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ABSTRACT. Based on the celestial mechanics’ methods namely the spatial version of the problem
of the Earth-Moon system in the gravitational field of the Sun a mathematical model of the rotary-
oscillatory motion of the elastic Earth is developed. It is shown that the perturbing component of the
gravitational-tidal forces normal to the lunar orbit’s plane is responsible for some short-term perturbations
in the Moon’s motion. With the aid of the numerical-analytical approach a comparison between the
constructed model and the high-frequency International Earth Rotation and Reference System Service
(IERS) measurements is made.

1. INTRODUCTION

Mathematical models of rotary-oscillatory motion of the deformable Earth specify its rotational pa-
rameters using the observation data with a high degree of accuracy and provide their reliable prognosis.
These models are an essential research tool for investigating a number of problems in astrometry, geody-
namics, and navigation. The construction of theoretical models is accomplished through a compromise
between the complexity of the model and the measuring accuracy. A meticulous analysis of the basis
functions and their number, as well as the parameter settings, is required. A theoretical model should
qualitatively and quantitatively correspond to astrometric data of IERS observations [1] and contain only
a few essential unknown parameters (low-parametric model) subject to small variations due to nonsta-
tionary perturbing factors. These factors can be singled out and taken into account on short timescales.

2. MATHEMATICAL MODEL OF THE ROTARY-OSCILLATORY MOTION OF THE

EARTH

We described the rotational motions of the deformable Earth and the oscillations of the Earth’s pole
using a simplified mechanical model for the viscoelastic rigid body of the Earth [2-4]. To take into
account gravitational-tidal effects, we assumed the Earth to be axially symmetric ((C − A)/B ≈ 1/292,
(B − A)/C ≈ 2 · 10−6) and two-layered, i.e., consisting of a rigid (spherical) core and a viscoelastic
mantle. We could have used some more complex model. However, employing anymore complex figure
for the Earth is not justified, since we cannot determine the geometrical and physical parameters of the
Earth with the required accuracy and completeness via a statistical processing of indirect data from
seismic measurements. We adhere to the idea that the complexity of a model must strictly correspond
to the problem formulated and to the accuracy of the data used. To construct a model for the polar
oscillations, we can determine a small number of some mean (integrated) characteristics of the inertia
tensor. Comparison with measurements and further analysis indicate that our simplifications are justified
[3, 4].

The proposed dynamical model contains relatively few parameters (it is a few-parameter model)
that can be determined from observations; the model enables us to reliably interpret and the statistical
characteristics of oscillations in the Earth orientation parameters (EOP), and also to forecast these [2,
3] over comparatively long time intervals (reaching several years). Using the dynamic Euler-Liouville
equations with the varying inertia tensor and taking into account estimates of its terms in the harmonic
composition of the variations in the tidal coefficients after averaging over the Earth’s proper rotation, we
obtain a set of differential equations for the EOP in the tied reference frame; i.e., for the quantities xp,
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ẏp −Nxp + σyyp = −κpr
2

0 +MS,L
q +

+ ε

[

−2r0δr(t)κp + r20

N
∑

i=1

Bi cos(2πϑiτ + βi) + ∆MSL
q (Ω, I)

]

,

[

1 + ε
N
∑

i=1

Ci cos(2πϑiτ + γi)

]

d

dt
l.o.d.(t) = −

D0

r0
MS,L

r +

+ ε

[

N
∑

i=1

Ci

2πϑi

sin(2πϑiτ + γi)l.o.d.(t)−
D0

r0
∆MSL

r (Ω, I)

]

,

d [UT1− TAI] (t)

dt
= −D−1

0
l.o.d.(t), D0 = 86400.

(1)

Here, the unknown coefficients must be determined from a least-squarse fit to the IERS data; ϑj – are the
frequencies of the variations of the inertia tensor (it is assumed that the frequencies ϑj can be corrected
during the numerical modeling) [3]; the tidal coefficients κp,q are periodic functions with the frequencies
ϑj ; ∆MSL

p,q,r(Ω, I) are additional terms of the specific lunar-solar gravitational-tidal moment in the spatial
Earth-Moon system subject to the solar gravitation [3]; Ω is the longitude of the ascending node of the
lunar orbit; I is the ecliptic inclination of the plane of the lunar orbit.

Let us present the results of our numerical simulations of the intrayear variations in the tidal irreg-
ularity of the Earth’s axial rotation without taking the additional lunar perturbations into the account.
Fig. 1 presents the theoretical curve for the interpolation (from September 1, 2010 to September 1, 2011)

Figure 1: Interpolation (01.09.2010-01.09.2011)and forecast till 01.12.2011 in comparison between the
observation data and (a) the variations of the length of the day l.o.d. (b) time correlation UT1− UTC.

and forecast (from September 2, 2011 to December 1, 2011) of the variations (a) in the length of the
day l.o.d. and (b) in UT1 − UTC. The solid curves show the theoretical model, while the points and
half-moons show the IERS data compared to the model interpolation and forecast, respectively.
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3. SPECIFIC FEATURES OF THE PROBLEM APPLIED TO SHORT-TERM FORE-

CASTING OF THE EOP

Improving the coordinate-time support for satellite navigation requires high-precision forecasting of
the Earth’s rotation (the trajectory of the pole and UT1) over short time intervals. Extremely accurate
forecasting for intervals lasting from 1 - 2 to 20 - 30 days could be of interest for various applications.

Constructing mechanical models capable of forecasting small-scale, high-frequency polar oscillations
and irregularities in the Earth’s rotation over short time intervals and explaining the observed irregu-
larities encounter significant difficulties. Below, we consider some difficulties encountered in modeling
the EOP (the polar oscillations and variations in the length of the day) using celestial mechanics; i.e.,
the spatial problem of the Earth-Moon system subject to the Sun’s gravitation. The equations for the
perturbed motion of the node of the lunar orbit ΩM and the ecliptic inclination of the plane of the lunar
orbit I take the form [3]:
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Here, nM and nS are the sidereal mean motions of the Moon and the Sun; lM , lS are the mean longitudes
of the Moon and Sun; (lM − ΩM ) is the angle between the Moon and the ascending node of the lunar
orbit, and λ = (nM − nS)t+ λ0 is the difference between the lunar and solar longitudes. The quantity λ
is not a linear function of time, since the mean motion nM is subject to at least periodic changes. The
observational data can be used to determine the argument 2λ.

The right-hand sides of (2) contain both long-period and short-period terms, which contribute with
fairly small amplitudes. Note that the period of the terms with the argument 2(λ − (lM − ΩM )) =
−2(ls − ΩM ) reaches 173 days (the time between two successive solar passages across the line of nodes).
The terms with the arguments 2λ and 2(lM − ΩM ) have periods of half the synodic (TM = 29.53 days)
and zodiacal (TΩM

= 27.21 days) periods, respectively. The zodiacal lunar period mainly determines the
variation in the lunar latitude.

Figure 2: a) Interpolation (2007-2010) and forecast (01.01.2011-28.05.2012) of the oscillations of the Earth
pole coordinates xp, yp without taking additional lunar perturbations into account; b) twenty-day fore-
casts for the coordinates of the Earth pole xp, yp corresponding to the time interval 01.01.2011–06.12.2011,
and forecasts for the interval 01.01.2012–28.05.2012 considering the additional lunar harmonics.
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Taking into account quasi-periodic lunar effects, analysis of the amplitude-frequency and amplitude-
phase characteristics of the EOP reveals more complex small-scale features contained in the observations
[1]. For that purpose we used refined equations for the oscillatory motions of the pole that include those
terms on the righthand side of (1) containing the small parameter ε:
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Here, x̄p, ȳp are the solutions for the equations (1) without taking into account the small parameter
terms; ∆xp and ∆yp are additional terms for the coordinates of the Earth pole considering additional
high-frequency lunar perturbations; Ai, Bi, αi and βi are unknown coefficients; and ∆MSL

p,q are terms of
higher orders of smallness in the expansion of the lunar-solar gravitational-tidal moment for the spatial
problem considered.

The effect of the high-frequency model oscillations (3) is clearly seen in the beats (at the minimum am-
plitude of polar oscillations), when the irregular perturbations become clearer and comparatively stronger
(fig. 2). The points show the IERS data while the solid curves show (a) a four-year interpolation and two-
year forecast without taking additional lunar perturbations into account; (b) a twenty-day forecast for the
Earth pole coordinates xp, yp considering high-frequency additional lunar harmonics. This approach re-
quires a thorough analysis of the oscillations included in both the main and high-frequency models in the
interpolation intervals. Our numerical simulations testify to the qualitative and quantitative improvement
of the model.
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