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4 Université Lille 1, Laboratoire Paul Painlevé
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ABSTRACT. We focus on the study of binary asteroids, which are common in the Solar system from
its inner to its outer regions. These objects provide fundamental physical parameters such as mass and
density, and hence clues about the early Solar System. The present method of orbit calculation for
resolved binaries is based on Markov Chain Monte-Carlo statistical inversion technique. In particular, we
use the Metropolis-Hastings algorithm combined the Thiele-Innes equation for sampling orbital elements
through the sampling of observations. The method requires a minimum of four observations, made at
the same tangent plane; it is of particular interest for initial orbit determination. The observations are
sampled within their observational errors with an assumed distribution. The sampling predicts the whole
region of possible orbits, including the one that is most probable.

1. STATISTICAL INVERSION PROBLEM
The statistical ranging method using Markov-Chain Monte-Carlo for asteroid heliocentric orbit de-

termination has been investigated by, for example, Oszkiewicz et al. (2009) and Virtanen et al. (2001).
We use the similar approach for binary asteroids to determine relative orbit.

The N astrometric observations at times t = (t1, ..., tN ) are related to the theoretical positions through
the observational equation:

ϕ = ψ(X) + ε ,

where ϕ = (ρ1, θ1; ...; ρN , θN ) is a set of N observations, presented by relative distance and angle, ψ(X) is
a computed sky-plane positions, X = (a, e, i, Ω, ω, T, P ) is the vector of orbital elements (semi-major axis,
eccentricity, inclination, longitude if the ascending node, argument of periapcsis, the time of perihelion
passage) and the period respectively, and ε = (ερ1, εθ1; ...; ερN , εθN ) is the vector of observational errors.

Applying the Bayesian statistics the a posteriori probability density of the binary asteroid orbital
parameters can be estimated from the a priori and the noise probability density. Using the Bayes’
theorem

p(X|ϕ) =
p(X)p(ϕ|X)

p(ϕ)

and following the statistical inversion theory, the a posteriori probability density of the orbit elements is
related to the a priori and noise probability densities:

p(X|ϕ) ∝ p(X)pε ,

where the likelihood function coincides with the noise probability density pε = p(ϕ|X) = exp(− 1
2εT Λ−1ε),

ε = ϕ− ψ(X), and Λ is the covariance matrix 2N × 2N for the observational errors.
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The a priori probability density can be expressed as p(X) = exp[−U(X)], where U(X) includes the
distributions of each parameter. The final a posteriori orbital parameters probability density function:

p(X|ϕ) ∝ exp[−1
2
εT Λ−1ε− U(X)] .

2. MARKOV CHAIN MONTE-CARLO METHOD
The Metropolis-Hastings algorithm, based on the Markov Chain Monte-Carlo method, has been used

for sampling parameters X. First, from the whole set of N observations we select four observations on
the same tangent plane; this is necessary and sufficient for binary asteroid relative orbit determination
using the Thiele-Innes method. Then, the corresponding relative distance ρ and angle θ which sampled.
For each iteration we introduce the proposal densities for the set of four observations, correspond to the
Gaussian distribution of observational errors. They are centred around the last accepted sampling. We
denote the proposal set of 4 positions S′ and last accepted St.

We generate proposal positions (ρ′i; θ
′
i), i = 1, 2, 3, 4 for the four chosen observation data with the

proposal densities
(ρ′i ∝ G(ρt

i; σ(ρi); θ′ ∝ G(θt
i ; σ(θi)) .

Then from the four positions sampled we calculate an orbit X ′ using Thiele-Innes method, and check
the solution to all observations. The new candidate orbital elements and system mass are rejected or
accepted according to acceptance criteria:

a =
p(X ′|ϕ)p(St, S

′)Jt

p(Xt|ϕ)p(S′, St)J ′
,

where J ′ and Jt are the determinants of the Jacobian matrix from (ρ, θ) coordinates to parameters X for
the candidate and the last accepted sample. The Jacobians are defined as (Oszkiewicz et al., 2009):

J =
∣∣∣∣
∂S

∂X

∣∣∣∣ .

We use the symmetric p.d.f.s p(St, S
′) and p(S′, St), therefore

a =
p(X ′|ϕ)Jt

p(Xt|ϕ)J ′
.

If a ≥ 1 we accept the candidate elements, then Xt+1 = X ′. If a < 1 we accept the candidate elements
with a probability equal to a, or Xt+1 = Xt with a probability equal to 1 − a. This process is repeated
until the stationary a posteriori density is reached. The algorithm is run for a large number of iterations
until the entire possible orbital-element space is mapped.
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