
EXPANSION OF THE HAMILTONIAN OF A PLANETARY SYSTEM
INTO THE POISSON SERIES IN ALL ORBITAL ELEMENTS

A.S. PERMINOV, E.D. KUZNETSOV
Ural Federal University
Ekaterinburg, Russia
e-mail: perminov12@yandex.ru; eduard.kuznetsov@urfu.ru

ABSTRACT. The study of planetary systems orbital evolution is one of important problems of celestial
mechanics. This work is the first stage in our investigation of this problem. We present algorithm for
constructing of a planetary system Hamiltonian expansion into the Poisson series in all orbital elements.
The expansion was constructed for a planetary systems with 4 planets. So, we can study orbital evo-
lution of giant-planets of the Solar System and many extrasolar systems also. Estimation accuracy of
Hamiltonian expansion is presented in this work.

1. INTRODUCTION
Let us consider planetary system with 4 planets. We need to write its Hamiltonian. For our purpose we

can use canonical Jacobi coordinates (Murray, Dermott, 2009). It is hierarchical coordinate system, which
is more preferable for investigation of planetary system orbital evolution. A position of each following
body is determined relative to a center of inertia of previously including bodies set. We need to know
differences of radius vectors in inertial frame. This frame can be barycentric for example. Differences are
determined here:

|ρi − ρj | = ri − rj + µ

i−1∑

k=j

mk

m̄k
rk, (1)

where numbers i and j satisfy a condition 1 ≤ j < i ≤ N ; ρk is barycentric radius vector of k -th
planet, rk is Jacobi radius vector of the same planet; µmk is mass of the planet in items of Sun mass,
m̄k = 1 + µm1 + . . . + µmk, µ is small parameter. Variable µ denotes ratio of sum of planets masses to
mass of the Sun. For the Solar system the value of µ can take equal to 0.001.

The Hamiltonian h can be expressed as sum of two terms – undisturbed part and disturbing function
(Kholshevnikov et al., 2001), as shown here:
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, (2)

where G is gravitational constant, a0 is any constant of length typical for a planetary system (for example
1 astronomical unit), m0 is mass of the Sun, Mi is normalized mass, κ2

i is gravitational parameter, ai is
semi-major axis; N is number of planets; other quantities are defined below:

Ri =
i∑

k=1

mk

m̄k
rk, R̃i =

√
r2
i + 2µriRi + µ2R2

i . (3)

The first sum in (2) is undisturbed part of the Hamiltonian. The expression in figure brackets is the
disturbing function. Introducing the value of a0 into account, the disturbing function becomes dimen-
sionless. Double sum in (2) is major part of the disturbing function. The major part describes interaction
between planets. Denominator of the major part is defined in expression (1).

We used the second system of Poincare elements for constructing of the Hamiltonian expansion. It
allows sufficiently simplifying an angular part of the series expansion. In this case only one angular
element – mean longitude is defined.

After that, we get the Hamiltonian of a planetary system in this form:

h = h0 +
∑

k,n

Aknxk cos(ny), (4)
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where h0 is undisturbed Hamiltonian, Akn is numerical coefficient, xk is product of Poincare elements
with corresponding degrees, cosine is represent an angular part of the series, ny is linear combination of
mean longitudes of planets.

2. AGORITHM
Computer algebra system Piranha is used for expansion of the Hamiltonian. This program was written

by Francesco Biscani (Biscani, 2009). Piranha is new specialized system for analytical calculations in
celestial mechanics. It is multi-platform C++ program with Python’s interface. At this moment Piranha
is one of the fastest computer algebra systems. Piranha have various convenient implements for working
with series. It allows set limit degree of series truncation, filtering of series items, substitution into series,
saving to text files and others. Piranha works with different series types. In particular, supported series
types are polynomials with rational numerical coefficients and Poisson series with polynomial coefficients.

Lets consider algorithm of constructing of the Hamiltonian expansion into the Poisson series:

• to be necessary make classical celestial mechanics series, such as x/a, y/a, y/a and r/a, a/r, which
are base elements for the Hamiltonian expansion. We need to transform expressions for these
expansions from Kepler elements (eccentricity and mean anomaly) to Poincare elements. We can
use standart algorithms for it (Sharlier, 1966). Classical expansions in Kepler elements can be
obtained using the Kepler processor implemented in Piranha;

• next, using x/a, y/a, z/a series it is possible to take the expansion of scalar product. Series for
ri/rj ratio is obtained from expansions of ri/ai and aj/rj ;

• inverse absolute value of radius vectors difference in Jacobi frame, which is denoted below as 1/∆ij ,
can be expanded into a series as follows. Write the definition of 1/∆ij :

1/∆ij = |ri − rj |−1 =
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− 2
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where Pn is Legendre polynomial of n-th degree, H is angle between vectors ri and rj . In (5) you
can see the generating function of Legendre polynomials. So, we can expand 1/∆ij into Poisson
series, using series for 1/rj and ri/rj . The series in Legendre polynomials absolutely converges
when |ri/rj | < 1. In our case Legendre polynomials have not inner structure and saved in series as
symbol variables. It allows reducing of number of expansion terms, necessary working memory and
disk space;

• after that, we can take expansion of the Hamiltonian. Common form of items of the major part
expansion up to the second degree of small parameter is shown here:
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and here for items of the second part of the disturbing function:
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, Ci = ri

i−1∑

k=1
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m̄k
rk, Di = Bi1, (8)

1 ≤ j < i ≤ N in (6) and 2 ≤ i ≤ N in (7). In our case N = 4. So, using series for inverse
distances, scalar products and quantities of 1/∆ij with various degrees, we can construct items of
the Hamiltonian expansion. Such quantities as small parameter µ and masses ratio mk/m̄k are
used as symbol variables in series constructing.
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3. RESULTS
Calculations were performed on Quad-core PC with 2600 MHz Core i5 processor and 8 Gb available

memory. Computer algebra system Piranha using on Unix-like OS Ubuntu 14. Algorithms for series
calculations was written as Python-modules of Piranha.

In the process, Piranha showed a high speed of calculations. Table 1 presents a time of series calcu-
lation, a number of its items and estimation accuracy for base series. Parameter n in the first column is
a limit of degrees of eccentric and oblique Poincare elements. Results in the last column are correspond
to series for 1/∆ij with maximum degree of Legendre polynomials is equal to 35.

n series x/a y/a z/a r/a a/r ri/rj ri.rj 1/∆ij

6 time 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 1s 40s

items 146 146 216 66 61 847 6282 32628
accuracy 10−8 10−8 10−8 10−9 10−9 10−8 10−7 10−12 − 10−8

11 time 12s 12s 12s 19s 19s 1s 56s 12m44s

items 792 792 2128 303 298 13548 228629 515291
accuracy 10−14 10−14 10−14 10−15 10−15 10−13 10−12 10−13 − 10−9

Table 1: Calculation time, number of terms and estimation accuracy for base series.

The value of n is determined by required accuracy of expansion of the disturbing function. Rows which
are named ’accuracy’ consist relative differences between series expansion and accurate formula. In this
work estimation accuracy of base series is determined for the Solar System giant-planets. Indexed values
were calculated for all planetary pairs of Solar System. A wide range of values in some cells is obtained
various estimations accuracy for planets pairs. The value of 1/∆ij for the planetary pair ”Uranus–
Neptune” has the lowest accuracy. The best accuracy gives the planetary pair ”Jupiter–Neptune”.

The Hamiltonian expansion was constructed to 1 degree of small parameter. Maximum considered
degree of eccentric and oblique Poincare elements is 6. Legendre polynomials are considered up to
35 degree.

Precision of the Hamiltonian approximation was calculated for the Solar system and 47 UMa, HD 69830
extrasolar systems also. Kepler elements for the Solar System are taken w.r.t. epoch J2000.0 and corre-
spond to mean ecliptic. Orbital elements, such as semi-major axes, eccentricities and perigee arguments,
and planets masses of above extrasolar systems are taken from http://www.exoplanet.eu. Planetary sys-
tem of star HD 69830 is interesting in that it is compact with orbits eccentricities of the order of 0.1.
Estimation accuracy of the series approximation is presented in the Table 2 for all items of the disturb-
ing function. Columns which are named ’accuracy’ consist relative differences (absolute values) between
series expansion and accurate formula.

Solar System 47 UMa star system HD 69830 star system
series expansion accuracy series expansion accuracy series expansion accuracy

i, j the major part the major part the major part
1,2 6.247 · 10−2 2 · 10−5 0.26590 4 · 10−5 1.271 · 10−2 1 · 10−5

1,3 2.12 · 10−3 1 · 10−5 0.31009 5 · 10−5 5.9438 · 10−3 5 · 10−7

1,4 1.599 · 10−3 2 · 10−6 – – – –
2,3 5.72 · 10−4 7 · 10−6 0.08499 2 · 10−5 4.10297 · 10−3 4 · 10−8

2,4 4.43 · 10−4 1 · 10−6 – – – –
3,4 1.95 · 10−4 1 · 10−6 – – – –
i the second part the second part the second part
2 1.58379 · 10−2 4 · 10−7 0.04968 7 · 10−5 3.01 · 10−3 2 · 10−5

3 9.5 · 10−5 5 · 10−6 0.02549 1 · 10−5 1.6471 · 10−3 7 · 10−7

4 7 · 10−6 5 · 10−6 – – – –
whole disturbing function whole disturbing function whole disturbing function

Σ 8.526 · 10−2 2 · 10−5 0.63676 5 · 10−5 2.741 · 10−2 3 · 10−5

Table 2: Precision of estimation of the disturbing function.
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Table 2 shows that estimation accuracy of the disturbing function expansion is about 10−5 for the
Solar System and different extrasolar systems. According to expression (2) the disturbing function must
be multiplied by small parameter µ. After that, we can get estimation accuracy of the Hamiltonian
expansion into series. It is about 10−8.

4. CONCLUSION
We described algorithm for constructing of the Hamiltonian expansion of a planetary system with

4 planets into the Poisson series in all elements. The expansion was made to 6 degree of orbital elements
and to 1 degree of small parameter. Estimation accuracy of the disturbing function is presented in this
paper. Relative difference between series estimation and accurate formula is about 10−5 for the Solar
System and extrasolar systems. So, the Poisson series for the Hamiltonian was constructed with precision
about 10−8. Now we are constructing the expansion for the Hamiltonian to 11 degree of orbital elements
and 2 degree of small parameter.
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