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ABSTRACT. With the recent discovery of few astrometric anomalies derived from the tracking of
spacecrafts, such as the Pioneer and Earth flyby anomalies, we propose to reconsider the light time
calculation used by Deep Space Navigation. In particular, we show that some traditional approximations
can lead to neglect tiny terms that may produce instability in the orbit determination of a probe during
Earth flyby.

1. INTRODUCTION

Deep space data processing during the last decade has revealed the presence of some anomalies in
the trajectory of probes. Lots of hypothesis have been made trying to solve this puzzle, but they can
be summarized in two main approaches : whether these anomalies are the manifestation of some new
physics, or something is incorrectly modeled in the data processing. We investigated Moyer’s book, which
describes the relativistic framework used by space agencies for data processing, and came to the conclusion
that the modeling is correct up to the first post-Newtonian approximation of General Relativity. However,
some terms, a priori of very small amplitude, have been neglected in the light time calculation. In section
2, we give a brief overview of light time computation as described by the Moyer’s book; we show that the
transponder’s delay, i.e. the time delay between the reception and retransmission of the light signal on
board the satellite, is not correctly taken into account. In section 3 we present an alternative modeling
that corrects this. Finally in section 4 we compare these modelings to highlight the differences and we
give some conclusions in section 5. Throughout this work we will suppose that space-time is covered
by some global barycentric coordinates system xα = (x0,x), with x0 = ct, c being the speed of light in
vacuum, t a time coordinate and x = (xi, i = 1, 2, 3). Greek indices run from 0 to 3, and Latin indices
from 1 to 3. Here x

b
t/v

b
t represents the position/velocity of b at time t, where b can take the value GS

(ground station) or SC (spacecraft). Primed values are related to the Moyer’s modeling, while we will
use non-primed values for the alternative modeling.

2. MOYER NAVIGATION MODEL

Deep space navigation is based on the exchange of light signals between a probe and at least one
observing ground station. The calculation of a light time is quite simple : a clock starts counting as
an uplink signal is emitted from ground at x

GS
1′ . The signal is received by the probe at x

SC
2′ and then

reemitted immediately towards the Earth where it is received by a ground station at x
GS
3′ . The clock

stops counting and gives the round-trip light time ρ′, referred to as ”two-ways light time” or simply ”light
time”. ρ′ can be computed as follow:

ρ′ =
1

c
|xGS

3′ − x
SC

2′ |+
1

c
|xSC

2′ − x
GS

1′ |+ Shapiro+ δTS, (1)

where Shapiro and δTS are the Shapiro delay and other corrections described by Moyer, respectively.
Then the light time is used to compute two physical quantities: the Ranging, describing the distance
between the probe and the ground station, and the Doppler related to the radial velocity of the probe
with respect to the Earth. Ranging signal almost coincides with ρ′ when one simply adds a calibrated
transponder’s delay δt. Doppler signal, F , is obtained by differentiating two successive light-time mea-
surements, ρ′s = t3s − t1s and ρ′e = t3e − t1e, during a given count interval Tc = t3e − t3s. Moyer showed

282



that F = M2fT (t1) (ρ
′
e − ρ′s) /Tc where M2 is a transponder’s ratio applied to the downlink signal when

it is reemitted towards the Earth.

3. ALTERNATIVE NAVIGATION MODEL

In the Moyer’s model, the uplink signal is received at xSC
2′ and immediately transponded towards the

Earth : no transponder delay is taken into account. Nevertheless, an electronic delay of some microseconds
due to on board processing of the incoming signal is present and we have studied its influence on light
time modeling for Ranging and Doppler calculations. To do that we introduce an alternative model
taking into account four events: the emission from the ground station at xGS

1 , the reception by the probe
at xSC

2 , the reemission at xSC
3 and the reception at ground at xGS

4 . The additional event xSC
3 = x

SC
2+δt23

accounts for this small delay of δt23=2.5 µs (for modern spacecrafts) :

ρ =
1

c
|xGS

4 − x
SC

3 |+ δt23 +
1

c
|xSC

2 − x
GS

1 |+ Shapiro+ δTS. (2)

4. COMPARISON OF THE TWO MODELINGS

One main difference between the two modelings consists in considering different numbers of epochs.
Indeed we introduced the event xSC

3 = x
SC

2+δt23
; this term is implicitly related to δt23 by the approximation

x
SC
3 = x

SC
2 + δt23v

SC
2 +O(δ223) . In practice, this delay is calibrated by space agencies; it is added to ρ

when computing Ranging and has no consequence on the differential Doppler F since δ23 is a calibrated
constant quantity. However, as δ23 appears in the expression of xSC

3 , we can compute the difference
between ρ and ρ′ by developing to the first order in δt23. We found that this difference is given by:

∆ρ = ρ− ρ′ = δt23
1−

v
SC

2
·N12

c

1−
vGS

1
·N12

c

, (3)

where N12 =
x

SC

2
−x

GS

1

‖xSC

2
−xGS

1
‖
.

The last equation highlights the presence of an extra non-constant term directly linked to the transpon-
der delay. It depends also on positions and velocities of both probe and ground station. Neglecting it
would actually lead to a wrong determination of the epoch t1 and to an error in both Ranging and
Doppler. In fact, extracting the downlink signal, we get |xSC

2′ − x
GS
1′ | 6= |xSC

2 − x
GS
1 | since t2 6= t′2 and

t1 6= t′1.

5. CONCLUSIONS

It is obvious that the influence of the transponder delay has no reason to be only calibrated. It is
responsible of a tiny effect on the computation of light time and has an impact on both Ranging and
Doppler determination. Mainly, to summarize, it leads to consider four epochs instead of three. In order
to test the amplitude and variability of this effect on real data, we calculated its influence on some real
probe-ground station configurations during recent Earth flybys (NEAR, Rosetta, Cassini and Galileo)
and we computed the alternative orbit fitted to Ranging and Doppler data from our light time model.
The results showed an amplitude of some mm (Ranging) and mm/s (Doppler), but also a variability of the
signal for different orbital configurations. A more detailed version of these calculations will be presented
in a forthcoming article.

6. REFERENCES

T.D. Moyer, 2000, ”Formulation for Observed and Computed Values of Deep Space Network Data Types
for Navigation”, JPL Publications.

J. Anderson et al., 2008, ”Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of
Earth”, Physical Review Letters, 100, 9, 091102.

283


