

Journees 2013, 16-18 Sept, Paris

A 531-day-period wobble of the polar motion

Hao Ding, WenBin Shen

School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China. E-mail: wbshen@sgg.whu.edu.cn

- 1. Introduction
- 2. Method and Dataset
- 3. Results
- 4. Discussion

1.Introduction

- Polar motion (PM) contains two dominant components: AW with 12-month period and CW with 14-month period.
- A 530-day-period wobble in the polar motion was suggested and weakly detected in the beginning of 1980s [*Carter* 1981, 1982; *Morgan et al.* 1982]. Since then, only few studies were addressed to the observations of this wobble [*Chen et al* 2010; *Na et al.* 2011; *C. Bizouard* 2013 (private communication)].

1.Introduction

• This study focuses on detecting this signal and leave the mechanism still open

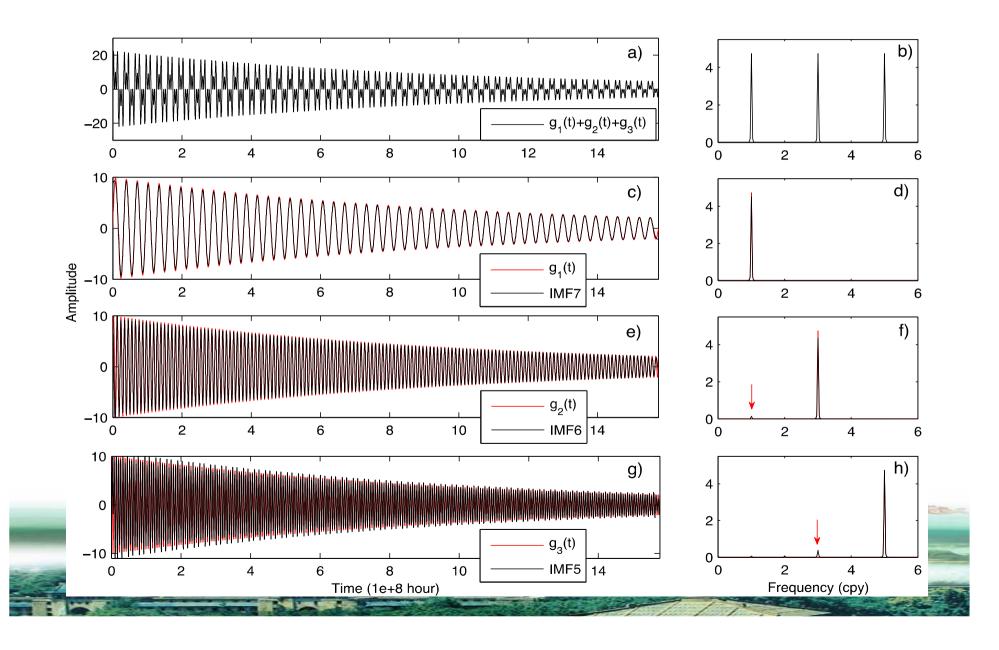
- Ensemble empirical mode decomposition (EEMD) [*Huang and Wu*, 2008; *Wu and Haung*, 2009] was used
- EEMD was proposed to overcome the disadvantages existing in the empirical mode decomposition (EMD) [*Huang et al.*, 1998; *Huang and Wu*, 2008], such as the scale-mixing problem and the end effect

- EMD: (1) Its function is to effectively separate physical signals one from another; (2) Its effectiveness was confirmed by various experiments; (3) Details are referred to *Huang et al.*, 1998.
- **EEMD**: a further improvement of EMD. Details are referred to *Huang and Wu* 2008, *Wu and Huang 2009*.

Suppose there are three signals (i=1,2,3,):

 $g_i(t) = 10 \times \sin(2\pi f_i \cdot t) \cdot \exp(-10^{-9} \cdot t)$

with different frequencies $f_1=1$ cpy, $f_2=3$ cpy, and $f_3=5$ cpy.

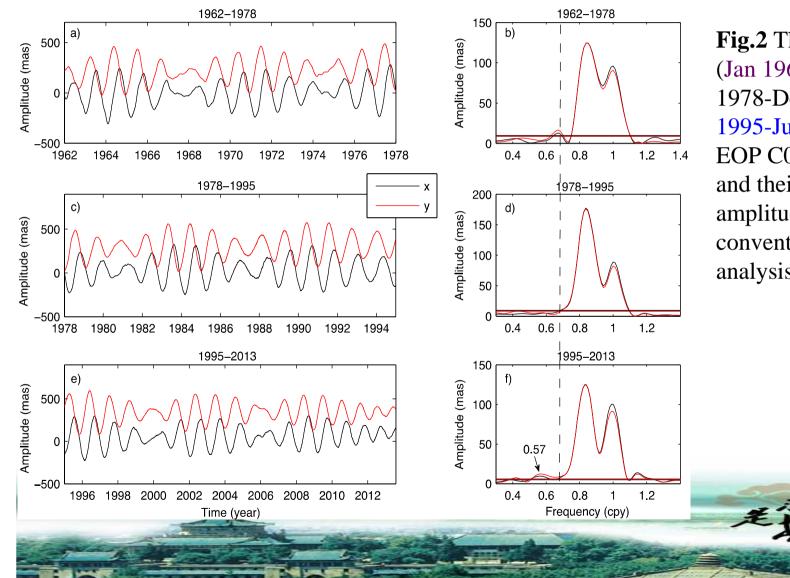

•Length: 50 years, with one-day interval

•After applying EEMD, the original three signals (in IMF5, IMF6 and IMF7) are almost completely separated

2.1 Method

- The EOP C04 series, spanning from 1962 to July 2013
- Divide it into three sub-series without overlap:

1 Jan 1962-31 Dec 1977 -data length is as same as that of Carter (1981)


1 Jan1978-31Dec 1994

1 Jan 1995-16 July 2013

2.2 Dataset

Fig.2 Three sub-series (Jan 1962-Dec 1977, Jan 1978-Dec 1994, Jan 1995-Jul 2013) from EOP C04 (1962-2013) and their corresponding amplitude spectra, using conventional Fourier analysis

Table 1 Based on conventional Fourier approach [cannot find 531dW signals for subseries 1978-1994 and 1995-July 2013]

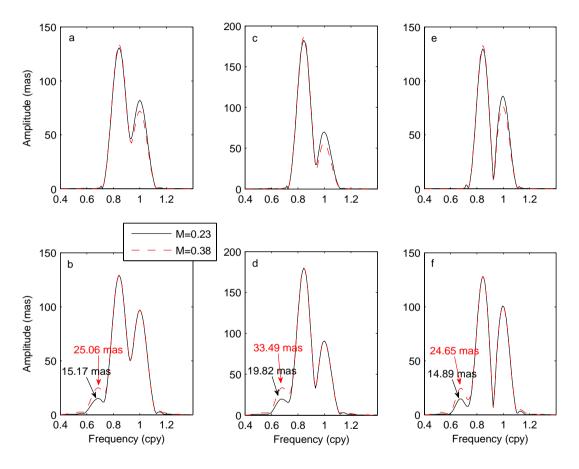
		Target Wobble		Chandler Wobble		Annual Wobble	
		Frequency	Amplitude	Frequency	Amplitude	Frequency	Amplitude
1962-1977	x-Component	0.68751±3.2e-4	11.3±4.6	0.84381±2.4e-4	129.2±3.3	1.00023±2.6e-4	97.1±4.1
	y-Component	0.68753±3.4e-4	14.6±4.8	0.84383±2.7e-4	129.2±3.2	1.00028±3.1e-4	90.8±3.9
1978-1994	x-Component			0.84312±1.7e-4	180.1±2.1	1.00031±2.4e-4	90.6±3.4
	y-Component			0.84314±1.8e-4	180.1±2.2	1.00029±2.7e-4	84.1±3.5
199 <mark>5</mark> -Jul 2013	x-Component			0.83892±2.5e-4	128.0±3.4	1.00030±3.6e-4	100.8±4.5
	y-Component			0.83893±2.4e-4	128.2±3.2	1.00027±3.8e-4	91.8±5.1

3.1 The synthesis results

• As Carter (1981) suggested, the frequency modulation (**FM**) signal is expressed as follows:

$$e_t(x, y) = C_c \sin[\phi_0 + 2\pi f_c t + M \cdot \sin(2\pi f_m t)]$$

- Take *x*-components of three subsets as examples
- *fm*=0.157cpy



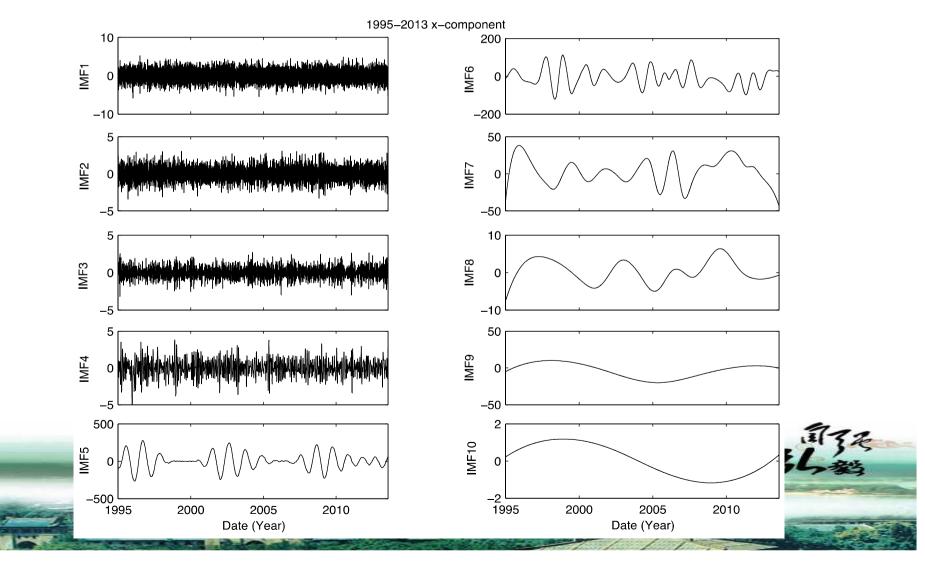
固体地球物理专业

Solid Geophysics

3.1 The synthesis results

- Fig.3 The amplitude spectra of the synthetic records (noise-free) based on Fourier analysis. a) and b), c) and d), and e) and f) for the *x*-components of the 1962-1977 series, 1978-1994 series, and 1995-Jul 2013 series, respectively.
- Top figures: without FM
- Bottom figures: with FM

3.1 The synthesis results

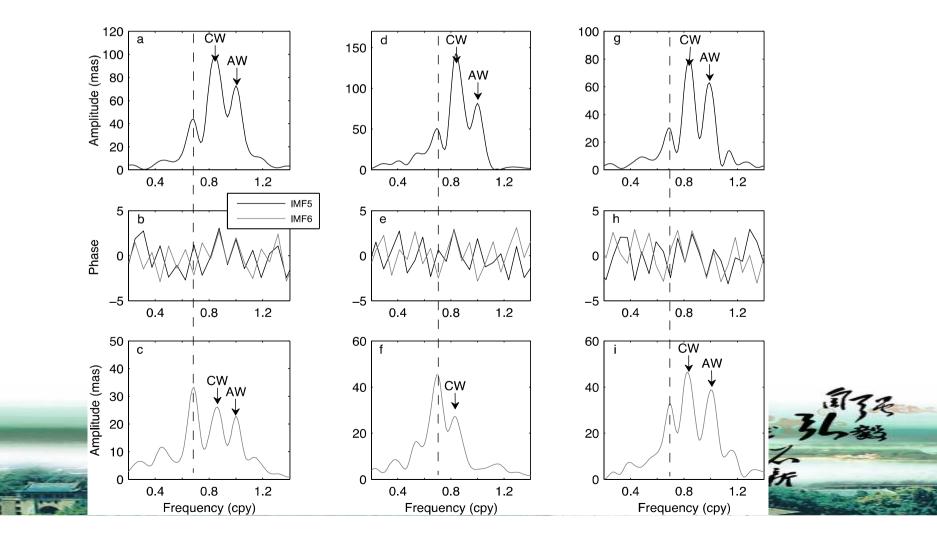
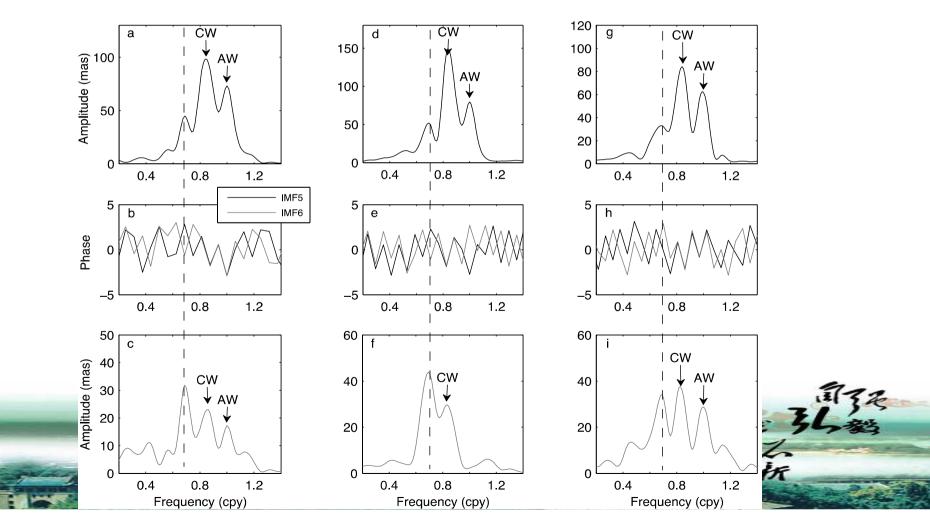

• Table 2 Synthetic results with FM considered

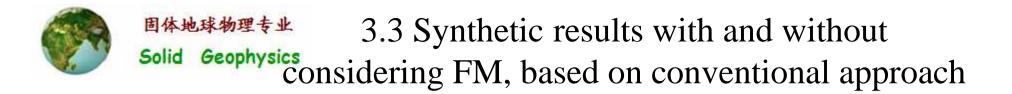
		Synthetic (input)		Synthetic (output)			Observation
Μ		CW	AW	CW	AW	531dW	531dW
0.23	1962-1977	130.9	82.06	129.2	97.1	15.17	11.3±4.6
	1978-1994	181.9	68.25	180.1	90.6	19.82	0
	1995-Jul 2013	129.5	85.4	128.0	100.8	14.89	0
0.38	1962-1977	133.9	72.03	129.2	97.1	25.06	11.3±4.6
	1978-1994	186.3	54.23	180.1	90.6	33.49	0
	1995-Jul 2013	132.6	75.6	128.0	100.8	24.65	0

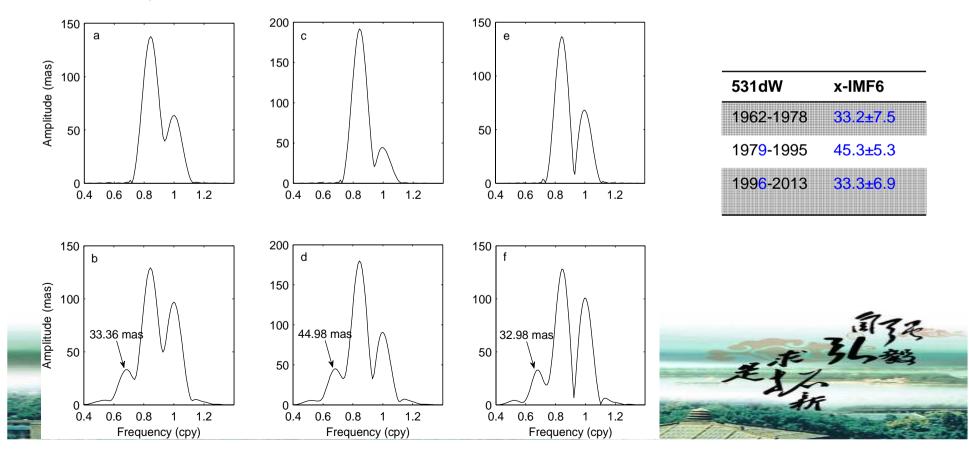
 Figure 2 and Table 2 show that the modulation index *M*=0.23 or 0.38 of CW (suggested by Carter [1981]) did not coincide with observed results from the three sub-series. However, if we choose variable Ms, one may explain the observed results. The problem is the mechanism

Fig.4 The first 10 IMFs of the *x*-component of the 1995-Jul 2013 series.

Fig 5. Amplitudes and phase spectra (middle slots) of the IMF 5 (top slots) and IMF 6 (bottom slots) of the *x*-components of the three sub-series after using EEMD. a)-c), d)-f) and g)-i) for 1962-1977, 1978-1994 and 1995-Jul 2013 series respectively. The vertical dashed lines denote the possible spectral peaks for the 531dW.


Fig 6. Amplitudes and phase spectra (middle slots) of the IMF 5 (top slots) and IMF 6 (bottom slots) of the **y-components** of the three sub-series after using EEMD. a)-c), d)-f) and g)-i) for 1962-1977, 1978-1994 and, 1995-Jul 2013 series respectively. The vertical dashed lines denote the possible spectral peaks for the 531dW.



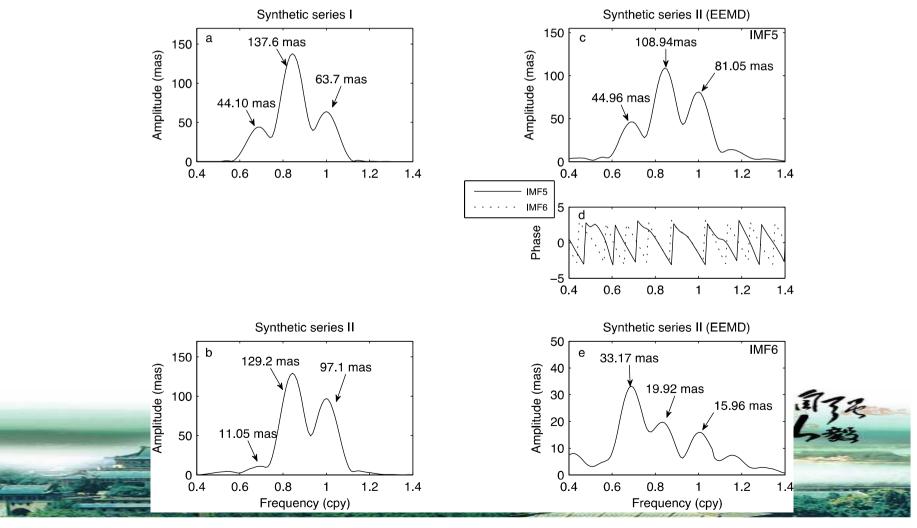
• Table 3 The observed frequencies (cpy) and amplitudes (mas) of the CW, AW and the target wobble, based on EEMD.

		Target Wobble		Chandler V	Chandler Wobble		Annual Wobble	
		Frequency	Amplitude	Frequency	Amplitude	Frequency	Amplitude	
1962-1977	x-IMF5	0.68749±3.4e-4	44.1±5.1	0.84380±2.6e-4	103.6±3.4	1.00019±3.1e-4	73.1±4.5	
	x-IMF6	0.68750±4.7e-4	33.2±7.5	0.84381±9.8e-4	25.1±7.9	1.00021±9.9e-4	24.6±8.3	
	y-IMF5	0.68752±3.6e-4	44.9±5.3	0.84384±2.8e-4	104.0±3.3	1.00027±3.3e-4	73.2±4.7	
	y-IMF6	0.68753±4.5e-4	32.7±7.3	0.84384±1.0e-3	23.8±8.2	1.00031±1.2e-3	18.5±9.0	
	x-IMF5	0.69614±3.5e-4	50.0±4.0	0.84311±2.1e-4	145.5±2.6	1.00027±3.0e-4	83.9±3.5	
1070 1001	x-IMF6	0.69611±3.7e-4	45.3±5.3	0.84309±7.2e-4	27.2±6.7			
1978-1994	y-IMF5	0.69617±3.7e-4	50.5±3.9	0.84316±2.0e-4	153.3±2.5	1.00028±3.2e-4	82.0±3.7	
	y-IMF6	0.69613±3.9e-4	44.1±4.2	0.84314±6.4e-4	29.9±5.9			
1995-Jul 2013	x-IMF5	0.68644±4.9e-4	31.2±7.0	0.83895±3.1e-4	81.1±4.5	1.00025±4.3e-4	63.0±5.3	
	x-IMF6	0.68646±7.7e-4	33.3±6.9	0.83893±6.8e-4	46.6±5.8	1.00031±7.4e-4	39.2±6.7	
	y-IMF5	0.68648±4.7e-4	32.8±6.5	0.83897±2.9e-4	86.6±4.1	1.00027±4.1e-4	63.6±5.7	
	y-IMF6	0.68644±6.1e-4	33.3±6.4	0.83894±5.4e-4	37.9±5.5	1.00031±7.4e-4	285+6 6	
-	-					E 3	しろ	
	1	A CONTRACT				Est.		
State B	at the second				BARA T	İK		
	-	RANG DALL						

Fig 7. Amplitude spectra of synthetic series. a) and b), c) and d), and e) and f) from the **x-component** of the 1962-1977, 1978-1994, and 1995-Jul 2013 series, respectively. Top figures: without considering frequency modulation (FM) ; Bottom figures: considering FM, with modulation index M = 0.5. Synthetic results considering only FM (without considering excitation) coincide with the IMF6 observations.

- We generate two synthetic noise-free time series. The length of them is equal to that of the 1962-1977 series, and the sampling interval is still one day.
- Synthetic series I :

CW (0.8437 cpy and 137.6 mas)
AW (1.00 cpy and 63.7 mas)
531dW (0.6875cpy and 44.1 mas)


• Synthetic series II:

Same parameters as synthetic series I, but a frequency modulation (FM) of CW is considered, with modulation index M=0.5.

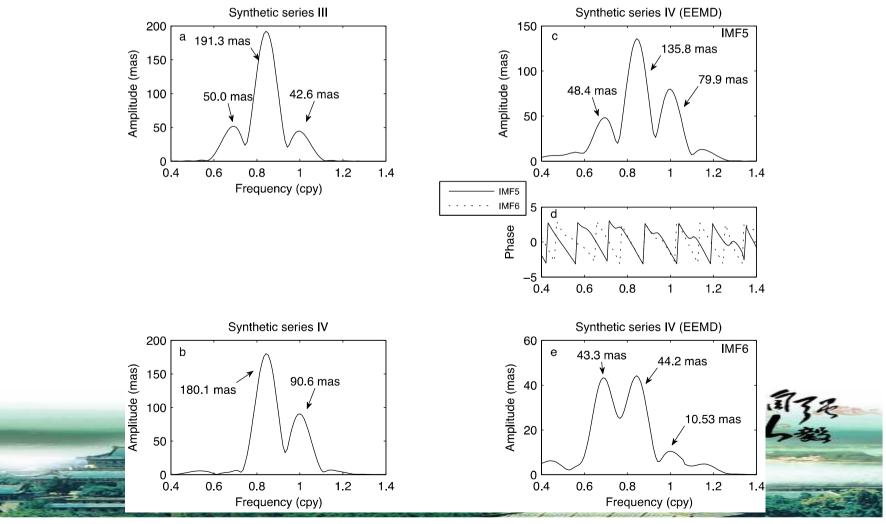


Fig8. The spectra of the synthetic **1962-1977 series** I (a, without FM) and II (b, considering FM with M=0.5); and the spectra of the IMF5 and IMF6 of the synthetic series II after using EEMD (c-e). The amplitudes of the significant peaks (from left to right: 531dW, CW, AW) are marked by the arrows.

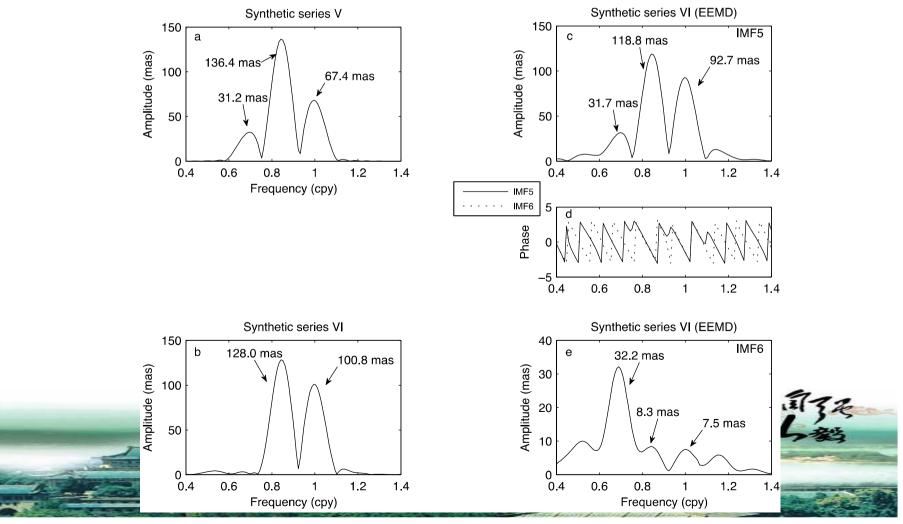


Fig9. The spectra of the synthetic **1978-1994 series** III (a, without FM) and IV (b, considering FM with M=0.5); and the spectra of the IMF5 and IMF6 of the synthetic series IV after using EEMD (c-e). The amplitudes of the significant peaks (from left to right: 531dW, CW, AW) are marked by the arrows.

Fig 10. The spectra of the synthetic **1995-Jul 2013 series** V (a, without FM) and VI (b, considering FM with M=0.5); and the spectra of the IMF5 and IMF6 of the synthetic series VI after using EEMD (c-e). The amplitudes of the significant peaks (from left to right: 531dW, CW, AW) are marked by the arrows.

4. Discussion

- 1. Applying EEMD, a 531dW signal was detected
- 2. Its amplitude and frequency may vary
- 3. It could be frequency-modulated
- This study might explain why it is difficult to find
 531dW in recent decades
- 5. The mechanism is still open

固体地球物理专业 Solid Geophysics

Thank you for your attention!

