

## **Recent Developments in Planetary Ephemeris Observations**

## W. M. Folkner

#### Jet Propulsion Laboratory California Institute of Technology

20 September 2010

©2010 California Institute of Technology. Government sponsorship acknowledged.



- Sensitivity to relativistic parameters in the ephemerides comes (mainly) through processed planetary spacecraft observations;
- MESSENGER Tony Taylor (Kinetx)
- Venus Express Trevor Morley (ESOC)
- Mars ranging Alex Konopliv (JPL); Trevor Morley (ESOC)
- Mars VLBI Jim Border (JPL)
- Saturn r,  $\alpha$ ,  $\delta$  Bob Jacobson (JPL)
  - Saturn VLBA Dayton Jones (JPL)/Ed Fomalont (NRAO)
    - W. Owen (JPL), A. Monet, H. Harris (USNO)

Astrometry -



## **Ephemeris Tie to ICRF**

- VLBI measures spacecraft angular position relative to radio reference frame
  - MGS, Odyssey, MRO
- Doppler ties spacecraft position to center of planet
  - Reconstructed accuracy <10m
- VLBI measurement types;
  - Doubly-difference range ( $\Delta DOR$ )
    - DSN and ESA stations
  - Differenced carrier phase
    - Very Long Baseline Array





#### **Mercury Orbit Data**



Jet Propulsion Laboratory California Institute of Technology

1974

0.2

0.10

-0.1

-0.2

0

residual (1-way km)

This document has been reviewed for export control and does NOT contain controlled technical data.

4

2010







#### Venus Data





Jet Propulsion Laboratory California Institute of Technology







### Mars VLBI Data



Jet Propulsion Laboratory California Institute of Technology



# Mars Range Fit/Extrapolation

- Mars spacecraft (MGS, ODY, MRO, MEX)range residuals show improving prediction
  - DE 414 fit 67 asteroid GM with constraints
  - DE 418 and DE 421 fit to 11 asteroid GM with no constraint
  - DE423 fit to 21 asteroid GM with a priori uncertainty from Baer et al.







California Institute of Technology



#### **Jupiter Astrometry**



California Institute of Technology

This document has been reviewed for export control and does NOT contain controlled technical data.



#### **Jupiter Spacecraft Data**







Jet Propulsion Laboratory California Institute of Technology







#### **Saturn Astrometry**



Jet Propulsion Laboratory California Institute of Technology

This document has been reviewed for export control and does NOT contain controlled technical data.

![](_page_15_Picture_0.jpeg)

- Derived range to Saturn depends on spacecraft orbit estimate
  - Range data usually used to estimate spacecraft maneuvers
    - May have unwanted correlations with range to Saturn
  - Doppler-only spacecraft orbits more independent, but noisier

![](_page_15_Figure_6.jpeg)

![](_page_16_Picture_0.jpeg)

### Saturn Orbit Uncertainty w.r.t. Earth

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

- Orbits dominated by astrometric observations
  - Nikolaev, USNOFS, TMO
  - Voyager 2 fly-bys of Uranus, Neptune, give 3-D point for one epoch

![](_page_18_Picture_0.jpeg)

#### **Uranus Orbit Uncertainty w.r.t. Earth**

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

### Neptune Orbit Uncertainty w.r.t. Earth

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

### **Pluto Orbit Uncertainty w.r.t. Earth**

![](_page_20_Figure_2.jpeg)

Jet Propulsion Laboratory California Institute of Technology

![](_page_21_Picture_0.jpeg)

- Deliver ephemerides for MSL cruise and arrival
- Improve Pluto for New Horizons encounter (2015)
  - Re-process old data? HST near radio source? GAIA/J-MAPS?
- Long integration with converged LLR data
  - Lunar core model without exponential damping
  - Significant asteroids integrated along with planets
- Mercury orbit from MESSENGER prime science phase (2011)
- Jupiter orbit from Juno (2016-2017)