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ABSTRACT. Dynamical evolution of objects near Molniya-type orbits is considered. Initial conditions
correspond to highly elliptical satellite orbits with eccentricities 0.65 and a critical inclination 63.4◦. Semi-
major axis is varied near resonant value 26560 km in an interval 500 km. Variations were analyzed for
positional orbital elements, an ascending node longitude and an argument of pericenter. Initial conditions
determined when orbital elements variations are minimal. These regions can be used as orbits for safe
stationing satellites which finish work on Molniya-type orbits. The study of dynamical evolution on long
time intervals was performed on the basis of the results of numerical simulation. The model of disturbing
forces taken into account the main perturbing factors. Time interval was up to 24 yr. Area-to-mass ratio
varied from small values corresponding to satellites to big ones corresponding to space debris.

1. INTRODUCTION
Region of high-elliptical orbits (HEO) has a very complex dynamics. Both active and passive objects

are moved on HEO. There is a problem of protecting active satellites from space debris. It requires high-
accuracy propagation of HEO objects motion. These objects have a long-term evolution of eccentricities
and inclinations due to the Lidov–Kozai resonance (Lidov, 1962; Kozai, 1962). There are secular pertur-
bations of semi-major axes due to the atmospheric drag. The Poynting–Robertson effect also leads to
secular perturbations of semi-major axes for objects with area-to-mass ratio (AMR) more than 1 m2/kg
(Kuznetsov et al., 2012). The dynamical evolution of high AMR objects in the Molniya-type orbits was
studied by (Sun et al., 2013). In this paper, a vicinity of Molniya orbit is considered. A stochastic
trajectory formation due to objects passage through high-order resonance zones was considered.

We present both analytical and a numerical results for locations and sizes of high-order resonance
regions in the vicinity of Molniya-type orbits. Secular perturbations of the semi-major axes of the orbits
are estimated in the vicinity of the resonance zones. A long-time orbital evolution is investigated for
HEO orbits and orbits surrounding these regions. AMR values are variable. Capture and escape from
resonance, as well as a passage through resonance, is considered to be an orbital evolution.

2. ANALYTICAL APPROXIMATION
The frequencies of the perturbations caused by the effect of sectoral and tesseral harmonics of the

Earth’s gravitational potential are a linear combinations of the mean motion of a satellite nM , angular
velocities of pericenter motion ng and node motion nΩ of it’s orbit, and angular velocity of the Earth ω.

Following Allan (1967a, 1967b), we form the frequencies

ν1 = p(nM + nΩ + ng)− qω, ν2 = p(nM + ng) + q(nΩ − ω), ν3 = pnM + q(ng + nΩ − ω) (1)

of three critical arguments

Φ1 = p(M +Ω+g)−qωt = ν1t, Φ2 = p(M +g)+q(Ω−ωt) = ν2t, Φ3 = pM +q(g+Ω−ωt) = ν3t, (2)

where M is the mean anomaly, Ω is the longitude of the ascending node, g is the argument of the
pericenter, and p, q are an integers.

The condition ν1 ≈ 0 corresponds to the resonance p:q between the satellite’s mean motion nM and the
Earth’s angular velocity ω. This condition represents the n-resonance. The condition ν2 ≈ 0 corresponds
to an i-resonance under which the position of the ascending node of the orbit repeats periodically in a
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rotating coordinate system. The condition ν3 ≈ 0 corresponds to an e-resonance at which the position of
the line of apsides is considered.

Analytical estimations were obtained for locations and sizes of resonance regions. Mean motions nM ,
ng, nΩ were calculated taking into account the secular perturbations from the Earth’s oblateness ˙̄MJ2 , ˙̄gJ2 ,
˙̄ΩJ2 (Beutler, 2005), the Moon’s attraction ˙̄ML, ˙̄gL, ˙̄ΩL, the Sun’s attraction ˙̄MS , ˙̄gS , ˙̄ΩS (Timoshkova
and Kholshevnikov, 1974).
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Where κ2 is the Earth’s gravitational parameter and a is a semi-major axis of an orbit,
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Where J2 is the second zonal harmonic coefficient, n is the two-body mean motion, re is the mean
equatorial radius of the Earth, i and e are the inclination and eccentricity of satellite’s orbit, m⊕ is the
Earth’s mass, m′, a′ and i′ are the mass, semi-major axis and inclination of perturbing body orbit (the
Moon or the Sun).

Expansions of perturbing functions coincide for outer body attraction and solar radiation pressure.
These expansions are differed by notations and limits of summation only. We used expansion for solar
attraction to take into account solar radiation perturbations. The Sun’s mass was reduced on

µ = − 1
f

bγP0r
2
S . (4)

Where µ is the Sun’s mass reduction (Polyakhova and Timoshkova, 1984), f is the gravitational constant,
b is the reflection coefficient of the satellite surface, γ is AMR, P0 = 4.56 · 10−6 kg m−1 s−2 is the solar
pressure, rS is the distance from the Earth to the Sun.

We estimated values of the semi-major axis corresponding to the n-, i- and e-resonances from the
conditions ν1 = 0, ν2 = 0, and the ν3 = 0 in the vicinity of Molniya-type orbits. Initial conditions
corresponded to high-elliptical orbits with an eccentricity 0.65 and critical inclination 63.4◦. Semi-major
axis values varied from 26000 km to 27100 km. There were 17 high-order resonance relations p:q between
mean motion of angular orbital elements and the Earth’s angular velocity: 16 6 |p| 6 25, 33 6 |q| 6 49,
orders of the resonances are 49 6 |p|+ |q| 6 74 in this region.

3. NUMERICAL SIMULATION
The study of orbital evolution on long time intervals was performed based on the results of numerical

simulations conducted using “A Numerical Model of the Motion of Artificial Earth’s Satellites” devel-
oped by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University
(Bordovitsyna et al., 2007). The model of disturbing forces accounts the nonsphericity of the gravi-
tational field of the Earth (model EGM96, harmonics up to the 27th order and degree inclusive), the
attraction of the Moon and the Sun, the tides in the Earth’s body, the direct radiation pressure, taking
into account the shadow of the Earth (the reflection coefficient of the satellite surface b = 1.44), the
Poynting–Robertson effect, and the atmospheric drag. The integration of motion equations was carried
out using the Everhart’s method of the 19th order.

Initial conditions as mentioned above correspond to high-elliptical orbits with an eccentricity e0 = 0.65
and critical inclination i0 = 63.4◦. Initial semi-major axes a0 values are consistent with a resonant
conditions arisen from the analytical approximation. The initial value of the argument of the pericenter
g0 was 270◦. The initial values of the longitude of the ascending node Ω0 are 0◦, 90◦, 180◦, and 270◦.
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This coincides with initial values of a solar angle ϕ0 = Ω0 + g0 = 270◦, 0◦, 90◦, and 180◦. AMRs tried
were equal to 0.02, 0.2, and 2 m2/kg. Period of integration is 24 years.

4. DYNAMICAL EVOLUTION IN A REGION NEAR THE 22:45 RESONANCE
We present dynamical evolution using the example of the 22:45 resonance. Qualitative evolution for

the rest 16 high-order resonances is the same.
Semi-major axis evolution depends on the solar angle weakly when AMR is 0.02 m2/kg and it corre-

sponds a satellite. The evolution of e, i, and g for Molniya-type orbits depend on the orientation of the
orbital plane significantly. Maximal magnitudes of oscillations are reached when the initial solar angle
ϕ0 = 0◦. The magnitudes of oscillations are minimal at ϕ0 = 180◦. The argument of the pericenter has
a libration near the initial value of g0 = 270◦ due to the initial critical inclination i0 = 63.4◦.

Object has temporary captures into i- and e-resonance due to the long-term evolution of eccentricity
and inclination of it’s orbit. Libration of critical argument Φ corresponds to resonant motion. Object
has capture into resonance and escape from resonance due to the long-term evolution of eccentricity
and inclination of it’s orbit when mean value of semi-major axis is saved almost constant. Secular
perturbations of semi-major axis is approximately to −5 m/year due to the Pointing–Robertson effect.

When AMR is 2 m2/kg, it corresponds a space debris. Increase of AMR leads to increase of magnitude
of short-periodic perturbations. There are captures into n-resonance when mean value of semi-major axis
is equal to resonant value one. After 12 years the mean value of the semi-major axis is became less the
resonant value due to the Poynting–Robertson effect. Secular decrease in the semi-major axis, which,
for a spherically symmetrical satellite with AMR = 2 m2/kg near the 22:45 resonance region, equals
approximately −0.5 km/year. Numerical simulation shows that this effect weakens slightly, in resonance
regions. Under the Poynting–Robertson effect objects pass through the regions of high-order resonances.

5. STOCHASTIC TRAJECTORIES FORMATION
The Poynting–Robertson effect results in a secular decrease in the semi-major axis of a spherically

symmetrical satellite (Smirnov et al., 2001). The secular perturbations of the semi-major axis lead to
formation weak stochastic trajectories. We described the stochastic properties of the motion based on an
analysis of the integrated autocorrelation function (IACF) A (Wytrzyszczak et al., 2007).

The IACF A asymptotically approaches unity for constant time series. For a uniform time series
representing a periodic sine function, A = 0.5. For other periodic and quasi-periodic time series, A
approaches a finite value close to 0.5. For chaotic trajectories, A asymptotically approaches zero with a
speed proportional to the inverse of the exponential decay time.

Figure 1 shows the IACF A for the semi-major axis a. Initial value of semi-major axis a0 is 26162 km,
AMR is 0.02 m2/kg. The IACF A is asymptotically decreasing to 0.02 for all the solar angles. The
dynamical evolution has chaotic properties for all initial values of the solar angle.

6. CONCLUSION
The Poynting–Robertson effect results in a secular decrease in the semi-major axis of a spherically

symmetrical satellite. Secular decrease in the semi-major axis is approximately −0.5 km/year for an
object near-resonance 22:45 region with AMR = 2 m2/kg. In resonance regions the effect weakens
slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the
numerical simulation. Under the Poynting–Robertson effect objects pass through the regions of high-
order resonances. The Poynting–Robertson effect and secular perturbations of the semi-major axis lead
to formation weak stochastic trajectories.

Acknowledgements. This research was supported by the Ministry of Education and Science of the Rus-
sian Federation (unique project identifier RFMEFI59114X0003) and the Russian Foundation for Basic
Researches (grant 13-02-00026a).

7. REFERENCES
Allan, R.R., 1967a, “Resonance effects due to the longitude dependence of the gravitational field of a

rotating primary”, Planet. Space Sci., 15, pp. 53–76.

110



Figure 1: The integrated autocorrelation function A for the semi-major axis a.
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