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ABSTRACT. For the purpose of more accurate forecasting the oscillatory process of the Earth pole in
time periods with significant anomalies (irregular deviations) a numerical-analytical approach is presented
for the combined modeling of the interdependent dynamical processes - the oscillatory-rotational motion
of the Earth and the time dependant coefficients of the geopotential. The oscillations of the inertia
tensor components of the Earth depend on various factors such as mechanical and physical parameters
of the planet, the motions of the tide-generating bodies and observed large scale natural events. Time
variations of these and some other factors affect the Earth orientation parameters. The generalization of
the previously researched mathematical model of Chandler and annual oscillations of the Earth pole is
being held with the use of celestial mechanics methods and the mathematical description of the Earth
gravitational field’s temporal variations. The latter makes possible to improve the forecast precision of
the Earth pole trajectory. Also the more precise model is to have small number of parameters and to agree
with the previously developed one (to have the same structural features and to have a correspondence
between the averaged dynamical parameters and the parameters of the basic model).

1. INTRODUCTION
To achieve the characteristics of a high-accuracy forecast of oscillations of the Earth’s pole, interdepen-

dent dynamic processes are considered, namely, rotary-oscillatory motions of the Earth and time-varying
coefficients of the planetary geopotential. Oscillations of the Earth’s inertia tensor components depend on
many factors, e.g., the mechanical and physical parameters of the planet, the motion of tide-generating
bodies, and observed large-scale natural phenomena. Time variations in these and other factors have
an effect on the parameters of the Earth’s rotation. In connection with this, joint simulation of the
oscillatory motion of the Earth’s pole and time variations in geopotential coefficients having an effect on
parameters of the rotating geoid is of scientific and practical interest.

We described the rotational motions of the deformable Earth and the oscillations of the Earth’s pole
using a simplified mechanical model for the viscoelastic rigid body of the Earth. To take into account
gravitational-tidal effects, we assumed the Earth to be axially symmetric and two-layered, i.e., consisting
of a rigid (spherical) core and a viscoelastic mantle. We could have used some more complex model.
However, employing anymore complex figure for the Earth is not justified, since we cannot determine
the geometrical and physical parameters of the Earth with the required accuracy and completeness via
a statistical processing of indirect data from seismic measurements. We adhere to the idea that the
complexity of a model must strictly correspond to the problem formulated and to the accuracy of the
data used. To construct a model for the polar oscillations, we can determine a small number of some mean
(integrated) characteristics of the inertia tensor. Comparison with measurements and further analysis
indicate that our simplifications are justified (Akulenko, et al., 2012).

2. MATHEMATICAL MODEL OF THE EARTH’S POLE MOTION
It is convenient to represent the trajectory of the Earth’s pole as an ensemble of an irregular trend

(drift containing secular and low-frequency component with periods of six years and longer) and polhode
(trajectory of the pole motion around the middle position) expressed in terms of the amplitude a and
phase ψ of the pole motion. Then, the pole coordinates have the form

xp = cx + a cos ψ, yp = cy + a sin ψ. (1)
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When moving around the middle position, the pole describes a helical curve that is obtained as the
sum of two main components: the Chandler wobble with a period of 2π/N ' 433 days and the annual
nutation. The choice of the parameters a and ψ turns out to be more convenient for describing the
fluctuations of the main components of the modulation motion of the pole.

It is well known (Akulenko, et al., 2007) that the amplitude and phase of the Chandler component of
the oscillatory process of the pole are very sensitive to different disturbing factors, in particular, to those
possessing irregular properties (gravitational, oceanic, atmospheric, and, probably, others). It is natural
to associate the mechanism of these actions with weak perturbations of the inertia tensor. The Earth’s
figure is a dynamic geoid figure due to variations in the inertia tensor; at the same time, it creates an
additional time-dependent perturbing potential δW (t). The largest summand from the expansion of the
potential δW is the perturbation from the second harmonic δW2:

δW2 =
fmER2

E

r3
∆Ȳ2(θ, ϕ), (2)

∆Ȳ2 = δc20P̄20(cos θ) + [δc21 cos ϕ + δs21 sinϕ]P̄21(cos θ) + [δc22 cos 2ϕ + δs22 sin 2ϕ]P̄22(cos θ)

where θ, ϕ and r are spherical coordinates; RE is the average radius of the Earth (RE ' 6.38×106 m); and
fmE = 3.98600442×1014m3s−2. The change in the normalized spherical function ∆Ȳ2(θ, ϕ) is expressed
in terms of second order coefficients of the geopotential expansion and P̄2m(cos θ) are normalized adjoint
Legendre functions.

Differential equations for the amplitude and phase of the modulation motion of the Earth’s pole can
be obtained from the dynamic Euler-Liouville equations of the Earth’s motion with respect to the center
of masses:

ȧ =
2mER2

E

A∗
r0

[
c∗22

(
1− C∗

B∗

)
+ δc22

]
a sin 2ψ + [µp cos ψ + µq sin ψ] ,

ψ̇ = −Nq cos2 ψ −Np sin2 ψ + a−1 [µq cos ψ − µp sin ψ] .
(3)

Here A∗, B∗, C∗ are effective principal central moments of inertia with allowance for deformations of
the “frozen” figure of the Earth; c2m = c∗2m + δc2m, s2m = s∗2m + δs2m are second order coefficients of
the potential expansion into a series in terms of spherical functions; r0 is the average velocity of axial
rotation of the Earth; and variable coefficients

Np =
C∗ −B∗ + δC − δB

A∗ + δA
r0, Nq =

C∗ −A∗ + δC − δA

B∗ + δB
r0

are close quantities determining the frequency of Chandler oscillations of the pole. The quantities µp

and µq are determined by gravitation-tidal moments of forces from the Sun and the Moon. The average
frequency of free nutation N∗, according to solution (3), is

√
N∗

p N∗
q . Variation in the frequency of

Chandler oscillations (free nutation frequency) is a function of the dynamic compression of the geoid and
variation in the axial moment of inertia:

N ∼= N∗ + δN, δN = −z(δC, δc20). (4)

Then, for the amplitude ach and phase ψch of the Chandler oscillation, we obtain the expressions

ach = a0
ch + avar

ch

(
t,

π

N

)
,

ψch = ψ0
ch −N∗t +

∫
z(δC, δc20)dt + ψvar

ch

(
t,

π

N

)
,

(5)

where a0
ch, ψ0

ch are the average value of the amplitude and constant phase shift and avar
ch , ψvar

ch are sum-
mands depending on the sectorial c22 and other coefficients; they express the ellipticity of the Chandler
component trajectory with a very small eccentricity.

As follows from the results of the numerical simulation, the parameters of the perturbed Chandler
oscillation can be found from variations in the geopotential coefficient c20. As an example, Fig. 1 presents
the variation in the perturbed Chandler oscillation frequency ∆ψ̇−N∗ and variations in the second zonal
harmonic δc20 according to SLR (Satellite Laser Ranging) data (Cheng and Tapley, 2004).
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Figure 1: (a) Interpolation of variations in the second zonal harmonic δc20 of the geopotential on the
time interval of 1984-2008 and a forecast for six years (2009-2014): the stars joined with a thin solid line
are the SLR measurement data and the contrast solid line is the constructed curve. (b) Variation in the
frequency ∆ψ̇ of the perturbed Chandler oscillation of the Earth’s pole constructed in the course of the
numerical simulation (1990-2014).

For coordinates of the Earth’s pole (neglecting the difference in the amplitudes of the main components
ãch,h ≈ ap,q

ch,h), we obtain the final expressions:

xp = cx + ãch cos
(
ψ0

ch −N∗t + δψ + ∆ψ
)

+ ah cos(ψ0
h + νht + χ),

yp = cy + ãch sin
(
ψ0

ch −N∗t + δψ + ∆ψ + ε
)

+ ah sin(ψ0
h + νht),

δψ =
∫
z(δC, δc20)dt.

(6)

Here, ãch is the resulting amplitude of the Chandler oscillation; ε and χ are the phase shifts in xp

and yp for the Chandler and annual oscillations, respectively; and νh is the annual oscillation frequency.
Figure 2 presents the results of the numerical simulation of the Earth’s pole motion according to the

basic model (Akulenko, et al., 2012) and model (6). The plot shows an interpolation on a long time
interval (from 1990 up to and including 2012) and a forecast for 2013 and 2014 for the oscillatory process
in coordinates of the Earth’s pole according to two models - the basic model and the refined one (6) in
comparison with highly accurate IERS data.

In addition, Fig. 2 yields residuals between IERS data and theoretical curves. The corresponding
root-mean-square deviations calculated on the interpolation interval for the basic model (σ∗x, σ∗y , σ∗xy)
and model (6) (σx, σy, σxy) are given in milli arcseconds:

σ∗x = 44.30672865, σ∗y = 43.32902488, σ∗xy = 61.97169186,

σx = 24.14765269, σy = 20.25418818, σxy = 31.51731698.
(7)
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Figure 2: (a) Interpolation on the time interval from 1990 up to and including 2012 and forecast for 2013
and 2014 for the oscillatory process of the Earth’s pole coordinates according to the basic (dashed line) and
refined (solid curve) models in comparison with highly accurate IERS observation and measurement data
(discrete points). Residuals (given below the basic plots), differences between IERS data and theoretical
curves constructed according to the basic (dashed line) and refined (solid curve) models.

Based on the obtained interpolation results and forecast of pole oscillations, one can conclude that
joint simulation of dynamic processes (taking into account time variations of the geopotential) allows one
to refine the analytical model and improve the forecast for the pole motion trajectory.
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