we take to be zero

FIG. 10. (a) Measured detection profiles for 87Rb and 39K samples. These data rep-
resent the total number of atoms detected along the unperturbed trajectory (i.e., no
Raman transitions were made before the detection pulse). These curves provide a
means to calibrate both the atomic cloud and detection system parameters. The
vertical dashed lines indicate the center of the detection profiles obtained from the
fits: td ¼

ffiffiffiffiffiffiffiffiffiffiffi
2zd=g

p
. (b) Detection-induced velocity shift for each interferometer as a

function of the detection time. The vertical dashed line indicates the detection time
used in our experiments.

TABLE II. Detection profile fit results and the corresponding velocity shift for each
atom interferometer. The velocity shift assumes the interferometer sequence starts
after a time-of-flight TOF ¼ 16:2 ms and the detection occurs at t ¼ TOFþ 2T
þ 1:5 ms¼ 57.7 ms with T¼ 20ms.

Parameter 87Rb 39K Unit

zd 8.634(10) 9.133(14) mm
rd 4.288(43) 4.300(50) mm
rr 2.83(12) 3.32(11) mm
rv 31.0 44.8 mm/s
Dv"S 17.4(6.9) 30.7(6.0) mm/s
Dv#S 16.4(6.5) 26.3(5.1) mm/s
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for this analysis), AEddy is the amplitude of Eddy currents, and CEddy is
their decay rate. This model assumes that the atoms experience the
same Eddy field everywhere in space, which is a good approximation
for small displacements relative to the size of the coils. We have sepa-
rately confirmed that this model accurately represents the field by
applying a known gradient and extracting its value from the fits.
Figures 11(b) and 11(c) show the temporal and spatial components,
respectively, that are derived from the fits in Fig. 11(a). The best fit
parameters for each species are consistent within their statistical
uncertainties, hence we average them together to obtain the following
field parameters: B0 ¼ 143:24ð78Þ mG, rBz ¼ #1:172ð33Þ G/m,
AEddy ¼ #52:8ð1:0Þ mG, and CEddy ¼ 50:25ð38Þ s#1. The field pro-
files during the interferometer B"#S ðtÞ are then obtained from Eq. (24)
by adding 6 ð1=2ÞvrecS ðt # TOFÞ to the term proportional to rBz .
This accounts for the shift in the center-of-mass position due to the
photon recoil during the interferometer. Table III summarizes the
phase shifts due to the second-order Zeeman effect.

C. Parasitic lines
In the presence of additional laser frequencies separated by the

two-photon resonance, each optical pulse in the atom interferometer
diffracts atoms along parasitic trajectories which experience a different
phase shift. For sufficiently cold atoms, these trajectories lie within the
coherence length of the interference pattern and their phase shifts add
a bias to the interferometer.47 This systematic effect is present only in
87Rb due to the use of an electro-optic phase modulator (PM) to gen-
erate the second Raman frequency. At a value of approximately

#0.39 rad, it is the largest systematic effect in our experiment. Of equal
importance is the role this effect plays on other systematics, as we dis-
cuss below.

To model the phase shift due to parasitic lines, we follow the pre-
scription outlined in Refs. 47 and 48. The PM generates a comb of
laser lines with an electric field EðtÞ ¼ E0eix0t

P
n i

nJnðbÞeinDxt , where
JnðbÞ is a Bessel function with modulation depth b, and the modula-
tion frequency Dx ¼ 2p" 6:834 GHz is the hyperfine splitting in
87Rb. Hence, each nearest-neighbor pair of lines is simultaneously res-
onant with a counter-propagating Raman transition. The Raman cou-
pling parameter associated with each pair of lines (one traveling
upward and its conjugate traveling downward) is proportional to the
product of their electric field amplitudes, and inversely proportional to
the detuning as follows:

Kn '
EnðtÞE.nþ1ðt # 2z=cÞ

DRb þ nDx
; (25)

where EnðtÞ ¼ E0eix0t inJnðbÞeinDxt is an electric field amplitude, z is
the distance between the atoms and the mirror at time t, and 2z=c is
the round-trip time required for the light to reflect off the mirror. It
follows that

Kn ' eiðkRbz#DxtÞXneinDkz; (26a)

Xn /
JnðbÞJnþ1ðbÞ
DRb þ nDx

; (26b)

where Xn is the Rabi frequency and the effective wavevector is
kRb ¼ ð2x0 þ DxÞ=c. The first term in Kn describes the energy
(#hDx) and momentum (#hkRb) transferred to the 87Rb atoms by the
principal Raman lines during each pulse. These lines are associated
with the principal Rabi frequency X0 ) p=2s, where s is the p=2-
pulse duration. For other pairs of lines, the energy is identical, but due
to additional spatial harmonics present in the field, the momentum
transfer is modified to #hðkRb þ nDkÞ, where Dk ¼ 2Dx=c. This
slightly different momentum kick for each pair of laser lines is the ori-
gin of the parasitic phase shift in the atom interferometer.

In the presence of additional laser lines, the effective Rabi fre-
quency Xeff

Rb is given by the sum over all Rabi frequencies—each cou-
pled with a phase term describing the modified momentum transfer

FIG. 11. (a) Profile of the magnetic field
probed by 87Rb (red) and 39K (blue) as a
function of the time-of-flight after molasses
release. (b) Time-varying component of
the field due to Eddy currents. (c)
Spatially varying component of the field
due to a gradient. Vertical grid lines on (a)
correspond to the interferometer pulses
times.

TABLE III. Phase shifts due to the second-order Zeeman effect for the following
experimental parameters: TOF¼ 16.2 ms, T¼ 20 ms, v"Rb ¼ 1:74ð69Þ cm/s, v"K
¼ 3:07ð60Þ cm/s, v#Rb¼ 1:64ð65Þ cm/s, v#K¼ 2:63ð51Þ cm/s, B0¼ 143:24ð78Þ mG,
rBz¼#1:172ð33Þ G/m, AEddy¼#52:8ð1:0Þ mG, and CEddy¼ 50:25ð38Þ s#1.

Species /";Zeeman
S /#;Zeeman

S Units

87Rb 6:2ð6:0Þ 11:5ð5:9Þ mrad
39K #39ð91Þ 151ð88Þ mrad
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Xeff
RbðzÞ ¼

X

n2Z

XneinDkz: (27)

This results in a spatially varying Rabi frequency due to the interfer-
ence between different spatial harmonics. During each Raman pulse,
the atoms are imprinted with the following phase:

uðzÞ ¼ arg Xeff
RbðzÞ

' (
: (28)

In a three-pulse Mach–Zehnder interferometer, the total phase shift
due to parasitic laser lines is

/"#;PLRb ¼ uðz"#A Þ # uðz"#B Þ # uðz"#C Þ þ uðz"#D Þ; (29)

where zA;…; zD denote the vertices of the interferometer at times
t ¼ TOF; TOFþ T , and TOFþ 2T :

z"#A ¼ #zM þ v"#RbTOFþ
1
2
gðTOFÞ2; (30a)

z"#B ¼ z"#A þ ðv
"#
Rb þ gTOFÞT þ 1

2
gT2; (30b)

z"#C ¼ z"#A þ ðv
"#
Rb þ gTOF6 vrecRbÞT þ

1
2
gT2; (30c)

z"#D ¼ z"#A þ v"#Rb þ gTOF6
1
2
vrecRb

# $
ð2TÞ þ 1

2
gð2TÞ2: (30d)

Here, v"#Rb is the initial velocity of the atomic cloud, vrecRb ¼ #hkRb=MRb is
the rubidium recoil velocity, and zM is the position of the reference
mirror.

The phase shift depends on the relative intensity of parasitic lines
and the relative position between the atoms and the mirror. These
parameters can be determined from the spatial variation of the Rabi
frequency. Figure 12 shows the relative change in Rabi frequency for
both species as a function of the cloud position relative to the reference
mirror z"A. The Rabi frequency for

87Rb exhibits a strong spatial modu-
lation due to parasitic lines, while Xeff

K is approximately constant.
Here, the cloud position was controlled by varying the free-fall time
before the Raman pulse. To extend the range of our measurements, we

shifted the mirror position upward by 5.85mm between data sets.
Rabi frequencies were measured by varying the pulse duration and
extracting Xeff

S from fits to the resulting Rabi oscillations. A fit to these
data yields a nominal mirror position of zM ¼ #276:26ð12Þ mm (the
negative sign indicates the mirror is above the atoms), and a modula-
tion depth of b ¼ 1:07ð16Þ. This is consistent with independent mea-
surements of line intensities using a Fabry–Perot interferometer.

Using these parameters, we compute the phase shift as a function
of T in Fig. 13. The phase has a dominant k-dependent contribution,
due to the commonalities between the atomic trajectories, and hence it
is not rejected with the k-reversal technique. The smaller k-indepen-
dent component arises due to differences in the initial velocity and the
sign reversal of the recoil term in Eq. (30). For the interrogation
time used in our measurement (T¼ 20ms), we estimate /";PLRb
¼ #0:394ð27Þ rad and /#;PLRb ¼ 0:378ð27Þ rad.

D. Asymmetry of the interferometers
The effective Rabi frequency decreases in time due to the expan-

sion of the cloud in the Raman beams. Although this effect is present
in both species as a result of their finite temperature, it is completely
dominated by the spatial modulation of the Rabi frequency caused by
parasitic lines in 87Rb (see Fig. 12). The Rabi frequencies play a crucial
role in the atom interferometer sensitivity function. Specifically, if they
are not equal during the beamsplitter pulses, the Mach–Zehnder inter-
ferometer becomes asymmetric—causing velocity-dependent terms to
emerge:49

/"#;asymS ¼ 7kSDv"#S
1

Xeff
S;3

tan
Xeff

S;3s

2

 !

# 1

Xeff
S;1

tan
Xeff

S;1s

2

 !2

4

3

5: (31)

The term in brackets represents the asymmetry of the interferometer,
and is non-zero only when there is an imbalance between the Rabi fre-
quencies during the first and third Raman pulses (Xeff

S;1 and Xeff
S;3). The

velocity shift D"#S is the difference between velocity class addressed by
the laser frequency and the true velocity of the atoms. This can arise
due to the two-photon light shift, as well as the velocity-selectivity of
the detection system. In our experiment, the latter is the dominant
effect.

FIG. 12. Relative change in the effective Rabi frequency DXeff
S =X

eff
S measured at

different positions relative to the reference mirror, where Xeff
Rb ¼ 2p" 98:4ð9Þ kHz

and Xeff
K ¼ 2p" 85:3ð1:3Þ kHz. Two sets of data are shown for 87Rb and 39K:

one at the nominal mirror position (red and blue points), and one with the mirror
shifted upward by 5.85 mm (orange and purple points). The solid red curve is a fit
to the two 87Rb data sets based on Eq. (27). The vertical dashed lines indicate the
position of the atoms during each interferometer pulse (TOF ¼ 16:2 ms,
T¼ 20ms).

FIG. 13. Phase shift due to parasitic laser lines as a function of the interrogation
time T. The orange and purple curves represent the k-independent and k-depen-
dent linear combinations of this systematic effect. The transparent regions indicate
the 1r confidence intervals given the uncertainty in our experimental parameters.
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For 39K, we measure a small decrease in the relative Rabi fre-
quency with the time-of-flight as a result of cloud expansion. We fit
these data to a linear function Xeff

K ðtÞ ¼ ðp=2sÞðAt þ BÞ, and find a
slope of A ¼ #3:6ð5:9Þ " 10#4 ms#1 and an offset of B ¼ 1:013ð22Þ.

From these data, we estimate phase shifts of /";asymRb ¼ #63ð72Þ
mrad and /";asymRb ¼ 4ð11Þ mrad. In terms of uncertainty, these shifts
are limited by our knowledge of the initial velocity, the atom–mirror
distance, and the mean Rabi frequency for each species.

E. Two-photon light shift
The two-photon light shift (TPLS) is a velocity-dependent fre-

quency shift of the counter-propagating Raman transition due to the
presence of neighboring off-resonant transitions. To compute the
phase shift due to the TPLS, we follow the approach of Ref. 50.
Ignoring effects due to magnetically sensitive co-propagating transi-
tions, the TPLS is composed of two contributions as follows:

x"#;TPLSS ðtÞ ¼ x"#;counterS ðtÞ þ x"#;coS ðtÞ: (32)

The first term is due to counter-propagating transitions:

x"#;counterS ðtÞ ¼ 1
4
ðXeff

S Þ
2

2x"#;DS

þ ðXeff
S Þ

2

2x"#;DS þ 4xrec
S

 !
; (33)

with an effective Rabi frequency Xeff
S and recoil frequency

xrec
S ¼ #hk2S=2MS. This shift explicitly depends on the time during the

interferometer and the momentum transfer direction due to the
Doppler shift x"#;DS ¼ 7kSðv"#S þ gðt # TOFÞÞ. The second term in
Eq. (32) is due to residual co-propagating transitions between jF ¼ 1;
mF ¼ 0i and jF ¼ 2;mF ¼ 0i such that

x"#;coS ðtÞ ¼ ðXco
S Þ

2

4ðx"#;DS þ xrec
S Þ

: (34)

This term arises due to imperfect crossed-linear polarization of the
Raman beams. We measure the Rabi frequencies Xeff

S and Xco
S by

addressing the corresponding resonance and measuring the Rabi oscil-
lations that result from varying the Raman pulse duration. For the
counter-propagating Rabi frequencies, we find mean values of Xeff

Rb
¼ 2p" 98:4ð9Þ kHz and Xeff

K ¼ 2p" 85:3ð1:3Þ kHz over the dura-
tion of the interferometers. These Rabi frequencies vary due to the
effects of parasitic lines (in 87Rb) and cloud expansion. We model
these effects and include them in our estimates of the TPLS. Similarly,
we find the residual co-propagating Rabi frequencies of Xco

Rb
’ 0:20Xeff

Rb and Xco
K ’ 0:28Xeff

K .
The phase shift on the atom interferometer can be derived from

the sensitivity function as follows:

/"#;TPLSS ¼
ð
gSðtÞx"#;TPLSS ðtÞdt: (35)

Assuming the TPLS is constant during the Raman pulses, the phase
shift reduces to

/"#;TPLSS ¼
x"#;TPLSS;3

Xeff
S;3

tan
Xeff

S;3s

2

 !

#
x"#;TPLSS;1

Xeff
S;1

tan
Xeff

S;1s

2

 !

; (36)

where Xeff
S;i is the effective Rabi frequency during the ith pulse. The

different contributions to the TPLS phase shift are summarized in
Table IV.

F. One-photon light shift
The one-photon light shift (OPLS), also known as the differential

AC Stark shift, is a shift between the ground states due to the far off-
resonant Raman beams. In this case, the shift on the ground state jFi
scales as the ratio of optical intensity Ij over the detuning DF0;F;j

¼ xj # ðxF0 # xFÞ from each excited state jF0i.46 The total OPLS is
then the sum of the shifts produced by each optical field j:

xOPLS ¼
X

F;F0;j

jhFjjdjjF0ij2

6#h2ce0

Ij
DF0;F;j

; (37)

where jhFjjdjjF0ij is a reduced dipole matrix element, c is the speed of
light, and e0 is the vacuum permittivity. Here, we have included only
effects due to the scalar polarizability.46 For rubidium, the OPLS is
strongly suppressed by operating at the correct intensity ratio between
the two beams. Accounting for all lines produced by the phase modu-
lator, this ratio is I2=I1 ’ 1:71 for a Raman detuning of DRb ) D20 ;2;2

¼ #1:1 GHz. For potassium, because the hyperfine splitting is much
smaller than the Raman detuning, it is not possible to suppress the
OPLS by adjusting the intensity ratio. Instead, we operate the interfer-
ometer with as large a detuning as possible (DK ) D20;2;2 ¼ #1:34
GHz) to minimize the shift. In this configuration, however, the OPLS
is much stronger in 39K than 87Rb. Fortunately, the geometry of the
Mach–Zehnder interferometer rejects constant frequency shifts since
atoms spend an equal amount of time in each ground state. As a result,
we are primarily sensitive to variations in the OPLS during the inter-
ferometers. Due to the Gaussian spatial profile of the Raman beams,
and the expansion of the clouds in the beams, the “mean” OPLS varies
differently for each species.

TABLE IV. Top rows: two-photon light shifts for each species during the first and third
Raman pulses at t¼ 16.2 and 56.2ms, respectively. Bottom row: phase shifts due to the
TPLS. Other parameters: v"Rb ¼ 1:74ð69Þ cm/s, v"K ¼ 3:07ð60Þ cm/s, v#Rb ¼ 1:64ð65Þ
cm/s, v#K ¼ 2:63ð51Þ cm/s, zM ¼ #276:26ð12Þ mm, and b ¼ 1:07ð16Þ.

Pulse i X";TPLSRb;i X#;TPLSRb;i X";TPLSK;i X#;TPLSK;i Units

1 #4:4ð1:8Þ 4:1ð1:7Þ #4:20ð26Þ 3:72ð21Þ kHz
3 #2:16ð69Þ 2:20ð69Þ #1:230ð65Þ 1:238ð65Þ kHz

/";TPLSRb /#;TPLSRb /";TPLSK /#;TPLSK

17ð18Þ #14ð18Þ 27:7ð2:5Þ #23:2ð2:1Þ mrad

TABLE V. One-photon light shift for each species during the first and third Raman
pulses at times t ¼ TOF and t ¼ TOFþ 2T .

Pulse i Time (ms) xOPLS
Rb;i (kHz) xOPLS

K;i (kHz)

1 16.2 #4.4(2.9) #105.6(2.1)
3 56.2 #0.3(2.9) #108.5(2.1)
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We measure the OPLS by performing Raman spectroscopy with
counter-propagating beams. A complete set of spectra for different
laser intensities and free-fall times allows us to extract the frequency
shifts during each interferometer sequence. We observe a linear varia-
tion of this shift over 60ms of free-fall time. Table V summarizes the
one-photon light shifts for each species during the first and third
Raman pulses. We estimate the phase shift due to the OPLS using the
sensitivity function

/OPLS
S ¼

xOPLS
S;3

Xeff
S;3

tan
Xeff

S;3s

2

 !

#
xOPLS

S;1

Xeff
S;1

tan
Xeff

S;1s

2

 !

; (38)

where xOPLS
S;i is the frequency shift of the counter-propagating reso-

nance during the ith Raman pulse. From these data, we estimate
/OPLS
Rb ¼ 6:2ð6:6Þmrad and /OPLS

K ¼ #7:2ð4:7Þmrad.
As this phase shift is identical for both momentum transfer direc-

tions, we reject it using the k-reversal technique. However, this rejec-
tion is imperfect because of fluctuations in the laser intensity, atom
cloud size, and temperature. These effects average to zero over many
measurements, but result in a non-zero uncertainty of'3 mrad.

G. Beam misalignments
The measurement of each atom’s acceleration is subject to errors

in the Raman wavevector’s magnitude and direction through the scalar
product kS * aST2

eff . These errors contribute a systematic phase shift

/"#;beamS ¼ 6
2Dxlas

S

xlas
S
# 1
2
h2S

 !

kSgT2
eff ; (39)

where Dxlas
S is the frequency error between the measured Raman laser

frequency and its true value, and hS is a small misalignment angle of
the Raman beam relative to the vertical. We have calibrated the abso-
lute frequency of both Raman lasers at the level of '500 kHz using
saturated absorption spectroscopy and an optical frequency comb.
This error represents a phase shift of<200 lrad for both species,
hence the first term of Eq. (39) is negligible. The second term, how-
ever, can be large since it scales as h2S due to the cos hS that appears
in the scalar product. We emphasize that only the relative angle
Dh ¼ hRb # hK between the 87Rb and 39K Raman beams is important
for the measurement of g. This relative angle can only be produced by
differences in alignment between the incident beams, as the retro-
reflection mirror is common to both species. Corrections to g caused
by the non-verticality of the mean acceleration 1

2 ðaK þ aRbÞ (i.e., due
to the reference mirror) can be safely ignored since they scale as Dh4.

To measure the beam misalignment, we imaged the Raman
beams on two planes separated by a distance of '5 m. The separation
between the beam centers yielded a relative angle of Dh ¼ 2:80ð30Þ
mrad—limited by our knowledge of the beam centers and the distance
between the two planes. Taking the 39K Raman beam as our reference
(hK ) 0; hRb ¼ Dh), the phase shift on the 87Rb interferometer is
/";beamRb ¼ #0:248ð53Þ rad. This misalignment originates from a com-
mercial collimator, where the two Raman beams arrive by optical fiber
and are combined in free space. The relatively large misalignment
angle was discovered post-measurement, and can be significantly
reduced in future measurements with simple adjustments.

H. Wavefront aberration and curvature
Imperfections in the optics along the Raman beams create aber-

rations that distort their wavefronts. A difference between the incident
and reflected Raman wavefronts creates a phase inhomogeneity over
the atom cloud as it expands. If the average value of the phases
imprinted on the cloud is not zero, these imperfections lead to a sys-
tematic shift. This effect is related to the ballistic expansion of the
atomic source, and cancels at zero temperature. Nevertheless, it has
been shown to be very challenging to extrapolate the measurement to
zero temperature.51–53 Moreover, we emphasize that there is little to
no rejection of wavefront distortions between the two atom interfer-
ometers because of differences in mass, temperature, and initial cloud
size.

We first focus on the phase shift due to wavefront curvature
(WC), which is determined by the collimation of the Raman beams
and the temperature of the sample51,52

/"#;WC
S ¼ 6 kS

ðrvel
S TÞ2

RS
: (40)

Here, rvel
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTS=MS

p
is the rms width of the velocity distribution

and RS is the radius of curvature of the Raman beam. The temperature
of each species is determined using Raman spectroscopy to be
TRb ¼ 5:0ð5Þ lK and TK ¼ 4:7ð5Þ lK, respectively. The radius of
curvature is estimated from the divergence of the beams, which is
determined using the two aforementioned Raman beam images. The
beam profiles are fit in 2D to obtain their beam waists at two positions.
The two Raman beams are not identically collimated: the Rayleigh
length is zRRb ¼ 113:08ð10Þ m for 87Rb and zRK ¼ 23:39ð10Þ m for 39K.
This produces radii of curvature RRb ’ ðzRRbÞ

2=z ¼ 16 350ð32Þ m and
RK ¼ 700:3ð6:7Þ m at the location of the atoms [a distance of
z ¼ 0:78ð10Þ m from the collimator]. The resulting phase shifts
due to wavefront curvature are /";WC

Rb ¼ 0:189ð38Þ mrad and /";WC
K

¼ 9:39ð20Þmrad.
Wavefront aberrations (WA) due to the various optics.. (view-

ports, quarter-waveplate, reference mirror) are difficult to measure at
the location of atoms. To estimate the effect, we measured the wave-
front profile of the Raman beams with a Shack–Hartmann analyzer
(Thorlabs WFS20-5C), at different positions: before the vacuum sys-
tem, after a first path through the vacuum chamber, and after the
retro-reflection mirror and a second pass through chamber. We did
not observe a significant distortion of the wavefront because our mea-
surement was limited by the resolution of the Shack–Hartmann ana-
lyzer. Nevertheless, the output of the analyzer gives a lower bound on
the residual radius of curvature: Rmin ¼ 46:6 m. This corresponds to a
maximum peak-to-valley distortion of 31 nm over a measurement
diameter of 3.4mm. We do not assign a shift due to wavefront aberra-
tions. Instead, we use the minimum curvature to estimate uncertainties
of d/"#;WA

Rb ¼ 0:066 rad and d/"#;WA
K ¼ 0:141 rad. Due to the rela-

tively large velocity dispersion of the potassium sample, this effect is
the most significant contribution to our error budget.

I. Coriolis force
For an atom with an initial velocity in the horizontal plane, the

interferometer arms enclose a spatial area, which makes it sensitive to
rotations via the Sagnac effect.51 For an initial atomic velocity vxS along
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the x axis (pointing westward), an additional phase shift due to the
Coriolis effect of Earth’s rotation leads to a bias for each species:

/"#;CorS ¼ 6 kS * aCorT2 ¼ 72kSvxSX! cos ð#ÞT2; (41)

where aCor ¼ 2v"X is the Coriolis acceleration, X ¼ ð0;
#X! cos#;#X! sin#Þ is the Earth’s rotation vector in the lab frame,
and X! cos# ¼ 5:17" 10#5 rad/s at our latitude of # ¼ 44:8(. To
estimate this effect, we measured the initial transverse velocity of the
atoms in the laboratory frame using time-of-flight imaging on with a
calibrated CCD camera. We measured vxRb ¼ #1:0ð1Þ mm/s and
vxK ¼ #4:0ð4Þ mm/s, which are due to a slight misalignment and
power imbalance between the MOT beams. We estimate /";CorRb
¼ 0:67ð7Þ mrad and /";CorK ¼ 2:7ð3Þ mrad for an interrogation time
of T¼ 20ms.

J. Magnetic gradient force
For atoms in the magnetically insensitive mF ¼ 0 state, the mag-

netic field produces a potential of the form US ¼ 7ð1=2ÞhKSB2ðzÞ
due to the second-order Zeeman effect, where the sign is negative
(positive) for atoms in the jF ¼ 1i (jF ¼ 2i) ground state. Hence, a
gradient in the magnetic field produces a force on the atoms given by

Fj1i;j2iS ¼ 6 hKSBðzÞrBz ’ 6 hKSðB0 þrBz * zÞrBz; (42)

where h is Planck’s constant and KS is given by Eq. (22). Since the
force is opposite in sign for the two internal states, and the atom
spends half the time in each state during the interferometer, the contri-
bution from the constant term B0rBz cancels in the atom interferom-
eter phase shift. However, the term proportional ðrBzÞ2z is non-zero
due to the asymmetric sampling of magnetic field during the atom’s
free-fall trajectory. Up to order T4 and K2

S ¼ hKS=MS, the phase shift
arising from this state-dependent force can be shown to be13

/"#;rBS ¼ 7
2
3
kSðKSrBzÞ2 v"#S;1 6

1
2
vrecS

# $
T þ gT2

% &
T2; (43)

where v"#S;1 is the atomic velocity at the first Raman pulse. For our
experimental parameters, we estimate /";MGF

Rb ¼ #0:118ð7Þ mrad and
/";MGF
K ¼ #4:18ð24Þmrad.

We emphasize that this phase shift is ðKK=KRbÞ2 ' 33 times
larger for 39K than 87Rb due to its lighter mass and smaller hyperfine
splitting. It will therefore be an important effect to consider in future
measurements with large interrogation times.

K. Gravity gradient
A linear gravity gradient will modify the atom’s free-fall trajec-

tory relative to a parabola—causing a phase shift of the interferometer.
This phase shift is given by54,55

/"#;GGS ¼ 6 kSTzz zS;1 þ v"#S;1 6
1
2
vrecS

# $
T þ 7

12
gT2

% &
T2; (44)

where zS;1 is the cloud position at the first Raman pulse, v"#S;1 is the
velocity at the first Raman pulse, and Tzz ’ þ3:1" 10#6 s#2 is the
vertical gravity gradient of the Earth (positive indicates increasing
downward). This effect is proportional to kS and cannot be rejected
using the k-reversal method. However, the phase shift is negligible in
our case because of our modest interrogation time: /";GGRb ¼ 149ð10Þ
lrad and /";GGK ¼ 164ð10Þ lrad. The uncertainty in these estimates
arises from the error in our knowledge of the initial cloud position
(dzS;1 ' 0:3 mm) and the initial velocity (dv"#S;1 ' 6 mm/s). The latter
is dominated by our calibration of the detection system, which is mod-
erately velocity selective (see Sec. IVA).

The gravity gradient effect can dominate for larger values of T,
where differences in initial cloud position and velocity play a strong
role. A method to cancel the gravity gradient phase shift was recently
proposed in Ref. 56, which involves modifying the norm of the k-vec-
tor during the p-pulse. This technique has also been demonstrated
experimentally.39,57

TABLE VI. Systematic shifts on measurements of the gravitational acceleration for each atomic species and momentum transfer direction. Values are expressed as accelerations
a"#;sysS ¼ /"#;sysS =kST2

eff , and uncertainties are shown in parentheses. Experimental parameters: TOF ¼ 16:2 ms, T¼ 20 ms, s ¼ 2:5 ls, z0S ¼ 0:0ð0:5Þ mm, v"Rb ¼ 1:74ð69Þ
cm/s, v"K ¼ 3:07ð60Þ cm/s, v#Rb ¼ 1:64ð65Þ cm/s, v#K ¼ 2:63ð51Þ cm/s, B0 ¼ 143:24ð78Þ mG, rBz ¼ #1:172ð33Þ G/m, AEddy ¼ #52:8ð1:0Þ mG, CEddy ¼ 50:25ð38Þ s#1,
zM ¼ #276:26ð12Þ mm, and b ¼ 1:07ð16Þ.

Systematic effect a";sysRb ("10#6 g) a#;sysRb ("10#6 g) a";sysK ("10#6 g) a#;sysK ("10#6 g)

Wavefront aberration 0.0(1.1) 0.0(1.1) 0.0(2.2) 0.0(2.2)
Second-order Zeeman 0.097(95) 0.181(93) #0.6(1.4) 2.4(1.4)
AI asymmetry #1.0(1.1) 1.0(1.1) 0.06(16) #0.05(14)
Beam misalignment #3.92(84) 3.92(84) 0 0
Parasitic lines #6.24(43) 5.98(42) 0 0
Two-photon light shift 0.27(29) #0.23(28) 0.431(39) #0.361(33)
One-photon light shift 0.10(10) 0.10(10) #0.103(68) #0.103(68)
Wavefront curvature 0.00298(60) #0.00298(60) 0.146(31) #0.146(31)
Coriolis force 0.0106(11) #0.0106(11) 0.0422(42) #0.0422(42)
Magnetic force #0.00187(11) 0.00180(11) #0.0650(38) 0.0599(35)
Gravity gradient 0.00236(15) #0.00228(15) 0.00256(16) #0.00234(15)

Total systematics #10.7(1.8) 10.9(1.8) #0.1(2.6) 1.7(2.6)
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L. Total uncertainty on the E€otv€os parameter
Table VI presents a summary of the systematic shifts and their

uncertainties for each species and momentum transfer direction.
These shifts are listed in order of significance in terms of their contri-
bution to the total uncertainty budget. The 39K interferometer has no
shift due to beam misalignment because we use the 39K Raman beam
as a reference to measure the misalignment with the 87Rb Raman
beam. Similarly, there is no shift due to parasitic lines because there is
no phase modulator present in the 39K Raman laser system.

Table VII summarizes the total uncertainty budget for the E€otv€os
parameter. Here, each row is computed from Table VI using the fol-
lowing linear combination of 6 kS to reject the k-independent effects:

gsys ¼ 1
g

a";sysK # a#;sysK

2
#
a";sysRb # a#;sysRb

2

" #

: (45)

The uncertainty due to each systematic dgsys is computed as the qua-
dratic sum of the k-dependent systematic uncertainties for each species
as follows:

ðdgsysÞ2 ¼ 1
g2
ðda"##;sysK Þ2 þ ðda"##;sysRb Þ2
h i

: (46)

This assumes there is inter-species correlation between systematic
effects. However, we allow for a correlation between the momentum
transfer directions within each species. As a conservative estimate, we
consider that they are correlated at the 50% level (i.e., the correlation
coefficient between 6 kS systematics is Rsys

S ¼ 0:50). The resulting
uncertainty in the k-dependent systematic shift is

ðda"##;sysS Þ2 ¼ 1
4
ðda";sysS Þ2 þ ðda#;sysS Þ2#2Rsys

S da";sysS da#;sysS

h i
: (47)

We find good agreement between our raw measurement graw

¼ 10:79ð8Þ " 10#6 and the estimated total systematic shift 9:9ð1:6Þ

"10#6. Our final measurement of the E€otv€os parameter is therefore
g ¼ 0:9ð1:6Þ " 10#6, which is limited entirely by systematic effects.

V. CONCLUSION
We present a test of the Universality of Free Fall with simul-

taneous 39K–87Rb interferometers. The high level of correlation
between these species enabled us to reach a state-of-the-art sensi-
tivity on the E€otv€os parameter of dgstat ¼ 7:8" 10#8 after '7 h of
integration with a modest interrogation time of T¼ 20ms. We
also evaluated the accuracy of our measurement through a
detailed analysis of systematic effects. Our final measurement
yielded g ¼ 0:9ð1:6Þ " 10#6, which is consistent with no violation
of the UFF. Systematic shifts due to the second-order Zeeman
effect, wavefront distortions, parasitic lines in the rubidium laser,
and misalignments between our Raman beams are the most signif-
icant contributions to our uncertainty budget. We also discovered
a velocity shift introduced by our detection system, which contrib-
uted additional shifts due to a coupling with variation of the Rabi
frequency over the duration of the interferometers. Our work
highlights specific challenges associated with utilizing atomic spe-
cies with a large mass difference, and paves the way for more accu-
rate tests with rubidium and potassium in the future.

In the near term, we will upgrade our experiment by using
ultracold atoms in the microgravity environment provided by an
Einstein elevator.15 We expect to gain several orders of magnitude
on both sensitivity and accuracy with this setup, since the atoms
can be interrogated for several hundred milliseconds in the same
position relative to reference mirror. Using ultracold atoms will
also drastically reduce the effects of wavefront distortions, which
scale as the temperature of the sample.53 In the long term, further
improvements will be possible using large momentum transfer
atom optics and squeezed states.

The full potential of atom interferometers can only be realized in
Space. In this context, our experiment serves as a low-cost engineering
model tested in a relevant environment. Our work is an important
step in the preparation for a quantum test of the Universality of Free
Fall below 10#15 that will probe the frontier of General Relativity and
quantum mechanics.58 Finally, the improvement and validation of
cold-atom technology used in our experiments is beneficial to other
applications, such as Earth gravity surveys,28 gravitational-wave detec-
tion,59 and inertial navigation.60
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TABLE VII. Systematic shifts on the E€otv€os parameter and their uncertainties in order
of significance. The final measurement is the difference between the raw measure-
ment and the sum of all systematic shifts.

Systematic effect g ("10#6) dg ("10#6)

Wavefront aberration 0.00 1.21
Second-order Zeeman #1.44 0.69
AI asymmetry 1.05 0.56
Beam misalignment 3.92 0.42
Parasitic lines 6.11 0.19
Two-photon light shift 0.15 0.14
One-photon light shift <0.01 0.06
Wavefront curvature 0.14 0.02
Coriolis force 0.03 <0.01
Magnetic force #0.06 <0.01
Gravity gradient <0.01 <0.01

Total systematics 9.90 1.58
Raw measurement 10.79 0.08

Final measurement 0.89 1.58
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APPENDIX A: THE DIFFERENTIAL FRAC SIGNAL

In this Appendix, we derive the differential FRAC signal for a
dual-species interferometer, and we discuss sources of error due to
the classical sensor used to correct each interferometer phase. For
convenience, we write the total phase shift considering the shifts
from each atom interferometer as four separate contributions: one
from the inertial effects /acc

S , one from the interrogation laser /las
S ,

one from vibrations of the reference frame /vib
S , and one from sys-

tematics /sys
S . Using the sensitivity function formalism, the total

phase is

/S ¼
ð
fSðtÞ kS * ðaS þ avibðtÞÞ # aS½ ,dt þ /sys

S ; (A1a)

¼ /acc
S þ /las

S þ /vib
S þ /sys

S ; (A1b)

where S labels the atomic species, fSðtÞ is the interferometer
response function,22 aS is the acceleration due to gravity, avibðtÞ is
the acceleration of the common reference frame due to parasitic
vibrations, aS is the chirp rate of one Raman frequency relative to
the other. The integral of the response function gives the effective
interrogation time, Teff , which for square Raman pulses yields
Eq. (6).

For any high-sensitivity atomic gravimeter, vibrations of the
reference frame are a major concern. In laboratories, these vibra-
tions are strongly attenuated by using anti-vibration platforms.
However, this solution is not compatible with mobile experiments
such as ours,13,27 and our approach has been to correct for these
vibrations by measuring them during the interferometer sequence
using a three-axis MA (Nanometrics Titan) fixed to the back of the
reference mirror. This force-balanced accelerometer has an auto-
zeroing function that largely removes fixed offsets on each axis due
to gravity. The MA signal projected along the Raman wavevector
axis kS ¼ kSẑ is

aMAðtÞ ¼ c * avibðtÞ þ b; (A2)

where b is the MA bias, and c ¼ ðcx; cy; 1þ czÞ is a vector of
coefficients, where each component jcij - 1. These account for
differences in scale factors between the MA axes, and misalign-
ments between the MA axes and kS. We also note that the accel-
eration measured by the MA is intrinsically low-pass filtered due
to the finite bandwidth of the device, but the low-frequency sig-
nals of interest are well within this bandwidth. Since both c and
b are temperature dependent, they can both vary during the
experiment. However, we find that only b varies significantly,
and it does so slowly compared to the timescale of a single mea-
surement ('3 min). Since avibðtÞ averages to zero by definition,
we can remove most of the MA bias by subtracting the mean
value of the MA signal during the measurement, haMAi. The
resulting signal is integrated with the response function to
obtain an estimate of the vibration-induced phase on each shot
of the experiment, i.e.,

~/
vib
S ¼ kS

ð
fSðtÞc * avibðtÞdt þ kSDbT2

eff ; (A3)

where Db ¼ b# haMAi is a residual bias at the level of a few lg
resulting from our limited knowledge of the true one. This random
phase is correlated with the output of the corresponding interfer-
ometer during each shot of the experiment. This way, we are able to
distinguish the part of the inertial phase due to gravity and the one
from vibration noise, and hence we remove the contributions from
the latter. Our measurement consists of scanning the chirp rate for

each species and applying a post-correction ~/
vib
S =T2

eff according to
Eq. (9). By fitting these reconstructed fringes, we extract a.S, which
corresponds to the position of the central dark fringe. Finally, we
measure the gravitational acceleration directly from a.S=kS.

However, this method is not perfect. The true vibration-
induced phase differs from the estimate in Eq. (A3) by the residual
phase D/vib

S ¼ /vib
S # ~/

vib
S :

D/vib
S ¼ kS

ð
fSðtÞðẑ # cÞ * avibðtÞdt # kSDbT2

eff : (A4)

The first term is due to errors in the MA scale factor and its
imperfect coupling with the mirror. This term appears as noise
on the reconstructed fringes, and mainly limits the short-term
sensitivity of each measurement. The second term is a bias due to
the method. Although it averages to zero over many measure-
ments, it limits our knowledge of aS to the level at which we know
the MA bias b. At the dark fringe, the total phase shift (A1) is
zero, hence we have

ða.S # kS * aSÞT2
eff ¼ D/vib

S þ /sys
S ; (A5a)

a.S
kS
¼ aS # Db# /sys

S

kST2
eff
; (A5b)

where aS ¼ kS * aS=kS is the projection of the gravitational accel-
eration on kS. The last equation shows that the measured accel-
eration has two main error contributions: a bias Db due to the
MA and one due to systematics effects. The measured E€otv€os
parameter is then

graw ¼ 1
g

a.K
kK
#

a.Rb
kRb

# $
¼ aK # aRb

g
þ gsys; (A6)

where g¼ 9.805 642 m/s2 is the known local gravitation acceleration
and gsys contains all systematic bias terms. We note that the bias Db
is common to both species by construction, hence its contribution
cancels in Eq. (A6).

Finally, to evaluate gsys, we take into account the error due to a
misalignment between kRb and kK. Assuming aS ¼ aSẑ and defining
kK ¼ kKẑ and kRb * ẑ ¼ kRb cos h, where h is a small angle between
the two wavevectors, we have

kK

kK
* aK #

kRb

kRb
* aRb ’ aK # aRb þ

h2

2
aRb: (A7)

It follows from Eq. (A5b) that gsys contains three main terms as
follows:

gsys ¼ h2

2
aRb
g
þ

/sys
Rb

kRbgT2
eff
# /sys

K

kKgT2
eff
: (A8)
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APPENDIX B: BAYESIAN ESTIMATION OF THE
DIFFERENTIAL PHASE

Bayesian estimation relies on Bayes’ rule, which is a funda-
mental relationship between statistical probability distributions
given by

PðVjMÞ ¼ pðVÞLðMjVÞ
NðMÞ

: (B1)

Here, PðV jMÞ is the “posterior” probability which represents
our knowledge of some variable of interest V, given a set of mea-
surements M of some system quantities. p(V) is the “prior” proba-
bility before any measurements are made. LðMjVÞ is the
“likelihood” of obtaining the set M given V, and is computed based
on a model of the system noise. Finally, NðMÞ ¼

Ð
LðMjVÞpðVÞdV

is just a normalization factor for PðVjMÞ. The principle of Bayesian
estimation is that the knowledge of V can be improved on a mea-
surement-by-measurement basis, with each successive measure-
ment decreasing the uncertainty in the estimate of V. A well-known
example of this type of recursive analysis is a Kalman filter,60,61

which is a Bayesian estimator for the specific case of linear systems
with white Gaussian noise. For the specific case of two coupled
atom interferometers, the variable of interest is /"#d and the ith sys-
tem measurement is given by the pair of normalized atomic sensor
outputsMi ¼ fn"#K ; n

"#
Rbgi.

Any Bayesian estimator requires a good knowledge of the dis-
tribution of noise in the system, and the main challenge is to com-
pute the likelihood distribution Lðfn"#K ; n

"#
Rbgj/

"#
d Þ given a specific

noise model for n"#K and n"#Rb. To illustrate the possible noise sources
in this system, we modify the definitions of the n"#S in Eq. (12) as
follows:

n"#K ð/cÞ ¼ ð1þ eAKÞ cos ðj/c þ /"#d þ e/d
Þ þ enK ; (B2a)

n"#Rbð/cÞ ¼ ð1þ eARbÞ cos ð/cÞ þ enRb : (B2b)

The stochastic quantities eAS ; enS , and e/d
represent uncorrelated

noise in the single sensor amplitudes, offsets, and differential phase,
respectively. Each of these stochastic terms is assumed to follow a
Gaussian probability distribution with zero mean and standard
deviation given by rAS ; rnS , and r/d

, respectively. In our system,
the measured amplitude noise (rAS ¼ rCS=2) is small compared to
other sources (see Table I), hence we neglect this term in the noise
model. The remaining terms arise due to detection noise, which
affects the interferometer offsets, and non-common phase noise
from systematic effects which directly affect the differential phase.

APPENDIX C: ESTIMATING THE NOISE
PARAMETERS OF COUPLED ATOM
INTERFEROMETERS

In this appendix, we describe our technique for estimating the
noise parameters of two coupled atom interferometers. Depending
on the analysis method (FRAC or Bayesian), we take two separate
approaches.

For the FRAC method, we use the fact that each interference
fringe is observable and follows the simple model

yð/Þ ¼ Y # C
2
cos ð/# UÞ: (C1)

It is straightforward to estimate the set of fringe parameters
F ¼ fY ;C;Ug from fits to the data, as shown in Fig. 5. Each of
these quantities is assumed to follow a Gaussian probability distri-
bution, with mean values given by the measured fit parameters. We
wish to estimate the standard deviations associated with the offset,
contrast, and phase: rY, rC, and rU. This can be done using a
maximum-likelihood approach.60,62 Given a single atomic measure-
ment Di ¼ f/i; yig, the probability of measuring Di given the afore-
mentioned fringe parameters is

pðDijFÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp #ðyi # yð/iÞÞ

2

2r2

# $
; (C2)

where r is the standard deviation of fit residuals, which is a statisti-
cal mixture of all possible noise sources. Assuming there are no cor-
relations between parameters, from Eq. (C1) we have

r2 ¼ r2
Y þ

rC

2
cos ð/# UÞ

# $2

þ C
2
sin ð/# UÞrU

# $2

: (C3)

The likelihood distribution is simply the product of the probabilities
for N measurements:

LðDjFÞ ¼
YN

i¼1
pðDijFÞ: (C4)

To obtain estimates of the noise parameters, we maximize this like-
lihood given a set of measurements D ¼ fDig. Since the likelihood
distribution is a product of Gaussian functions, it is convenient to
instead minimize the negative logarithm:

#log LðDjFÞ ¼ N
2
log ð2pr2Þ þ

XN

i¼1

ðyi # yð/iÞÞ
2

2r2 : (C5)

We employ the robust Nelder–Mead multidimensional minimiza-
tion routine to simultaneously estimate rY, rC, and rU.

For the Bayesian analysis, we assume each interference fringe
is washed out by phase noise and cannot be observed directly.
Instead, to estimate the (normalized) offset noise parameters rnK

and rnRb , we use the mean uncertainty in the probabilities Pj2iS
derived from a given set of detection traces (see Fig. 3). We also add
a contribution to this noise from the operation of normalizing the
sensor outputs due to uncertainties in the fringe offset YS and con-
trast CS (which are estimated separately based on the statistical dis-

tribution of Pj2iS , as in Ref. 27). The differential phase noise r/d
is

more challenging, because it cannot be estimated directly from the
interferometer outputs. We use an iterative approach to estimate
this parameter. First, we run the algorithm on a small sample of
data using an initial estimate of r/d

to obtain an initial estimate of
/d . Then we re-insert this fixed value of /d into the algorithm and
use it to estimate r/d

. We iterate between these two estimates until
we find convergence. We also verify that the standard deviation of
the resulting distribution of /d estimates is consistent with the indi-
vidual uncertainties returned by the algorithm.
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