Proposal for the redefinition of the astronomical unit of length (ua) through a fixed relation to the SI metre

N. Capitaine(1) , B. Guinot(1) , S. Klioner(2)

(1) : Observatoire de Paris / SYRTE
(2) : Lohrmann Observatory, Dresden Technical University
Presentation outline

• The astronomical units
• The role of the astronomical unit (of length)
• Recent evolution and new situation
• The proposal
The astronomical units

The current System of astronomical constants includes 3 astronomical units (defined in the *IAU 1976 System of astronomical constants*)

– **The astronomical unit of time: a time interval of one day (D) of 86 400 s**
 - provides a unit of time of "convenient" size for astronomy,
 - is related to the SI second by a defining number.

– **The astronomical unit of length: ua**
 - is a specific astronomical unit for expressing distances in the solar system,
 - its definition is based on the Gaussian gravitational constant k,
 - its value in SI has to be determined experimentally.

– **The astronomical unit of mass: the mass of the Sun, M_{Sun}**
 - is a specific astronomical unit for expressing masses in the solar system,
 - its value in SI has to be derived from the SI values of (1) the heliocentric gravitational constant, GM_{Sun}, and (2) the gravitational constant G (current relative uncertainty ~ 1×10^{-4}),
 - the value of GM_{Sun} in SI is obtained from the SI values for the ua and the day,
 - the value of the astronomical unit of mass in SI depends on the ua.
Definition and role of the astronomical unit of length (ua)

The ua is defined by the value of the Gaussian gravitational constant k (with $k^2 = G$), called a “defining constant”

Definition of the ua in the IAU-1976 System of astronomical constants

The astronomical unit of length is that length (A) for which the Gaussian gravitational constant (k) takes the value of 0.017 202 098 95 when the units of measurements are the astronomical unit of length, mass and time. The dimensions of k^2 are those of the constant of gravitation (G), i.e., $L^3M^{-1}T^{-2}$. The term "unit distance" is also for the length A.

Definition of the of the ua in the SI brochure (intended to non-astronomers)

The astronomical unit is approximately equal to the mean Earth-Sun distance. It is the radius of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with a mean motion of 0.017 202 098 95 radians per day (known as the Gaussian constant).

For any planet, n is measured in SI (i.e. rad/s), its semi major axis can be expressed as $a^2 = k^2/n^2$ (perturbations are neglected), hence the distances to other planets are in ua.

→ **the accuracy of the time measurements is transferred into the relative distances**

This definition of the ua was explained by the lack of precise measures of distances in the solar system, while it provides accurate relative distances.

It let open the problem of precise scaling of the solar system in the SI.
The IAU 1976 System of astronomical constants

<table>
<thead>
<tr>
<th>I. Defining Constants</th>
<th>Diff.</th>
<th>(\varepsilon_{76})</th>
<th>((76)-(64))</th>
<th>(\varepsilon_{64})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gaussian gravitational constant</td>
<td>(k = 0.017 , 202 , 098 , 95)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. Primary constants

2. Speed of light

3. Light-time for unit distance

4. Equatorial radius for Earth

5. Dynamical form-factor for Earth

6. Geocentric gravitational constant

7. Constant of gravitation

8. Ratio of mass of Moon to that of Earth

9. General precession in longitude, per Julian century, at standard epoch 2000

10. Obliquity of the ecliptic, at standard epoch 2000

11. Constant of nutation, at standard epoch 2000

<table>
<thead>
<tr>
<th>II. Primary constants</th>
<th>(c = 299 , 792 , 458 , m , s^{-1})</th>
<th>(\tau_{A} = 499.004 , 782 , s)</th>
<th>(a_{e} = 6378 , 140 , m)</th>
<th>(J_{2} = 0.001 , 082 , 63)</th>
<th>(G = 6.672 , 10^{-11} , m^{3} , kg^{-1} , s^{-2})</th>
<th>(\mu = 0.012 , 300 , 02)</th>
<th>(p = 5 , 029.096 , 6)</th>
<th>(e = 23^{\circ} , 26' , 21.448)</th>
<th>(N = 9.205 , 5)</th>
</tr>
</thead>
</table>

III. Derived constants

12. Unit Distance

13. Solar parallax

14. Constant of aberration, for standard epoch 2000

15. Flattening factor for the Earth

16. Heliocentric gravitational constant

17. Ratio of mass of Sun to that of Earth

18. Ratio of mass of Sun to that of Earth + Moon

19. Mass of the Sun

<table>
<thead>
<tr>
<th>III. Derived constants</th>
<th>(c \tau_{A} = A = 1.495 , 978 , 70 \times , 10^{11} , m)</th>
<th>(\pi_{o} = 8.794 , 148)</th>
<th>(\kappa = 20^{\circ} , 495 , 52)</th>
<th>(f = 0.003 , 352 , 81)</th>
<th>(GS = 1.327 , 124 , 38 \times , 10^{20} , m^{3} , s^{-2})</th>
<th>(S/E = 332 , 946.0)</th>
<th>(\frac{(S/E)/(1+\mu)}{1+\mu} = 328 , 900.5)</th>
<th>(S = 1.989 , 1 \times , 10^{30} , kg)</th>
</tr>
</thead>
</table>

The scale distance in the solar system is provided by the value \(A \) of the ua in m as fitted to a planetary ephemeris.

IERS Conventions 2003
uncertainty in the ua: 6 m
(JPL ephemerides DE403, Standish 1995)

\(\text{km: 2} \quad \text{m: 6} \quad \text{us: 6} \)
Recent evolution and new situation

Definition of the celestial reference systems in a GR framework; improvements in the concepts, models,
→ the definition of the ua should be best compliant with this modern IAU framework.

2. The context of the modern observations in the solar system
High accuracy observations in the solar system: ranging to planets, spacecraft observations, VLBI, etc.,
→ ranging observations are so accurate that there is no longer a reason to have a scale-invariant
description of the solar system as provided by the current definition of the ua.

3. The context of the recent ephemerides
- The primary determination of the GM_i of the planets are obtained in km3/s2 (TDB-compatible values)
 and then converted into values in astronomical units (Folkner et al. 2008).
- The direct estimation of GM_{Sun} has been tested in the INPOP08 ephemerides (Fienga et al. 2009),
 → the ua appears as an intermediate unit only used for historical purposes.

4. The possibility of a direct detection of a variation of the solar mass in the near future
The decrease of the solar mass is expected to be detectable when the accuracy has been improved by a factor 10,
→ using time-dependent units of length and mass to measure such a variation will be a non-sense.

The status of the ua and GM_{S} should be reformed to be more in agreement
with the modern context (Klioner 2008, Capitaine & Guinot 2009)
The definition of the ua in the relativistic framework

1) Necessity to extend the Gaussian gravitational constant to the GR framework: several possible options but the geometrical interpretation through the motion around the Sun would be more delicate.

2) Necessity to take into account the use of TCB or TDB, i.e. the scaling factor $F=(1 - L_B)$: quantity_{TDB} = F \cdot quantity_{TCB} : several options: scale only units, scale only values, scale both, etc.
 out of which the two most logical are:

 • Option 1: $M_S=1$ and k has the same value with both TCB and TDB. This requires:
 unit of distance: $AU_{TDB} = F^{1/3} \cdot AU_{TCB}$,
 distance: TDB-compatible value = $F^{2/3} \cdot TCB$-compatible value,
 very confusing because of the unusual scaling.

 • Option 2: $AU_{TDB} = AU_{TCB}$ and scale the value. This requires:
 distance: TDB-compatible value = $F \cdot TCB$-compatible value,
 but GM_S is no longer k^2, either with TDB or with TCB, which kills the uniqueness of the Gaussian constant k.

 Relativistic scaling from TCB to TDB makes the definition of the ua even trickier.
The IAU 2009 System of astronomical constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
<th>Value</th>
<th>Uncertainty</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Speed of light</td>
<td>2.99724858×10^8 m/s1</td>
<td></td>
<td>CODATA, 2006</td>
</tr>
<tr>
<td>μ</td>
<td>Gaussian gravitational constant</td>
<td>$1.720209895 \times 10^{-2}$</td>
<td></td>
<td>[14, 11]</td>
</tr>
<tr>
<td>L_0</td>
<td>1-d(1T)/d(TCO)</td>
<td>$-0.969290 134 \times 10^{-10}$</td>
<td></td>
<td>[15, 25]</td>
</tr>
<tr>
<td>L_9</td>
<td>1-d(TDB)/d(TCB)</td>
<td>$1.550 519 768 \times 10^{-9}$</td>
<td></td>
<td>[16]</td>
</tr>
<tr>
<td>TDBδ</td>
<td>Bias between TDB and TCB</td>
<td>-6.55×10^{-5} s</td>
<td></td>
<td>[16]</td>
</tr>
<tr>
<td>θ_0</td>
<td>Earth rotation angle at J2000.0</td>
<td>$0.779 057 273 264 0$ revolutions</td>
<td></td>
<td>[15, 4]</td>
</tr>
<tr>
<td>$\dot{\theta}_0$</td>
<td>Rate of advance of Earth</td>
<td>$1.002 737 811 911 354 48$ revolutions UT1/day$^{-1}$</td>
<td>[15, 4]</td>
<td>[15, 4]</td>
</tr>
</tbody>
</table>

Current Best Estimates

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
<th>Value</th>
<th>Uncertainty</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Constant of gravitation</td>
<td>$6.674 28 \times 10^{-11}$ m3kg$^{-1}$s$^{-2}$</td>
<td>6.7×10^{-15} m3kg$^{-1}$s$^{-2}$</td>
<td>CODATA, 2006</td>
</tr>
<tr>
<td>aμ</td>
<td>Astronomical unit</td>
<td>$1.495 978 707 00 \times 10^{11}$ m</td>
<td>3 m</td>
<td>Pitjeva & Standish 2009, CMDA 103, 365</td>
</tr>
<tr>
<td>GM$_{\odot}$</td>
<td>Heliocentric gravitational constant</td>
<td>$1.327 124 420 99 \times 10^{20}$ m3s$^{-2}$ (TCB-compatible)</td>
<td>1.0×10^{10} m3s$^{-2}$ (TCB-compatible)</td>
<td>Folkner et al. 2008, from the ua fitted to DE 421: Memorandum IOM 343R-08-003</td>
</tr>
</tbody>
</table>

Folkner et al. 2008, from the ua fitted to DE 421: Memorandum IOM 343R-08-003
Proposal

• As already suggested before the 2009 IAU General assembly, it is proposed to re-define the ua as a fixed number of SI metres through a defining constant.

• This would mean:
 – dropping the k constant and abandoning the experimental determination of the ua in SI unit,
 – determining experimentally GM_{Sun}.

• Such a change of status for the ua would limit its role to that of a unit of length of "convenient" size for some applications.

• The defining number to be adopted for the conventional definition of the ua should be, for continuity reason, the value for the current best estimate of the ua in m as adopted by IAU 2009 Resolution B2 (i.e. $\text{ua} = 1.495\,978\,707\,00 \times 10^{11}\,\text{m}$ exactly).

The CCU declared its support to move to a fixed relationship to the SI metre through a defining number
Conclusion

• A re-definition of the ua is necessary in the modern context in order to make the system of astronomical constants best compliant with modern dynamical astronomy.

• From the point of view of the principles, the important point is the change of status for the astronomical unit of length (and not the value of its defining number).

• Such a change of status of the ua:
 – would be a great simplification for the users of the astronomical constants,
 – will let possible variations of the mass of the Sun (and/or G) to appear directly (which is the option that has the most physical meaning), and
 – would avoid an unnecessary deviation from the SI.

• This should be largely discussed within the astronomical community in order to be proposed at the next IAU GA (2012).
References

Folkner, W.M., 2008, e-mails NFSA WG discussion (04/06/2008)

