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ABSTRACT. We have computed coupling mechanisms at the core-mantle boundaries of terres-
trial bodies of the Solar system, and in particular, the pressure torque on the topography at the
core-mantle boundary. The philosophy of the computation follows Wu and Wahr (1997), which
allows to solve for the velocity field coefficients in terms of the topography coefficients. The ve-
locity in the fluid core is decomposed into a global classical velocity and an incremental velocity
related to the topography. We have used an analytical approach to compute this last part as
well as the incremental changes in the periodic variations of the length-of-day (LOD) and in the
librations, i.e. oscillating motions in space. We have found that there are topography coefficients
that are enhanced due to resonances at particular frequencies. For the Earth the tidal forcing
frequencies are compared to those resonance frequencies. The total torque on the core-mantle
boundary is demonstrated to be dependent on particular amplitudes of the topography.

1. MOTIVATION
The length-of-day variations are usually computed from angular momentum equations of the

whole Earth and of the different layers (inner core, outer core and mantle). Coupling mechanisms
must be considered at the CMB and ICB (Inner Core Boundary). The torque considered in the
classical approach is the gravitational and pressure torques related to the flattening of the core.
In a more sophisticated approach and for the nutations, one considered the electromagnetic
torque (e.g. Mathews et al., 1991) or even the viscous torque (e.g. Mathews and Guo, 2005).
The topographic torque related to the non-hydrostatic part of the CMB shape is not considered,
while the problem has been addressed by Wu and Wahr (1997) in a numerical approach. These

Figure 1: Results concerning nutations, from Wu and Wahr, 1997

authors have shown that the topographic torque, often disregarded, may be important at CMB.
Wu and Wahr (1997) have computed numerically the topographic torque using topography
expanded in Spherical Harmonics and have shown that some harmonics of the topography have
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important contributions to nutations. From the approach and from the results, it is difficult
to understand if the enhancement of some topography components is due to the topography
amplitudes or due to something else, such as the geometry of the core topography itself. We
may suspect some resonance effects with inertial waves as when perturbing a rotating fluid, the
particle motion is characterized by a low-frequency oscillation called inertial wave. We may thus
wander if the enhancements seen in the topographic torque would be related to enhancements
of the inertial waves. For that reason we have considered to use an analytical approach in order
to study the results in more detail. In this paper we consider the approach in the frame of
length-of-day variations. Nutations are computed elsewhere (see Dehant and Folgueira, 2011).

2. EQUATIONS

The total pressure torque on the whole topography can be decomposed into two parts:
Γ0 + Γφ

topo, where (1) Γ0 the constant classical part of the torque for an ellipsoidal topography

at equilibrium, and (2) Γφ
topo due to the inertial rotation pressure (P − P0 − ρfφf ) related

for the global relative rotation of the fluid on the topography, where P is the pressure and
φf = φe + φ1 is the gravitational potential consisting of the sum of the external potential (φe)
and the incremental potential due to the deformation (φ1). Only the second part of the torque
is of importance when computing the effects of a perturbing potential and related additional
rotations of the core and the mantle on a topography different with respect to the ellipsoidal
hydrostatic shape.

In order to be able to evaluate this torque, one considers the expression ~Γφ
topo = −

∫ ∫
CMB

~r×

~̂nρf φ dS related to φ (= (P−P0)
ρf

−φf ). In order to integrate the torque, one needs then to consider

the Navier-Stokes equation. The philosophy for solving the equations is to separate the velocity
into a global part (~v) and an additional part (~u or ~q if normalized) and to separate the equation
into two equations of which the solutions are ~v and ~q and can be computed analytically. ~v is
the global relative velocity of the fluid and ~q is the incremental one, function of the coefficients
ak

l in the expression of φ, both being incompressible.
The boundary conditions at the CMB are imposed on the total velocity and yield thus a

relation between ~v (and thus components of the relative global fluid rotation m
f
1 and m

f
2), ~q

(and thus the ak
l coefficients), and the topography coefficients ǫm

n . This allows to solve for the
ak

l in terms of the relative global relative fluid rotation.
The basic dynamical equations are the linearized Navier-Stokes equation. If one considered

that the equilibrium corresponds to the hydrostatic case, they become:
∂~V

∂t
+ 2 ~Ω × ~V +

1

ρf

∇p − ∇φm + Ω
∂ ~m

∂t
× ~r = 0 (1)

where ~Ω is the uniform equilibrium angular rotation of amplitude Ω, ~m is the scaled additional

mantle angular velocity, ~m =




m1

m2

m3



, ~r =




x

y

z



 is the position of the fluid particle in the

reference frame, ~V is the velocity of the fluid particle in the reference frame, ρf is the fluid
density and p is the incremental effective pressure computed by p = P − P0 − ρfφ1 − ρfφe as
expressed before. Note that the angular velocity vector of the reference frame attached to the
mantle ~ω = ~Ω + Ω~m.

The first boundary condition at the core-mantle boundary (CMB): ~̂n·~V = 0 (~̂n is the normal
to the surface); it is expressed as a function of the boundary topography; the boundary surface
(hydrostatic + non-hydrostatic parts) is expressed using:

r = r0

[

1 +
∑

n=1

n∑

m=−n

εm
n Y m

n (θ, λ)

]

(2)
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where r0 is the surface mean radius, Y m
n (θ, λ) are the Legendre Associated Functions as a func-

tion of the colatitude θ and the longitude λ, and εm
n are small dimensionless numbers related to

the existence of the topography. The largest contribution is ε0
2 due to the flattening (hydrostatic

+ non-hydrostatic parts) of the CMB. It must be noted that the ǫ0
2 in a topography development

in spherical harmonics usually contains the hydrostatic part and the non-hydrostatic contribu-
tion to the topography; these must be separated. Here it is separated into a hydrostatic part
ǫ
0 hydr
2 and an additional one noted confusingly ǫ0

2 as well from now on and for writing simplicity.

The second boundary condition is the condition of incompressibility: ∇ · ~V = 0. We now
decompose the velocity: ~V = ~u +~v = Ω L~q +~v, where L is the maximum radius of the core and
~q is a non-dimensional velocity. One imposes that ~u << ~v.
The equation and condition for ~v are:{

∂~v
∂t

+ 2 ~Ω × ~v + + Ω ∂ ~m
∂t

× ~r − ∇φm = 0
∇ · ~v = 0

(3)

The equation and condition for ~q are:




i σm ~q + 2 ~̂z × ~q + ∇Φ = 0
∇ · ~q = 0
~n · ~q + Ω−1 L−1~n · ~v = 0

(4)

where Φ = φ
Ω2 L2 and φ = p

ρf
, Φ being called the non-dimensional dynamic pressure. The

time dependence of the variables is considered as eiσt where σ is the nutation frequency in the
reference frame attached to the mantle. When used in non-dimensional equations as above,
the frequency to be used is σm instead of σ, where σ = Ωσm. In the case of computing the
Length-of-day variations, the velocity ~v can be expressed by~v = −Ωm3

~̂z × ~r.
After some algebra on the first line of Equation (4), one can obtain the following expression

for ~q as a function of ∇Φ:

~q =
−i σm

4 − σ2
m

[
∇Φ −

2

i σm

~̂z ×∇Φ −
4

σ2
m

(~̂z · ∇Φ) ~̂z

]
(5)

where ~̂z is the normalized vector in the direction of ~Ω.
Using the above equation for ~q and the incompressibility condition for this fluid velocity

(second line of Equation 4), one obtains the following equation for Φ: ∇2Φ −
4

σ2
m

∂2Φ
∂Z2 = 0 where

Z is a particular coordinate (related to the cylindrical coordinates involving the colatitude θ),
which is equal to

√
σm

2 cos θ. The factor (1− 4
σ2

m
) being negative, this mixed differential equation

is an hyperbolic differential equation has the typical form of a wave propagation equations. It
expresses that small perturbations of an equilibrium configuration can propagate in the fluid
in the form of waves which are the so-called inertial waves because they are controlled by the
Coriolis force as a restoring force.

The solution of this equation for Φ must be proportional to the associated Legendre functions
of the first kind; it has the following form:

Φ =
∑

l=1

ak
l Plk(

σm

2
)Y k

l (θ, λ). (6)

where Plk(
σm

2 ) are the fully normalized associated Legendre polynomials, and the Y k
l (θ, λ), the

fully normalized associated Legendre functions as introduced before, and the ak
l are coefficients

that will be determined in the next step using the boundary conditions (third line of Equation
4). Using the boundary condition for ~q (third line of Equation 4) and the expression of ~q in
function of Φ (Equation 5), substituting the above solution for Φ (Equation 6), after a lot of
algebra, one obtains for the first order in the small quantities such as ǫm

n :

∑

l,k

Y k
l

[
kPlk(

σm

2
) −

(
1 −

σ2
m

4

)
P ′

lk(
σm

2
)

]
ak

l − 2

(
1 −

σ2
m

4

) ∑

n=1

mǫm
n Y m

n m3 = 0 (7)
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where Y k
l ≡ Y k

l (θ, λ). Equation (7) allows us to solve for the ak
l as a function of the ǫm

n and
σm; because we have only kept first order in ǫm

n , the ak
l coefficients are linear functions of ǫm

n .
It must be noted that this equation can be considered component per component by projection
on each Y m′

l′ and that we can solve as well for each ǫm
n separately and then sum over all the

contributions.

3. RESULTS

Substituting the solution for Φ, provided in Equation (6) as a function of the coefficients ak
l ,

in the expression for ~q provided by Equation (5), and computing the contribution to the torque,

one gets the ~q-contribution to topographic torque ~Γφ
topo as a function of ak

l (or equivalently ǫm
n

by means of Equation 7). The results are shown in Figure 2.

Figure 2: Amplitude of the ak
l for ak

l being the maximum values for each n.

4. CONCLUSIONS

From our computation we have seen that some topography coefficients provide larger contri-
butions to LOD than others and that there are some differences with respect to Wu and Wahr
(1997), even when using the same CMB topography. But the main features such as the degree
6 being larger than the others, has been recovered.

With this computation, we have understood that the degrees and orders of these amplifica-
tions do not depend on the geometry/dimension/topography amplitudes of core but rather on
the degrees and orders of the excitation and topography expressed in spherical harmonics.

We must note however that our computations/conclusions may change with an inner core.
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