

MULTI-GNSS TIME TRANSFER

Pascale Defraigne

Royal Observatory of Belgium

OUTLINE

- Introduction
- GNSS Time Transfer
 - Concept
 - Instrumental aspect
 - Multi-GNSS
 - Requirements
 - GPS-GLONASS experiment
 - Galileo, Beidou: where we are
- Conclusion

INTRODUCTION

GNSS TIME TRANSFER

CONCEPT OF GNSS TIME TRANSFER

COMMON VIEW

ALL IN VIEW

EXAMPLE OF CLOCK SOLUTION

Comparison of clocks in Poland and Australia:

SETUP FOR GNSS TIME TRANSFER

DELAYS TO BE CALIBRATED

HARDWARE DELAYS

```
able delays : same for all the codes/frequencies
eceiver + antenna delay :
different for each code / each frequency
PS : same frequency for all the satellites
delays: P1 ( \approxC/A), P2
alileo : delays for E1, E5, E5a, E5b
```

MULTI-GNSS TIME TRANSFER

REQUIREMENTS :

1.Receiver internal clock the same for all the measurements from all the constellations

2.Receiver + antenna calibrated for all the codes and frequency used for each constellation

3.

REFERENCE TIME SCALE

$$\begin{bmatrix} c(t_r - t_e)^{sat_1} = || x_s - (x_r)|| - c(t_{rec} - t^{sat_1}) + errors \\ \vdots & \text{different for each satellite} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - t^{sat_k}) + errors \\ (3 + k) \text{ unknowns for } k \text{ observations} \\ x_r = \text{receiver position} & t_{rec} = \text{receiver clock} \\ x_s = \text{satellite position} & t_{sat} = \text{satellite clock} \\ c(t_r - t_e)^{sat_1} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_1} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_1} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_k} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_k} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_k} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_k} - ref) + errors \\ \vdots & \text{same 4 unknowns for all the satellites} \\ c(t_r - t_e)^{sat_k} = || x_s - (x_r)|| - c(t_{rec} - ref) - (t^{sat_k} - ref) + errors \\ \end{bmatrix}$$

MULTI-GNSS TIME TRANSFER

$$\begin{cases} P^{sat_{-1}} = || x_s - x_r || - c((t_{rec} - ref_A) - (t^{sat_{-1}} - ref_A)) + errors \\ ... \\ P^{sat_{-k}} = || x_s - x_r || - c((t_{rec} - ref_A) - (t^{sat_{-k}} - ref_A)) + errors \end{cases}$$

$$\begin{bmatrix} P^{sat_{-1}} &= || x_s - x_r || - c((t_{rec} - ref_B) - (t^{sat_{-1}} - ref_B)) + errors \\ ... \\ P^{sat_{-k}} &= || x_s - x_r || - c((t_{rec} - ref_B) - (t^{sat_{-k}} - ref_B)) + errors \end{bmatrix}$$

14

COMBINATION FOR MULTI-GNSS ALL IN VEIW

2 SOLUTIONS :

- COMBINATION A T THE LEVEL OF THE SOLUTIONS determine separately $(t_{rec-1} \forall ia_{rec-2})$ and $vaja_A$ And make an average of the two time transfer solutions as Presently for TAL with GPS and GLONASS.
- COMBINATION AT THE LEVEL OF THE OBSERVATIONS requires - Either the accuracte knowledge of $(ref_A - ref_B)$ Not available

- Or: a same reference for the clocks $(t_{sat} - ref_{GNSS})$

 \rightarrow The combined solution will be $(t_{rec} - ref_{GNSS})$

REQUIREMENT 3

 ref_{R}

15

DIFFERENCE GPS / GLONASS

GPS: same frequency for all the satellites **GLONASS :** satellite-dependent frequencies

And impact on time transfer results:

GPS : all the satellites give the (nearly) same results

GPS+GLONASS COMBINATION

 \rightarrow GLONASS data use the GPS calibration

PROCEDURE TO GET COMBINED GPS+GLONASS AV USING ONLY GPS CALIBRATION

- 1. Compute AV_GPS
- 2. Determine the *BD* (*rec*, *sat*, *day*) = meas_P3 sat_clock AV_GPS
- **3.** Compute a new AV_GPS+(GLONASS-BD (rec, sat, day))

(See Harmegnies et al. (Metrologia 50, 2013))

Data used for the combined GPS+GLONASS AV:

AV SOLUTION DAILY GLONASS BIASES HAVE BEEN DETERMINED

From Harmegnies et al. (Metrologia 50, 2013)

USING GLONASS CALIBRATION

 $BD(rec_1, sat, day) - BD(rec_2, sat, day) = D(rec_1, f_{sat}) - D(rec_2, f_{sat})$

= differential hardware delays for the GLONASS frequencies between rec1 and rec2

USING GLONASS CALIBRATION DATA

USING GLONASS CALIBRATION DATA

Data used for AV_GPS+GLONASS 1

Data used for AV_GPS+GLONASS 2

hile Data used for	AV_GPS+GLONASS w	ithout GLONASS calibration

DEMONSTRATION WITH BRUX-OPM8 1. GLONASS CALIBRATION OF THE LINK

RELATIVE GLONASS CALIBRATION

AV SOLUTIONS OPM8-BRUX

DIFFERENCES = EFFECT OF USING GLONASS CALIBRATION DATA

GALILEO

- 4 satellites
- Navigation data since March 21, not continuoulsy
- IGS : IGS Multi-GNSS Experiment (MGEX) provides orbits/clocks at 5 min
 - not always, not for all the satellites
 - quality?
- Only a few time labs are equipped with Galileo-able receivers.

Here use BRUX and ZTB3 (Brussels)

First results between UTC(ORB) and the H-maser in ORB Using the IGS-MGEX products delivered by TUM

GALILEO

CGGTTS-like results, over 5 minutes tracks.

Same results for GPS and Galileo Maybe noise (Galileo) < noise (GPS) but TBC

E5 : VERY PRECISE BUT... HOW USE IT?

CONCLUSIONS

- TOWARDS multi-GNSS time transfer : combined the observations (not the solutions): 3 requirements
- **1.** Same receiver internal clock for all constellations
- **2.** Each of the observations should be calibrated
- **3.** Products for satellite clocks, all with a same reference, should exist

GLONASS + GPS:

- GLONASS calibration data can only be introduced in the computation of a LINK, i.e. a difference of 2 AV solutions.
- These calibration data should be introduced as constraints in the determination of inter-satellite biases
- The method can also be applied to combined GPS+GLONASS PPP

GALILEO, **BEIDOU** \rightarrow future

THE END

5

1

Thank you for your attention !