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ABSTRACT. We describe how to construct an analytical approximated representation of the internal
rigid motions of a non–rigid three–layer celestial body by using the Hamilton’s principle. This method
runs parallel to those employed in the Lagrangian or Hamiltonian formulations of Analytical Dynamics.
We also discuss the advantages of this approach with respect to other known treatments that tackle this
complex problem.

1. INTRODUCTION

The interior of some bodies of the solar system can be approximately reproduced by a non–rigid
three–layer model. This model consists on a solid external layer that encloses a fluid containing a solid
body (see Figure 1). Indeed, it is the case of the Earth, but other planets or moons might also present
the same structure (see, for example, Grinfeld and Wisdom 2005, Hussmann et al. 2006) like Mercury or
some icy moons containing a subsurface ocean (Europa, Titania, etc.).

Although all of these bodies share a similar structure, it is necessary to remark that their physical
characteristics can be quite different. This is easily understood if we consider, for example, simple models
with homogeneous spherical layers for the Earth, Mercury, Titania, and Europa (Grinfeld and Wisdom
2005, Hussmann et al. 2006). The ratio between the density of the fluid and that of the internal solid
layer, ρF /ρS , is close to 1 in the case of the Earth and Mercury, and relatively small for Europa and
Titania. This fact is explained taking into account that for the Earth and Mercury the fluid and the
internal solid layer have an almost identical iron composition. In contrast, the fluid layer of the models
of the icy bodies Europa and Titania is a subsurface ammonia–water ocean, much less dense than the
internal solid layer that is composed of silicate rock (Hussmann et al. 2006).

We can also observe other important differences in the relative mass of each layer depending on the
particular body. This is shown in Table 1 for the above mentioned bodies, where we have displayed the
values for the ratios mM/m, mF /m, and mS/m, the subscripts M , F , and S referring to the external
layer, the fluid, and the internal solid layer, respectively. The symbol m denotes the mass of the body
and mM,F,S the mass of the respective layer.

Body mM/m mF /m mS/m ρF /ρS

Earth 0.63 0.35 0.02 0.92
Mercury 0.31 0.09 0.60 0.84
Titania 0.38 0.04 0.58 0.29
Europa 0.04 0.04 0.92 0.24

Table 1: Some examples of simple models of three–layer bodies of the solar system.

From the point of view of Dynamics, this system presents an interesting feature: even for the simplest
models the solid constituents can perform independent rigid internal motions, that is to say, can make
independent rotations and translations around the barycenter of the body. Therefore, for these models
there can appear differential rotations, or librations, and translations of the internal solid body with
respect to the external solid layer.
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The interest in investigating those internal motions relies on the fact that their modeling is essential to
determine the evolution of the reference systems attached to each celestial body. At the same time, since
the rigid motions are affected by the specific characteristics of the body, their observation can constrain,
to some extent, the structure of the body (see, for example, Koot 2011), giving valuable information
about its interior. Many times it is not possible to obtain this information by other means.

2. COMMON APPROACHES TO STUDY THE DYNAMICS OF A THREE–LAYER

BODY

There exist distinct ways to model the dynamical behavior of the rigid motions of a three–layer
body (see, for example, Escapa et al. 2001, Escapa and Fukushima 2011, and references therein), whose
geometrical and physical configurations are assumed to be quasi–spherical. Some of them are based
on the partial differential equations of Continuous Mechanics, such as the elastic–gravitational normal
mode theories developed to study the rigid internal motions of the Earth (see, for example, Smith 1977).
However, the intrinsic nature of these normal mode methods, which usually are numerical, does not
provide much insight into the evolution of the model and its dependence with the physical characteristics
of the body. In addition, to profit all the potential of these approaches it is necessary to have detailed
density and rheological parameter profiles within the body, what can present some inconveniences from
the perspective of Dynamical Astronomy (see, for example, Dehant et al. 1999), or not to be available
for some bodies of the solar system.

Other different approaches consider the vectorial form of the evolution of the linear and angular
momentum for each layer taken as a whole subsystem. It is the case, for example, of Mathews et
al. (1991) when studying the Earth nutations, of Van Hoolst et al. (2008) when treating the Europa
librations, or of Grinfeld and Wisdom (2005) when modeling the differential internal translations of a
three–layer body, usually referred as the Slichter modes in the Earth terminology. These formulations
require the explicit calculation of the forces and torques exerted by each layer on the remaining ones. For
instance, it is necessary to compute the hydrodynamical interactions that the fluid exerts on the adjacent
solid layers. Since these methods only focus on a part of the internal motions of the system, the rigid
part, they are less complete than those based on Continuous Mechanics. Indeed, in their construction it
is necessary to make some a priori assumptions that approximate to some degree the fluid flow and the
elastic deformation field of its constituents. Nevertheless, they offer some advantages due to its relative
simplicity, which often makes possible to obtain a clear representation of the influence of the physical
characteristics of the body in its motion. This is mainly due to the fact that the rheology of the body is
characterized by a small set of parameters that reflects these properties in an averaged sense such as the
moments of inertia, Love numbers, etc. It allows the fitting of some of them to the available observations,
what is specially meaningful for astronomic and geodetic purposes.

Yet another possible framework to tackle the dynamics of a three–layer body is by means of the
variational principles of Mechanics, starting from Hamilton’s principle (in its broader sense) and running
parallel to the formulations used in Analytical Dynamics. There have been many investigations that
have already employed this kind of methods to study the rotational, or librational, motions of non–rigid
celestial bodies composed of one or two layers. This is the case of the Earth (see, for example, Poincaré
1910; Jeffreys and Vicente 1957; Moritz 1982; Kubo 1991; Getino 1995; Getino and Ferrándiz 1995, 2001;
Ferrándiz et al. 2004; Escapa 2011), but also of other celestial bodies like, for example, Io (Henrard
2008) or Mercury (Noyelles et al. 2010). These variational formulations have been extended to different
three–layer bodies, considering the rotational motions (see, for example, Escapa et al. 2000, 2001, 2002)
and also the translational ones (Escapa and Fukushima 2011).

The variational methods present the same advantages and limitations as the vectorial treatments
when compared with Continuous Mechanics formulations. However, Hamilton’s principle theories have
also some important gain with respect to the vectorial approaches. Besides the general benefits over
the vectorial mechanics methods (see, for example, Lanczos 1986), the variational theories allow to treat
the fluid and solid layers as one single dynamical system. It implies that it is not necessary to compute
explicitly the hydrodynamical interactions exerted by the fluid on the solid layers (see, for example, Lamb
1963), what simplifies greatly the construction of the equations of motion. In addition the form of these
equations is well suited to apply the analytical and numerical mathematical tools developed in other
branches of Celestial Mechanics. It makes possible, for example, the construction of consistent higher
order analytical approximated solutions or the study of the couplings among the internal and external
rigid motions.
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3. ANALYTICAL MODELING TROUGH HAMILTON’S PRINCIPLE

Next, we will briefly describe the necessary steps to determine the rigid internal motions of a three–
layer celestial body within a variational framework. To get a more complete description on these topics,
we refer the reader to the works by Escapa et al. (2001, 2002), Escapa and Fukushima (2011), and
references therein.

Hamilton’s principle for holonomic dynamical systems (see, for example, Whittaker 1988) states that
the value of a certain integral is stationary in the motion. Explicitly, it holds that

∫ t1

t0

(δT + δW) dt = 0, (1)

where δ denotes the variation, T is the kinetic energy of the system, and W is the work done on the
system by the external forces that, in the general situation, are non–conservative. From this equation,
and following a known process, one obtains a system of differential equations that determines the motion.
These differential equations can adopt diverse forms. From the point of view of Celestial Mechanics and
focusing on the study of the dynamics of a three–layer celestial body, the most common and useful forms
are those derived from a Lagrangian or a Hamiltonian functions of the system.

Let us recall that if the Lagrangian of the system is given by

L = T − V , (2)

where V is the potential energy stemming from the conservative forces acting on the system, the equations
of motion in terms of a holonomic set of n generalized coordinates q and its associated velocities q̇ are

d

dt

(

∂L

∂q̇i

)

−

(

∂L

∂qi

)

= Qi. (3)

Here, Qi are the generalized force associated to the coordinate qi, with i = 1, ..., n, included to account
for the non–conservative nature of a part of the external interactions.

A related form to these equations is obtained when substituting the generalized velocities q̇i by n
independent linear combination of them ωi, which define a quasi–coordinates set. This substitution
is convenient, for example, in some applications related with the rotation of celestial bodies (see, for
example, Moritz 1982, Escapa et al. 2002). By so doing, the equations of motion (see, for example,
Whittaker 1988) turn out to be

d

dt

(

∂L

∂ωi

)

+
∑

j, k

cijkωj

∂L

∂ωk

−
∑

r

βri

∂L

∂qr

= Qi, (4)

where cijk and βri, with i, j, r = 1, ..., n, are functions of qi, whose explicit expressions can be derived
from the relationship between q̇ and ω.

Finally, other important way to implement Hamilton’s principle is through the Hamiltonian function
of the system. In the case of natural systems (see, for example, Whittaker 1988), it takes the form

H = T + V . (5)

This function depends on n canonical momenta pi, with i = 1, ..., n, and n canonical conjugated coordi-
nates qi (not being necessarily a holonomic set of generalized coordinates) that describe the dynamical
configurations of the system

dpi

dt
= −

∂H

∂qi

+ Qqi
,

dqi

dt
=

∂H

∂pi

−Qpi
.

(6)

The functions Qpi
and Qqi

are the canonical generalized forces that must be include in the presence of
non–conservative forms. Although sometimes the geometrical or kinematical meaning of a canonical set
is not so clear as in the case of the generalized coordinates, the Hamiltonian formalism has been very
useful in the field of Celestial Mechanics because of the existence of systematic perturbation methods,
such as those based on the Lie series method (Hori 1966), which allows to find an approximation of the
solution of the equations of motion.
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Regardless the particular formalism that materializes Hamilton’s principle, the procedure in which
the equations of motion are constructed is quite similar from a formal perspective and can be sequenced
as follows:

a) To chose a finite number of generalized coordinates, or canonical variables, that determine the
rigid motions of the system. For example, if the solid layers are assumed to be rigid bodies one
could take the coordinates of their barycenters to describe their translational motion and some
angles, like the Euler ones, to describe their rotational motion. When considering elastic bodies
this choice must be adapted by introducing, for example, the concept of Tisserand mean system
(see, for example, Escapa 2011). In regard to the fluid, and depending on the particular problem
under consideration, the fluid flow can be represented for these purposes by means of a potential
motion (see, for example, Escapa and Fukushima 2011), a Poincaré flow (see, for example, Escapa
et al. 2001, 2002), etc.

b) To construct the kinetic energy of the system. It is given by the sum of the kinetic energy of its
layers

T = T M+T F +T S . (7)

In the general situation, and once evaluated the field of the velocities within the body, this com-
putation relies on the modeling of the inertia matrices that depends on the elastic deformation of
the layers (see, for example, Getino and Ferrándiz 1995, 2001, Escapa 2011) and also on the defor-
mation of the fluid layer due to the differential motions of the solid constituents (see, for example,
Escapa et al. 2001). It is important to underline that in the variational methods the term TF is
the responsible of modeling the solids–fluid interactions (see, for example, Lamb 1963). So, those
interactions are automatically incorporated when constructing the kinetic energy of the system,
without the need of computing them separately as it is done in the vectorial treatments.

c) To obtain the potential energy of the system. This function, which has often a gravitational origin,
is convenient split into the form

V = V int+Vext, (8)

where Vint is the internal potential energy of the system, arising from the conservative interactions
among the constituents of the non–rigid body. In a similar way, Vext is the external potential energy
of the system that accounts for the conservative interactions between the body and the external
bodies or fields.

d) To compute the generalized, or canonical, forces due to non–conservative forces or torques. These
interactions are related with dissipative process usually connected with the rheological properties
of the fluid. The construction of these functions requires the evaluation of the virtual work made
by the forces, or torques, in a virtual displacement of the system that, depending on the situation,
must be expressed in terms of the generalized coordinates, the quasi–coordinates, or the canonical
set (see, for example, Getino et al. 2000, Escapa et al. 2002).

e) To form the system of ordinary differential equations that characterize the dynamics of the system.
From the expressions of the kinetic energy, the potential energy, and the generalized forces of the
system, the computation of the equations of motion is straightforward by applying Equations (3),
(4), and (6) depending on the chosen formalism to describe the dynamics of the system.

Once obtained the differential equations of the system, it is necessary to solve them in order to have
a quantitative description of the motion. Regrettably, in very few cases it is possible to find an exact
analytical solution of this kind of equations. Therefore, bearing in mind the purposes of the investigations
one is forced to employ analytical perturbation methods, numerical integration methods, or a combination
of both. In this regard, and as it is known from the transformation theory of Dynamics, a convenient
choice of the variables used to describe the dynamics of the system can make easier these tasks.

4. DISCUSSION

In the scope of this note, it is not possible to work out in detail the previous procedure for some
concrete model. We refer to the reader to the works by Escapa et al. (2001) and Escapa and Fukushima
(2011), where he will find two quite different examples of the application of variational methods to the
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study of the dynamics of three–layer bodies. In the first one, developed within a Hamiltonian formalism,
it is investigated the rotational motion of a three–layer Earth model (Figure 1, left side) composed of
three nearly spherical, elliptical layers, with common barycenters: an axial–symmetric rigid mantle, an
stratified fluid outer core, and an axial–symmetric inner core. For this model the fluid flow is assumed
to have uniform vorticity, that is to say, it is considered a Poincaré flow, whereas the solid constituents
rotates like rigid bodies. The key point in this case is the construction of the matrix of inertia of the
fluid layer, which has a part depending on the rotational variables of the system, since the mantle and
the inner core can rotate independently.

b b

b

Figure 1: Three–layer models (not scaled) considered in Escapa et al. (2001) and Escapa and Fukushima
(2011).

In the second one, constructed within a Lagrangian formalism, it is worked out the internal transla-
tional motion of a body differentiated into three homogeneous layers (Figure 1, right side) with spherical
symmetry: an external ice-I layer, a subsurface ammonia–water ocean, and a rocky inner core. This
is the basic structure of three–layer icy bodies. In contrast to the rotational situation, here the fluid
motion is entirely due to the translational motion of the solid rigid layers. It implies that the fluid flow
is irrotational and can be derived from a velocity potential. This velocity potential is a solution of the
Laplace equation in the fluid domain with the proper boundary conditions.

Both examples lead to analytical solutions, since the equations of motions are linearized around a
periodic motion or an equilibrium position. In this way, the rigid motions are characterized by a set of
proper frequencies (rotational and translational normal modes) that explicitly depends on some parameter
describing the properties of the models like its moments of inertia, masses, and densities. This allows
to perform a detailed study of the dependence of those frequencies on the physical characteristics of the
model and vice versa.

In conclusion, Hamilton’s principle formalisms constitute a convenient approach to model the rigid
internal motions of a three–layer celestial body. In the variational methods, the dynamics is constructed
from the kinetic energy, the potential energy, and the generalized forces of the system, the physical spec-
ification of the body being determined by a small set of parameters. One of the main advantages of these
treatments relies on the consideration of the solid and fluid layers as forming one single dynamical system.
It implies that it is not necessary to compute explicitly the fluid-solids hydrodynamical interactions.

In addition, the form of the differential equations of the motion allows to apply the mathematical tools
of Celestial Mechanics, what is specially relevant when one aims at obtaining an analytical approximated
description. Moreover, the Hamiltonian formalism is particularly appropriated to construct higher order
perturbation solutions in a systematic and consistent way. These kind of solutions can be helpful, for
example, to establish standard models, like in the Earth rotation theory case, or to check the numerical
codes employed by other treatments.

At any rate, it is important to remark that the intrinsic complexity of the motions of a non–rigid three–
layer celestial body makes advisable, if not necessary, to develop different and independent approaches in
order to compare the results derived by each of them. It will improve our understanding on the dynamics
of these systems.
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Poincaré, H., 1910, Sur la précession des corps deformables, Bull. Astron., 27, 321–356.
Smith, M.L., 1977, Wobble and nutation of the Earth. Geophys. J.R. Astron. Soc., 50, 103–140.
Van Hoolst, T.,Rambaux, N., Karatekin, ., Dehant, V., and Rivoldini, A., 2008, The librations, shape,

and icy shell of Europa, Icarus, 195, 386-399
Whittaker, E. T., 1988, A treatise on the Analytical Dynamics of particles and rigid bodies, 4th edition.

Cambridge University Press.

190


