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M. Ammar,1,2 M. Dupont-Nivet,1,3 L. Huet,1 J.-P. Pocholle,1 P. Rosenbusch,4 I. Bouchoule,3 C. I. Westbrook,3 J. Estève,2
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A trapped atom interferometer involving state-selective adiabatic potentials with two microwave frequencies
on a chip is proposed. We show that this configuration provides a way to achieve a high degree of symmetry
between the two arms of the interferometer, which is necessary for coherent splitting and recombination of
thermal (i.e., noncondensed) atoms. The resulting interferometer holds promise to achieve high contrast and
long coherence time, while avoiding the mean-field interaction issues of interferometers based on trapped
Bose-Einstein condensates.
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I. INTRODUCTION

Atom interferometers [1] have proven very successful in
precision measurements such as the determination of the fine
structure constant [2,3], the determination of the Newtonian
gravitational constant [4], and inertial sensing of gravity [5],
gravity gradients [6], and rotation [7]. They also show great
promise to perform general relativity tests [8], including the
weak equivalence principle [9,10].

In parallel, atom chips [11–14] provide a robust and
versatile tool to trap and manipulate ultracold atoms, and
are now routinely used in a variety of setups, including free-
falling experiments in a drop tower [15] and compact atomic
clocks [16]. In this context, they are very promising candidates
for next-generation compact atomic sensors, including on-
board applications [17]. However, while a variety of integrated
beam splitters and coherent manipulation techniques have
been demonstrated [18–25], none of the chip-based atom
interferometers developed so far has reached metrological
performance.

One of the initial problems encountered by atom-chip inter-
ferometers, namely the difficulty to maintain stable trapping
and a reasonable trap-surface distance during the coherent
splitting process [18,26], has been overcome by the use of
dressed state adiabatic potentials [19,27]. However, another
issue remains unresolved: trapped-atom interferometers using
Bose-Einstein condensates (BECs) are especially sensitive to
atom-atom interactions which induce phase diffusion, limiting
their coherence time [28–30] and putting a serious constraint
on the achievable precision in the measurement of the relative
phase between the two arms of the interferometer [19,24].

One possible way to reduce the interaction strength, which
we investigate throughout this paper, is the use of a trapped
but thermal (i.e., nondegenerate) atomic cloud whose density is
sufficiently low that the effect of interactions is negligible. This
choice is somewhat analogous to using incoherent light in an
optical interferometer, as already pointed out in [31] for guided
thermal atoms propagating through two combined Y-shaped
beam splitters. As in a “white light interferometer”, the short
coherence length of a thermal cloud (typically the thermal de
Broglie wavelength [32]) requires that the interferometer be

kept sufficiently symmetric (in a sense that will be defined in
Sec. II) in order to observe any interference.

With this aim in view, we propose a protocol for a
symmetric atom interferometer suitable for thermal atoms,
using internal state labeling and adiabatic dressed potentials
based on the same principle as in [22]. In the work of Ref. [22],
which involves BECs, only one of the two internal states is
dressed, breaking the spatial symmetry of the interferometer
because the microwave field renders the trapping frequencies
different for the two interferometer paths. To restore the
symmetry, we propose the use of two microwave frequencies
on two separate planar waveguides, each one interacting
(primarily) with one of the two internal states. Thus each
interferometer path can be individually controlled and made
nearly identical to the other.

This paper is organized as follows: we first describe the
proposed interferometric sequence, which brings us to discuss
and quantify the role of symmetry in terms of interferometer
contrast; we then describe the basic principles of the proposed
protocol, and show why it is well suited for achieving a
symmetric configuration; we then compare attractive and
repulsive microwave fields, and show that the latter are much
more favorable in this context; finally, taking into account how
the atomic energy levels are affected by the presence of both
static and microwave fields, we discuss the robustness of the
design against external field fluctuations.

II. ROLE OF SYMMETRY IN THE INTERFEROMETER
CONTRAST

To model a trapped atom interferometer, let us consider an
ensemble of atoms with two internal states labeled |a〉 and |b〉.
In the following we assume that |a〉 and |b〉 see two different
time-dependent potentials Va and Vb (a possible practical
realization will be discussed in the next section). The evolution
of such a system is ruled by the following Hamiltonian:

Ĥ = p̂2/(2m) + Va|a〉〈a| + (Vb + �ωab)|b〉〈b|, (1)

where p̂ is the momentum operator and �ωab is the energy
difference between |a〉 and |b〉 at the beginning of the
interferometric sequence ti , where Va(ti) = Vb(ti). The atoms
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are supposed to be initially prepared in |a〉, at thermal
equilibrium with temperature T in the trapping potential Va .
The temperature T is moreover assumed to be high enough
that Boltzmann statistics applies (for bosons in a harmonic
trap with a BEC transition temperature Tc, this means that T is
at least on the order of a few Tc, so that the gas is only weakly
degenerate [33]). The atomic cloud can thus be described by
the density matrix ρ̂ti = ∑

n pn|ψn(ti)〉〈ψn(ti)|, where pn =
e−Ea

n (ti )/(kT )/Z are the Boltzmann factors, Z = ∑
n e−Ea

n (ti )/(kT )

is the partition function, Ea
n (t) are the eigenenergies of

Ĥ |a〉〈a|, |ψn(t)〉 = |na(t)〉|a〉 are the associated eigenvectors,
and ti is the initial time of the interferometric sequence [we
also introduce the similar notations Eb

n(t) and |nb(t)〉|b〉 for
the eigenenergies and eigenvectors of Ĥ |b〉〈b|].

The atoms are then put into a coherent superposition of |a〉
and |b〉 with equal weight by applying a quasiresonant π/2
pulse, modeled by

|a〉 → |a〉 − ie−iφ |b〉√
2

and |b〉 → −ieiφ |a〉 + |b〉√
2

, (2)

where φ = φ1 is the phase of the electromagnetic field at
the beginning of the π/2 pulse (for simplicity we have
neglected the finite duration of the pulse). We also assume
that |a〉 and |b〉 see identical trapping potentials before the
beginning and after the end of the splitting process (for atoms
trapped in dc magnetic fields, this means that |a〉 and |b〉 have
identical magnetic moments), resulting in |na(ti)〉 = |nb(ti)〉
and |na(tf )〉 = |nb(tf )〉. The density matrix after this first π/2
pulse then reads ρ̂

(π/2)
ti = ∑

n pn|ψ (π/2)
n (ti)〉〈ψ (π/2)

n (ti)|, with

∣∣ψ (π/2)
n (ti)

〉 = |na(ti)〉|a〉 − ie−iφ1 |nb(ti)〉|b〉√
2

. (3)

The two internal states are then split and recombined by the
time-dependent potentials Va (̂z,t) and Vb (̂z,t) between ti and
tf [with Va(ti) = Vb(ti) and Va(tf ) = Vb(tf )]. To describe the
evolution of the system during this period, we assume that the
time variations of the potentials Va (̂z,t) and Vb (̂z,t) are slow
enough that the adiabatic approximation can be applied (we
will come back to this hypothesis in the case of time-dependent
harmonic potentials later on in this section). We also neglect
the effects of collisions and assume in particular that the atomic
ensemble does not have time to re-thermalize between ti and tf .
Under these approximations, the density matrix at tf becomes
ρ̂

(π/2)
tf = ∑

n pn|ψ (π/2)
n (tf )〉〈ψ (π/2)

n (tf )|, with

∣∣ψ (π/2)
n (tf )

〉 = e−iφa
n |na(tf )〉|a〉 − ie−i(φb

n+φ1)|nb(tf )〉|b〉√
2

,

where we have introduced the adiabatic phase factors φa
n =∫ tf

ti
Ea

n (t)dt/� + γ a
n and φb

n = ∫ tf
ti

[Eb
n(t)/� + ωab]dt + γ b

n . In
the latter expressions, γ a,b

n are the geometrical phase factors,
or Berry phases [34]. In the following we make the additional
hypothesis that the circuit in parameter space describing
the changes in the potentials Va (̂z,t) and Vb (̂z,t) retraces
itself during the interferometer sequence, such that these
geometrical phase factors vanish [34]. This is for example
the case when the interferometric sequence has the additional
temporal symmetry Va,b (̂z,ti + t) = Va,b (̂z,tf − t) for all t

between ti and tf , which we shall assume in the rest of this
paper.

To close the interferometer, another π/2 pulse must be
applied, modeled by (2) with φ = φ2 the phase of the
electromagnetic field at the beginning of this second π/2
pulse. This results in a final density matrix ρ̂f , which can
be used to compute the final population in |a〉 and |b〉, which
are experimentally measurable by spectroscopy. For example,
the population in |a〉 reads pa = Tr(ρ̂f |a〉〈a|). All calculations
done, this leads to

pa = (1/2){1 − Re[A(tf )]}, (4)

with A(tf ) = ∑
n pn exp [i(φb

n − φa
n + φ1 − φ2)]. At this stage

it is useful to introduce the frequency ωπ/2 of the elec-
tromagnetic field driving the π/2 pulses, and the detuning
�π/2 = ωπ/2 − ωab. This leads to the following expression
for A(tf ):

A(tf ) = e−i�π/2(tf −ti )
∑

n

pn exp

{
i

�

∫ tf

ti

[
Eb

n(t) − Ea
n (t)

]
dt

}
.

In Eq. (4) we identify the contrast as C = |A| and the
phase as S = arg(A) such that the measured signal reads pa =
(1/2)[1 − C cos(S)]. In particular, the contrast can be written
as

C =
∣∣∣∣∣
∑

n

pn exp

{
i

�

∫ tf

ti

[
Eb

n(t) − Ea
n (t)

]
dt

}∣∣∣∣∣ . (5)

As can be seen in Eq. (5), the contrast is equal to unity if
the eigenvalues of Ĥ |a〉〈a| and Ĥ |b〉〈b| are the same, which
corresponds to the ideal case of a perfectly symmetric atom
interferometer. In such a case, S = �π/2(tf − ti) in the absence
of any additional phase shift between the two arms of the
interferometer, corresponding to the classical Ramsey signal.

To gain more physical insight from this model in the asym-
metric case, it is instructive to consider the situation where
the two potentials correspond to harmonic (one-dimensional)
traps. We write the trapping potentials as

Va,b(x,t) = 1
2mω2

a,b(t)[x − xa,b(t)]2, (6)

where m is the atomic mass and ωa,b and xa,b are, respectively,
the frequency and the position of the harmonic trap created
by Va,b. In a typical interferometer sequence, xb − xa will
increase from zero to the maximum splitting distance x0

between ti and ti + τ (splitting period), then the two traps
will be held separate during a time Th (holding period)
and then xb − xa will decrease from x0 to zero in a time
τ (recombination period), with tf − ti = Th + 2τ . Ideally,
according to Eq. (5), this should be done while maintaining
ωa = ωb throughout the whole interferometric sequence to
ensure a contrast equal to unity. However, to model residual
asymmetries, we shall assume that ωb − ωa grows linearly
from ω to ω + δω [with |δω| � ω ≡ (ωa + ωb)/2] during the
splitting period, then stays equal to δω during the holding
time Th and eventually decreases from δω to zero during
recombination. Under these hypotheses, an analytic expression
for the contrast can be derived from Eq. (5), which reads

C = 1 − λ√
(1 − λ)2 + 4λ sin2[δω(Th + τ )/2]

, (7)
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with λ = exp[−�ω/(kT )]. From the latter expression, it can be
shown that the contrast depends on the duration of the interfer-
ometric sequence via the parameter Th + τ . In particular, it is
reduced to 1/2 when Th + τ = √

3�ω/(kT |δω|), which puts a
limit on the coherence time of the thermal atom interferometer.
Neglecting numerical factors on the order of unity, the limit
on the coherence time induced by asymmetry thus takes the
following simple and intuitive form:

tc � �ω

|δω|kT
. (8)

Equation (8) is the main result of this section. It shows
that tc increases with the degree of symmetry (measured
by |δω|/ω) and decreases when temperature increases, as
expected intuitively. As an example, we obtain tc � 15 ms
for a temperature of 500 nK and a degree of symmetry on the
order of ω/δω � 103. Furthermore, Eq. (5) can be used to
quantitatively analyze other defects, for example anharmonic
potentials.

It can be noticed in Eq. (7) that the contrast revives
for integer values of δω(Th + τ )/(2π ). However, we expect
these revivals not to appear in practice when other trapping
directions and experimental sources of noise are taken into
account.

Interestingly, assuming harmonic potentials throughout
the interferometer sequence also provides a more intuitive
expression for the adiabatic hypothesis on Va and Vb made
to derive the results of this section. More precisely, starting
from (6), the adiabaticity condition for a given eigenstate |n(t)〉
of Ĥ |a〉〈a| or Ĥ |b〉〈b| reads∣∣∣∣〈n| ∂

∂t
|m〉

∣∣∣∣ � |m − n|ω ∀m 
= n, (9)

where we have used the fact that ωa � ωb � ω. For the
potentials written in (6), the latter expression translates into
the following more intuitive conditions:

nω̇ � ω2 and n
ẋa,b√
〈x2〉

� ω, (10)

where
√

〈x2〉 is the average size of the thermal cloud given
by

√
kT /(mω2). It seems reasonable to impose that the latter

conditions must be fulfilled for all values of n up to the highest
significantly populated level N , given by N � kT /(�ω). This
provides a global adiabaticity condition for the interferometer
in the harmonic case.

The simple model presented in this section illustrates
the importance of symmetry to maintain the coherence of
the interferometer. As already discussed in the Introduction,
this can be seen as an atomic equivalent of white light
interferometry in optics, where the path length between the
two arms of the interferometer has to be made smaller than the
coherence length. This is the main motivation for introducing
the protocol of Sec. III, which aims to achieve symmetrical
state-dependent potentials using microwave dressing with two
different frequencies on an atom chip.

III. PROPOSAL OF A SYMMETRIC CONFIGURATION

A. Basic principle of the protocol

We consider in the following the experimental situation in
which the |F = 1,mF = −1〉 and |F = 2,mF = 1〉 hyperfine

(a)

z

y x

Insulating & planarizing layer (BCB)

x

I1

y

z x

CPW2CPW1

I0

DC Layer

Substrate

CPW2CPW1(b)

(c)

potential

FIG. 1. (Color online) Basic principle of state-selective symmet-
rical splitting with two coplanar waveguides and two frequencies.
(a) Typical shapes of the adiabatic potentials in the near field of the
coplanar waveguides (CPWs), which is a symmetric version of the
protocol demonstrated in [22] (see Fig. 3.c therein). The black line
is the common initial trapping potential [Va(ti)]. The dashed curves
represent (at least in the limit of large detunings) the potential barriers
created by the microwave fields near the coplanar waveguides. The
solid red and blue curves represent the resulting potentials for |a〉 and
|b〉 (Va and Vb). (b) Cut of the atom chip showing the CPWs and the
dc layer, separated by an insulating and planarizing material. (c) Top
view of the atom chip. The central wires that carry the static currents
I0 and I1 are used to create a static microtrap in the vicinity of the
atom chip. The CPWs are deposited on both sides of the trap center,
at equal distance from the central wire carrying I0.

levels of the 52S1/2 ground state of 87Rb are used to implement
the interferometric sequence described in the previous section
(with |F = 1,mF = −1〉 ≡ |a〉 and |F = 2,mF = 1〉 ≡ |b〉).
These two states have nearly identical magnetic moments,
rendering their superposition robust against magnetic field
fluctuations [35] and making the achievement of symmetric
potentials easier, as will be described later on in this section.
The π/2 pulses described in the previous section are produced
by two-photon (microwave and radio-frequency) pulses, as
demonstrated in [35]. Initially, the potential Va(ti) = Vb(ti)
results from conventional dc magnetic trapping by the atom
chip and external coils. Then, the interferometric sequence
(splitting, holding, and recombination) is created by mi-
crowave dressing from two coplanar waveguides on the atom
chip, as illustrated in Fig. 1(a). As already discussed in the
Introduction, this protocol is a generalization of [22] with two
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microwave frequencies on two separate coplanar waveguides
(each one interacting mostly with one of the two states), with
the goal of making the trapping potentials as symmetric as
possible, as will be described in Sec. III C. The typical time
sequence is as follows: the microwave fields are ramped from
zero up to their maximum power during the splitting phase,
are kept constant during the holding phase, and are gradually
ramped down to zero during the recombination phase. The
changes in the microwave power has to be slow enough to
fulfill the adiabatic conditions both on the external states (as
discussed in the previous section) and on the internal states (as
will be discussed in the following section).

B. Adiabatic dressed-state potentials

In the presence of a dc magnetic field combined with a
microwave field close to the hyperfine splitting frequency, the
three Zeeman sublevels of |F = 1〉 are coupled to the five Zee-
man sublevels of |F = 2〉, leading to dressed eigenstates [36].

Let us first consider the dressing on one two-level transition,
where a state |F = 1,m1〉 ≡ |g〉 is significantly coupled to
only one state |F = 2,m2〉 ≡ |e〉 by a microwave field with
frequency ω. The coupling strength is given by the Rabi
frequency , which is proportional to the amplitude of the
microwave magnetic field, and assumed to be much smaller
than the Larmor frequency ωL [i.e., the splitting with neighbor-
ing Zeeman sublevels, given by ωL = μBB/(2�), B being the
modulus of the dc magnetic field and μB the Bohr magneton]
to ensure the validity of the two-level approximation. The
energies of the resulting dressed states |±〉 are [37]

E± = Eg + Ee

2
± �

2

√
2 + �2 + const, (11)

where Eg (respectively Ee) is the energy of the uncoupled level
|g〉 (respectively |e〉), � = ω − (Ee − Eg)/� is the detuning,
and the constant term accounts for the energy of the microwave
field [38].

In the absence of any coupling ( = 0) the state |g〉
corresponds to the dressed state |+〉 or |−〉 depending on the
detuning. As long as the coupling is varied adiabatically the
atoms will remain in a single dressed state. The adiabatic
condition reads [39]

|̇�| � (�2 + 2)3/2. (12)

Very importantly, condition (12) shall not be confused with the
adiabatic condition used in the previous section to describe
the dynamics of the interferometer: the latter was related
to the changes in the trapping potentials Va and Vb, while
condition (12) is on the internal dynamics of the atoms. It
results in the following adiabatic potential:

Vg = Eg + Ee

2
+ S�

�

2

√
2 + �2 − �ω

2
, (13)

where S� is the initial sign of � (which we assume to be
constant over the spatial extent of the atomic cloud). Similarly,
the adiabatic potential for atoms initially in the bare state |e〉
reads

Ve = Eg + Ee

2
− S�

�

2

√
2 + �2 + �ω

2
. (14)

In Eqs. (13) and (14), the average energy of the microwave
field (in the sense of the semiclassical limit) has been removed,
keeping only a −�ω/2 (respectively +�ω/2) term such that
Vg (respectively Ve) coincides with Eg (respectively Ee) when
 is initially set to zero.

C. Symmetric microwave dressing

We now consider the situation in which two microwave
frequencies are used to shift the energies of two pairs of levels,
in order to achieve a microwave-induced, state-dependent
potential. These two frequencies are injected into two different
coplanar waveguides (labeled CPW1 and CPW2) placed on ei-
ther side of the dc magnetic trap center, as sketched in Figs. 1(b)
and 1(c). One possible implementation to make the potentials
symmetric, illustrated in Fig. 2, is to tune ω1 such that it
is mostly resonant with the transition between |a〉 and |F =
2,mF = −1〉 ≡ |c〉, while ω2 is tuned to be mostly resonant
with the transition between |b〉 and |F = 1,mF = 1〉 ≡ |d〉.
These conditions can be rewritten as |ω1 − (Ec − Ea)/�| �
ωL and |ω2 − (Eb − Ed )/�| � ωL, where Ec (respectively
Ed ) is the energy of the bare state |c〉 (respectively |d〉), and
ωL is the Larmor frequency, defined in the previous section. If
we furthermore assume that the amplitude of the microwave
magnetic field is much smaller than B (which means that
all the Rabi frequencies corresponding to couplings between
Zeeman sublevels of F = 1 and F = 2 are much smaller than
ωL), then the two-level approximation can be used for the

21-2 -1 0

FIG. 2. (Color online) Energy levels of the 52S1/2 ground state
of 87Rb in the presence of a static magnetic field. To generate
symmetrical state-dependent potentials, two microwave fields are
used to couple the clock states |a〉 and |b〉 to two auxiliary states. Two
combinations are possible by an appropriate choice of the microwave
frequencies using either π (solid line) or σ transitions (dashed line).
The π (respectively σ ) transitions correspond to the case where
the microwave and dc magnetic fields are parallel (respectively
orthogonal). Both configurations can be readily achieved for example
using a regular dimple trap [38].
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transitions |a〉 ↔ |c〉 and |b〉 ↔ |d〉. Following Sec. III B, the
adiabatic potential for the internal state initially in |a〉 then
reads

Va = Ea + Ec

2
− �ω1

2
+ S�1

�

2

√
2

1 + �2
1, (15)

where �1 = ω1 − (Ec − Ea)/� and 1 is the Rabi frequency
associated with the transition |a〉 ↔ |c〉 and the microwave
field at frequency ω1. Similarly, the adiabatic potential for the
internal state initially in |b〉 is

Vb = Eb + Ed

2
+ �ω2

2
− S�2

�

2

√
2

2 + �2
2, (16)

where �2 = ω2 − (Eb − Ed )/� and 2 is the Rabi frequency
associated with the transition |b〉 ↔ |d〉 and the microwave
field at frequency ω2. The matrix elements of the interaction
Hamiltonian associated with the transitions |a〉 ↔ |c〉 and
|b〉 ↔ |d〉 are almost equal [38], which means that equivalent
magnetic fields will lead to identical Rabi frequencies.

The energy of the bare states |a〉, |b〉, |c〉, and |d〉 can
be approximated to the first order in B (neglecting the
coupling between the nuclear angular momentum and the
magnetic field) by the usual linear Zeeman formula, namely
Ea = �ωL,Eb = �ωhfs + �ωL,Ec = �ωhfs − �ωL, and Ed =
−�ωL, where ωhfs � 2π × 6.83 GHz [40] is the zero-field
hyperfine splitting (the common energy offset has been
discarded). We furthermore impose that ω1 and ω2 be sym-
metrically tuned with respect to ωhfs, a condition which can be
written as ω1 = ωhfs − �0 and ω2 = ωhfs + �0. This implies
in particular that the initial detunings �1 and �2 have equal
absolute values and opposite signs (we denote by S the initial
sign of �1 = 2ωL − �0). Equations (15) and (16) then read

Va(r) = ��0

2
+ S

�

2

√
2

1(r) + [2ωL(r) − �0]2 (17)

and Vb(r) = �ωhfs + Ṽb(r), with

Ṽb(r) = ��0

2
+ S

�

2

√
2

2(r) + [2ωL(r) − �0]2. (18)

Let us now consider the spatial dependence of Va and Vb

along the x axis of Fig. 1 in the framework of a simplified
one-dimensional model. The dc magnetic trap is assumed to
be harmonic and centered around x = 0, such that ωL(x) =
ωL(−x). The two coplanar waveguides are assumed to be at the
same distance on either side of the origin and fed with the same
microwave power, such that 1(x) = 2(−x) (recall that the
interaction Hamiltonian has almost the same matrix elements
for the two transitions). This leads to Va(x) = Ṽb(−x) which
satisfies the desired symmetry condition. This is the main result
of this section, showing that symmetry, in the sense defined
in Sec. II, is in principle possible with this configuration.
This result can be generalized to the case of a more realistic
geometry for the dc trap in three dimensions. In this case, the
potentials Va and Vb are found to be symmetric in the sense
that they form two traps with similar eigenenergies.

One possible limitation of symmetry in this configuration is
the presence of other (far off-resonance) transitions, although
their effect is expected to be reduced at least by a factor on the
order of |�1|/ωL � 1 as compared to the main |a〉 ↔ |c〉 and
|b〉 ↔ |d〉 transitions, and can in principle be compensated by

adjusting the power and frequency of the microwave dressing
fields.

An alternative to the protocol described in this section
is to use the σ+ transitions |a〉 ↔ |F = 2,mF = 0〉 and
|b〉 ↔ |F = 1,mF = 0〉 rather than |a〉 ↔ |c〉 and |b〉 ↔ |d〉,
as illustrated by the dashed arrows of Fig. 2. We will not
consider this alternative in detail in the following, but most of
the results described in this paper can be transposed to it.

IV. ATTRACTIVE VERSUS REPULSIVE
MICROWAVE FIELDS

It can be seen in Eqs. (17) and (18) that when the initial
sign S of the detuning �1 is positive, both levels |a〉 and
|b〉 will be blueshifted: a maximum in the Rabi frequency
1,2 will result, for a constant value of the detuning �1 =
2ωL − �0, in a maximum of the adiabatic potential Va,b [as
pictured in Fig. 1(a)]. Consequently, the microwave field will
be called “repulsive” in this case. In the opposite case (S < 0),
the microwave field will be called “attractive.”

An important difference between repulsive and attractive
microwave fields is the fact that the trap depth is limited in
the latter case. This can be understood by first noticing that
the Larmor frequency ωL is minimal at the dc trap center, and
increases with the distance from the center. In the attractive
case, the detuning �1 = 2ωL − �0 is initially negative at the
trap center, so it will go to zero for the points r in space
corresponding to ωL(r) = �0/2, giving rise to an avoided
crossing. Beyond this point, the magnetic dependence of the
adiabatic potentials ∂Va,b/∂B changes sign, and the atoms
beyond this limit are no longer trapped by the dc field. This
puts a limitation on the typical temperature that can be used
in the attractive case, typically kT � ��0. Conversely, in the
repulsive case, the detuning �1 does not go to zero because
it is initially positive at the trap center. The latter temperature
constraint is thus relaxed.

A second reason to favor repulsive potentials arises from the
fact that the atoms are trapped in a region of weaker microwave
field than in the attractive case, reducing the mixing of the
atomic levels, as discussed in the next section.

V. ROBUSTNESS TO MAGNETIC FIELD FLUCTUATIONS

In Sec. III C we have approximated the hyperfine energy
levels of 87Rb by the linear Zeeman formula, keeping only
first order terms in B � �ωhfs/μB and neglecting the coupling
between the nuclear angular momentum and the magnetic field
based on the fact that the electron spin g factor is typically 3
orders of magnitude bigger than the nuclear spin g factor.
However, the latter is not negligible when superpositions of
internal states are considered, because even a small difference
in the magnetic dependence of the energy levels can strongly
affect coherence in the presence of magnetic field noise. A
remarkable situation occurs for the |F = 1,mF = −1〉 and
|F = 2,mF = 1〉 hyperfine levels of the 52S1/2 ground state
of 87Rb (labeled |a〉 and |b〉 in this paper), whose energy
difference is independent of B to first order for a particular
value Bm � 3.23 G called the “sweet spot” [35,41], making
their coherent superpositions particularly robust to magnetic
field fluctuations. In this section we study the existence
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conditions for this sweet spot and, when applicable, the
changes in the value of Bm in the presence of microwave
dressing.

To do this, we use the Breit-Rabi formula [40] for the
hyperfine energy levels. Considering the fact that for most
atomic physics experiments the magnetic field B is typically
much smaller than �ωhfs/μB � 0.5 T, the energy levels
for F = 1 can be approximated up to the second order in
μBB/(�ωhfs) by

E1,mF
= mF μBB

4
(5gI − gJ ) − μ2

Bα(gJ − gI )2B2

4�ωhfs
, (19)

where α = 1 − m2
F /4. Similarly, the energy levels for F = 2

read E2,mF
= Ẽ2,mF

+ �ωhfs, with

Ẽ2,mF
= mF μBB

4
(3gI + gJ ) + μ2

Bα(gJ − gI )2B2

4�ωhfs
. (20)

In these formulas gJ � 2.002 and gI � −9.95 × 10−4 are,
respectively, the electron and the nuclear spin g factors [40].
In the absence of microwave dressing, the usual sweet spot for
|a〉 and |b〉 can be readily retrieved from Eqs. (19) and (20)
as the value of the magnetic field B0

m minimizing the energy
difference E2,1 − E1,−1, namely

B0
m = −8gI �ωhfs

3μB(gJ − gI )2
� 3.23 G. (21)

Let us now assume that we start from a situation with B = B0
m

in the absence of microwave power, and that we then gradually
ramp the Rabi frequencies 1 = 2 up to a maximum value .
The relevant energy levels (corresponding to the π transitions
of Fig. 2) are then Ea = E1,−1, Eb = E2,1, Ec = E2,−1, and
Ed = E1,1 (which include, as we have mentioned, the full
Breit-Rabi formula [40]). It is convenient to specify the values
of ω1 and ω2 via the initial detunings �0

1 = ω1 − (E0
c − E0

a)/�

and �0
2 = ω2 − (E0

b − E0
d )/�, where the notation X0 refers to

the value of X at B = B0
m. The problem can then be described

by the two dimensionless parameters δ and κ , defined
by

δ = �0
1/ω

0
L = −�0

2/ω
0
L and κ =

∣∣∣∣ 

�0
1

∣∣∣∣, (22)
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FIG. 3. (Color online) Numerically computed value of the sweet
spot Bm [defined as the minimum of Vb(B) − Va(B)] as a function of
κ , with δ = −0.1. The sweet spot remains up to a critical value on
the order of κc � 0.092.
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FIG. 4. (Color online) Numerically computed value of critical
value κc (above which the sweet spot disappears) as a function of
|δ|, in the case δ < 0.

where ω0
L = μBB0

m/(2�). Physically, κ is linked to the degree
of mixing in the dressed state picture [36]. The initial sign S of
the detuning �1, as described in Secs. III C and IV, is equal in
this case to the sign of δ. The microwave field will be repulsive
for δ > 0, and attractive in the opposite case. Equations (15)
and (16) can be used to plot the energy difference Vb − Va as
a function of B, for different values of δ and κ , and find the
minimum when applicable.

In Fig. 3 we show the case of an attractive microwave field
by setting δ = −0.1. In this case we observe that the sweet
spot value increases with κ , up to a critical value on the order
of κc � 0.092, where the minimum disappears. The value of
κc is observed to be a growing function of |δ|, as illustrated
in Fig. 4. This will result, in the attractive case, in a trade-off
between the maximum Rabi frequency that can be used and
the minimum detuning of the microwave frequency.

Let us now consider the opposite situation of a repulsive
microwave field by setting δ = 0.1. In this case, a minimum of
Vb − Va is found even for values of κ much larger than unity,
which is illustrated in Fig. 5 for 0 � κ � 1. The situation
remains the same for arbitrarily small values of δ > 0, which
shows that the repulsive case is much more favorable than the
attractive case, because it allows the Rabi frequency and the
detuning to be chosen independently without compromising
the existence of a sweet spot.

0 0.2 0.4 0.6 0.8 1
3.2

3.25

3.3

3.35

 κ

 B
m

  [
G

au
ss

]

FIG. 5. (Color online) Numerically computed value of the sweet
spot Bm as a function of κ , with δ = 0.1.
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VI. CONCLUSION

In conclusion, we have analyzed an experimental protocol
for a symmetrical atom interferometer, based on the use of
microwave dressing with two independent coplanar wave-
guide carrying different frequencies on an atom chip. We
have pointed out the importance of symmetry for the contrast
decay of a thermal atom interferometer in the framework
of a simple model, and derived an analytical formula for
the coherence time in the harmonic case. This study shows
that it is preferable to use a repulsive (rather than attractive)
microwave field (i.e., δ > 0 with the notations used in this
paper), because it avoids the problem of trap opening discussed
in Sec. IV, reduces the degree of mixing κ by confining the
atoms in a region of weaker microwave fields, and ensures
the existence of a sweet spot to reduce the sensitivity to
magnetic field fluctuations even for strong microwave dressing
fields.

A significant asset of this two-frequency protocol is that it
provides independent control over the potentials seen by the
two states. This feature gives additional degrees of freedom to
counteract the residual dissymmetry, due for example to the

effect of far off-resonance transitions that we have neglected
in this paper.

Interferometry between internal states of thermal atoms on
a chip has been shown to hold great promise for realizing
compact cold atom clocks [42]. If experimentally successful,
an atom chip interferometer with trapped thermal atoms could
be an important step towards the achievement of a new class
of compact integrated inertial sensors.
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