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ABSTRACT. The effects of the tidal mass redistributions on the Earth precession and nutations
are revisited, under various hypothesis on the elastic response of the Earth and using the Hamiltonian
approach. New non-negligible secular and periodic contributions have been found.

1. INTRODUCTION
The gravitational action of the Moon and the Sun on the deformable Earth perturbs its state by

inducing in it a mass redistribution. In turn, such mass redistribution produces a variation of the
gravitational energy of the system, leading to an additional term commonly referred to as redistribution
tidal potential. In this regard, Moon and Sun are viewed as perturbed bodies. The effects of that
redistribution potential on the forced rotational motion of the Earth figure axis have been previously
discussed by Souchay and Folgueira (2000), Escapa et al. (2004), Ferrándiz et al. (2012) and Baenas
(2014), within a Hamiltonian framework. Another approach to the problem, based in the SOS equations
(Sasao et al. 1980), can be found in Lambert and Mathews (2006).

The Hamiltonian treatment of the elastic Earth follows the classic ideas by Love (1911) and assumes
that the variation of the Earth’s gravitational potential due to its tidal mass redistribution is proportional
to the perturbing potential – Getino and Ferrándiz (1990, 1991, 1995), Kubo (1991), Escapa (2011).
However, that proportionality can be modeled in various ways, adapted to different rheological hypothesis
and different levels of mathematical complexity. A first, simplified model consists in considering a sole,
global constant, within the Love’s number approach (Munk and MacDonald 1960), to determine the
additional gravitational potential at the deformed Earth surface. Besides, this simplified elastic behaviour
has been profusely used to search the effects of the associated changes of the inertia tensor and kinetic
energy on the Earth’s rotation – which are indeed larger than those due to the incremental potential.
However, it is only compatible with a rheological Earth model which is also simplified, the non-perturbed
state being a non-rotating sphere (Wahr 1981).

Before introducing a more general elastic response in the analytical modeling, a rheological model
based in Wahr (1981) can be considered as a first step. In such a situation closer to reality, the non-
perturbed state is assumed to be ellipsoidal and rotating. The Earth’s elastic response, seen, e.g., in the
redistribution tidal potential, is described by means of a set of Love’s numbers, which can depend on the
order m of the spherical harmonics in the geopotential expansion and on the excitation frequencies as
well. They form a set of complex numbers in the general case corresponding to some anelastic behaviour
in the response, a case included, e.g., in the IERS Conventions 2010 (Petit and Luzum 2010). We denote
those numbers by

k̄2m =
∣∣k̄2m

∣∣ eiε2m . (1)

From a dynamical point of view, that hypothesis requires an ab initio reconstruction of the rotation
theory (Baenas 2014), in which the expression of the redistribution energy potential is given by the sum
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(over p and q, both representing either Moon or Sun) of terms of the form
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a5
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where C2j , S2j and C ′
2j , S ′

2j , stand for the second degree real surface spherical harmonics, related to
perturbed bodies (unmarked) and perturbing ones (with ′) respectively, and relative to the terrestrial
frame, (r, η, α) being the spherical coordinates – radial distance, colatitude and longitude. The symbol
G denotes the gravitational constant; aE is a conventional mean Earth’s radius and mp,mq stands for
the masses.

2. ANALYTICAL MODELING
An Andoyer-like set of canonical variables is used to describe the rotation linking the non-rotating

system OXY Z (an ecliptic frame) and the terrestrial one Oxyz (a Tisserand mean system, Munk and
MacDonald 1960, Escapa et al. this vol.), where O represents the Earth’s barycenter. The canonical
coordinates and conjugated momenta are denoted by p = (λ, µ, ν), q = (Λ,M,N), where M is the
angular momentum modulus and Λ and N its projections on to the Z and z axes, respectively. The
spherical harmonics in (2) must be expressed in terms of the spherical harmonics referred to the OXY Z
system, in which the orbital motions of Moon and Sun are provided by convenient ephemeris. The
final expansion takes the form of a so-called Poisson series depending on the Andoyer variables and the
fundamental arguments of nutation, denoted by (Kinoshita 1977)

Θj = m1j l + m2j l
′ + m3jF + m4jD + m5jΩ. (3)

Here l, l′, F , D and Ω are the Delaunay variables of Moon and Sun. The subindex j stands for the
5-tuple of integers mij , so it can be used to indicate the functional dependence of nj = dΘj/dt. The
coordinate λ and the auxiliary angle I (defined by cos I = Λ/M) describe the motion of the Earth’s
angular momentum axis in the space system. The figure axis motion is given by the Euler’s angles ψ, θ
(longitude and obliquity), which are related to the Andoyer variables by the expansions (Kinoshita 1977)

ψ = λ + σ
sin µ

sin I
+ O(σ2), θ = I + σ cosµ + O(σ2), (4)

which are accurate enough since the auxiliary angle σ (defined by cos σ = N/M) has a magnitude about
10−6 rad, of the order of polar motion (Kinoshita 1977).

The Lie-Hori canonical perturbation method (Hori 1966) is used to tackle the evolution of the system
with Hamiltonian H = H0 + H1, where the unperturbed part, H0 = T0, is the kinetic energy for a
non-spherical symmetric rigid Earth (Kinoshita 1977) and the perturbed one is H1 = Tt + Vt, in which
Tt stands for the redistribution kinetic energy (Kubo 1991, Getino and Ferrándiz 1990, 1995) and Vt for
the redistribution potential energy (2). Due to the linearity of the perturbation equations at the first
order, the effects of Tt and Vt can be studied separately, and analytical expressions can be obtained for
each component of the rotational motion of the Earth’s figure axis (Baenas 2014).

The contribution of the mass redistribution to the precessional motion, denoted by δnλ and δnI , comes
from the additional secular component of the Hamiltonian and can be determined from the variation of
the velocities n∗λ = dλ∗/dt and n∗I = dI∗/dt. Similar additive terms for the nutations, 4ψ and 4θ are
obtained taking into account (4) and the perturbation equations.

The solution to the precession rates caused by the Earth’s mass redistribution can be expressed as

δnλ = − 1
sin I∗

1
CHd

M,S∑
p,q

∑

i,j

±1∑
τ,ε

τΘi−εΘj=0

0,1,2∑
m

|κ̄2m,j;p| kqT
(nλ)
ijpq,m (τ, ε) cos ε2m,j ,

δnI = − 1
sin I∗

1
CHd

M,S∑
p,q

∑

i,j

±1∑
τ,ε

τΘi−εΘj=0

0,1,2∑
m

|κ̄2m,j;p| kqT
(nI)
ijpq,m (τ, ε) sin ε2m,j , (5)
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where the functions T
(−)
ijpq,m (τ, ε) depend on the auxiliary variable I and on the orbital solutions through

the Kinoshita’s (1977) Bi, Ci and Di functions and are given by

T
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The complex parameter κ̄2m,j;p is a generalization of the constant defined by Kubo (1991)

κ̄2m,j;p =
1
3
k̄2m;jmpa

2
E

(
aE

ap

)3

,

where subindex j points to the dependence on the orbital (or excitation) frequencies nj . The constant
kq is the one defined by Kinoshita (1977), Hd = 1 − A/C is the Earth’s dynamical ellipticity, A and C
being the equatorial and polar Earth’s principal moments of inertia, and δmk is the Kronecker delta.

These analytical formulas show that the nonzero contribution to the precessional rate in obliquity,
δnI , is a purely anelastic effect, as it only stands for complex values of the Love’s numbers (with any
ε2m,j 6= 0), what is in accordance with Lambert and Mathews (2006).

3. RESULTS
It can be shown analytically (Escapa et al. 2004, Baenas 2014) that in the case of the simplified Earth’s

elastic response, with k̄2m = k ∈ R, the effects of the different harmonic contributions of the redistribution
potential cancel each other out in all cases: precession velocities and nutation terms. When more general
rheological models for the Earth’s mantle elasticity are considered, there appear non-negligible secular
and periodic contributions to the motion of the Earth’s figure axis.

For the evaluation of the analytical solutions, the frequency dependent complex Love’s numbers have
been taken from IERS Conventions 2010. Table 1 shows the results for the contributions to the precession
rates, including separately the additive terms coming from the well-known harmonic contributions of the
perturbing tidal potential: zonal, tesseral and sectorial, denoted respectively by B, C and D. In the
zonal part, the permanent tide contribution, B0, is computed separately. This particular term must be
included or removed, depending on the dynamical model considered for the rigid part of the Earth’s
inertia tensor (“zero tide” or a “tide free” according to IERS Conventions 2010 terminology).

Zonal Tesseral Sectorial Total
B0 B −B0 C D

δnλ 43.7900 −4.1389 −60.6554 27.0102 6.0059
δnI 0.0000 -0.0118 0.1209 0.6656 0.7748

Table 1: Contribution of the mass redistribution to the precessional rates (unit 1 mas/cJ).

Table 2 displays only the in-phase amplitudes of the main nutation terms. They are computed from
analytical expressions that extend (5) and correspond to the non-vanishing combinations τΘi − εΘj

(τ, ε = ±1) of the fundamental arguments of nutation (3), where Θi stands for the perturbed bodies and
Θj for the perturbing ones. For the sake of briefness, the contributions B0, B − B0, C and D have not
been shown separately in Table 2. The out-of-phase contributions are smaller in magnitude.

The numerical results show a significant influence of the frequency dependence of the Love’s numbers.
This effect is mainly due to the existence of the free core nutation (FCN) resonance processes in the
diurnal band.

Considering the complete mass redistribution contribution, kinetic and potential energies, the differ-
ences with respect to the simplified elastic model reach significant values: about 6 mas/cJ for the velocity
of precession in longitude, 0.8 mas/cJ for the velocity of precession in obliquity, 140 µas in the amplitude
of the nutation in longitude with period of 13.66 days, and 50 µas in the amplitude of the nutation in
obliquity for the same component.

Finally it can be noted that the analytical formulation allows the inclusion of different rheological
models, which can be considered as a numerical input for the rotation solution, in a similar way than the
orbital motion of the perturbing bodies.
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Argument Period Tt Vt

l l′ F D Ω days ∆ψ ∆θ ∆ψ ∆θ
+0 +0 +0 +0 +1 −6793.48 +933.35 −274.99 +5.4095 −11.5748
+0 +0 +0 +0 +2 −3396.74 −18.00 +6.55 −1.0599 +0.5897
+0 +1 +0 +0 +0 365.26 −43.06 −58.19 +0.1294 −0.1903
+0 −1 +2 −2 +2 365.25 +19.71 −6.69 +0.0025 −0.0033
+0 +0 +2 −2 +2 182.63 −2338.50 +844.09 +1.8798 −0.9666
+0 +1 +2 −2 +2 121.75 −138.48 +50.26 +0.0282 −0.0150
+1 +0 +0 +0 +0 27.55 +21.65 −311.39 +0.0938 +0.0037
+0 +0 +2 +0 +2 13.66 −5537.17 +2043.26 −0.2686 +0.1373
+0 +0 +2 +0 +1 13.63 −1134.83 +349.43 −0.0027 +0.0157
+1 +0 +2 +0 +2 9.13 −1101.47 +408.67 +0.0372 −0.0186

Table 2: Contribution of the mass redistribution to the figure axis nutations (unit 1 µas).
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