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ABSTRACT. We develop numerical ephemerides of telluric planets to compact analytical series valid
over 3000BC–3000AD. The long-term planetary ephemerides DE406 are used as the source; a spectral
analysis of tabulated values for the heliocentric mean longitude of every telluric planets is made. For
that purpose we used our modification of the spectral analysis method which allows one to develop the
tabulated values directly to Poisson series where both amplitudes and arguments of the series’ terms are
high-degree polynomials of time. As a result, the maximum difference between the mean longitudes of
the telluric planets given by the numerical ephemerides DE406 and the new analytical series is less than
0.07 arcsec over the total time interval of 6,000 years. The number of Poisson terms in every development
is less than 950.

1. MODERN REPRESENTATIONS OF PLANETARY/LUNAR COORDINATES

There are three major approaches for development and representation of the planetary and lunar
coordinates:

1. Numerical ephemerides. The following ephemerides of the major planets and the Moon are
known as the most accurate now:

• DE-series (Jet Propulsion Laboratory NASA, USA); the latest ephemerides of this series are
DE423 (Konopliv et al., 2010);

• EPM-series (Institute of Applied Astronomy RAS, Russia); the latest ephemerides of this series
are EPM2010 (Pitjeva et al. 2010);

• INPOP-series (IMCCE, Observatoire de Paris, France); the latest ephemerides of this series
are INPOP10a (Fienga et al. 2010).

An advantage of the numerical ephemerides is usually their high-accuracy, but a certain disadvan-
tage is that they run up to hundreds megabytes and are often not cross-platform.

2. Analytical/semi-analytical motion theories. Historically, it was the first and for long time the
only way for representation of the celestial bodies’ coordinates. Last years the most advanced ana-
lytical motion theories of the major planets and the Moon are being developed at the BDL/IMCCE,
France; the latest analytical theory of the planetary motion is VSOP2010 (Francou and Simon 2010).

Advantages of the analytical/semi-analytical theories of planetary and lunar motion are their com-
pactness and computer platform independence. In particular, this was one of the reasons why
the BDL/IMCCE–based analytical series for lunar and planetary coordinates have replaced the
JPL–based numerical ephemerides within all key elements of the ground software systems used for
Hubble Space Telescope mission support (McCuttcheon 2003). However, it is relatively difficult to
develop and improve analytical motion theories. As a consequence, the accuracy of the available
analytical theories of the major planets’ and Moon’s motion is not so high as that of the modern
numerical ephemerides of these bodies.

3. Frequency analysis of planetary/lunar numerical ephemerides. It is a “mixed” approach.
First, numerical ephemerides are used for tabulating coordinates of celestial bodies over a certain
interval of time. Then, by using a spectral analysis method, some analytical series approximating
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the tabulated values are built. In particular, such an approach was used by Chapront (1995, 2000)
for analytical representation of numerical ephemerides of the major planets and by Kudryavtsev
(2007) for harmonic development of the lunar ephemeris.

In this way the advantages of the first and second approaches can be merged. The approximating
series are usually compact and cross-platform. Moreover, the analytical series obtained with help of
modern spectral analysis methods can be of accuracy compatible to that of numerical ephemerides
(Kudryavtsev 2007, Kudryavtsev and Kudryavtseva 2009). A known disadvantage of any spectral
analysis method is a problem of ”close frequencies”. However, it can be solved (or at least essentially
diminished) by using, as the source, the long-term numerical ephemerides of the Moon and major
planets which cover thousands of orbital periods of these bodies. To analytically represent numerical
ephemerides over such a long-term interval, one should rather employ Poisson series, where both
amplitudes and arguments of the series’ terms are high-degree polynomials of time, than pure
Fourier series. For that, a corresponding modification of the spectral analysis method was developed
(Kudryavtsev 2004, 2007). The next section briefly presents the method.

2. SPECTRAL ANALYSIS OF PLANETARY EPHEMERIDES TO POISSON SERIES
Let f(t) be a function tabulated by its numerical values over an interval of time [−T, T ] with a small

sampling step. Over the same interval we build an analytical representation of the function by a finite
h-order Poisson series of the following form
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where Ac
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q-degree polynomials of time t, and
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q if k > 0. (2)

In order to obtain such an expansion, we first find the projections of f(t) on a basis generated by functions

ckl(t) ≡ tl cosωk(t), skl(t) ≡ tl sinωk(t); k = 0, 1, · · · , N ; l = 0, 1, · · · , h

through numerical computation of the following scalar products
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where χ(t) = 1 + cos π
T

t is the Hanning filter chosen as the weight function. The proper choice of
arguments ωk(t) depends on the specific task. In the present study the polynomial arguments of the
resulting Poisson series are various combinations of multipliers of the planetary mean mean longitudes,
where the latter are defined by Simon et al. (1994).

However, the basis functions ckl, skl are not usually orthogonal. Therefore, at the second step we
perform an orthogonalization process over the expansion coefficients in order to improve the quality of
representation and avoid superfluous terms [see details in Kudryavtsev (2004, 2007)].

In the present study we use this method in order to develop the planetary numerical ephemerides
to compact Poisson series. There are several options for the planetary variables to be represented by
analytical series:

• rectangular (Cartesian) coordinates;

• spherical coordinates: distance, latitude, longitude;

• osculating orbital (e.g. Keplerian) elements;

• differences of osculating orbital elements from their mean values.
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After some tests we have chosen the latter option. The heliocentric mean longitude of a planet is
represented as follows

λ(t) = λ̄(t) +
N
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where λ̄(t) is the mean mean longitude of the planet as defined by Simon et al. (1994).
We made harmonic development of the mean longitude of four telluric planets: Mercury, Venus,

Earth-Moon barycenter (EMB) and Mars. We started with tabulating numerical values for the difference
between the osculating heliocentric mean longitude of every considered planet and the corresponding
planetary mean mean longitude on every day within 3000BC–3000AD. The most long-term planetary
ephemerides DE406 (Standish 1998) are used as a source. Then the tabulated values were processed
by a new modification of the spectral analysis method as described above, and compact Poisson series
representing the planetary mean longitude in form (5) are built. Table 1 presents the main characteristics
of these series.

Planet Maximum difference from DE406 Number of terms, N

Mercury 0.014” 331
Venus 0.035” 450
EMB 0.022” 568
Mars 0.068” 948

Table 1: Expansion of heliocentric mean longitude of telluric planets over 3000BC–3000AD.

The accuracy of the new development is compatible to that obtained by Chapront (2000) in his
representation of planetary mean longitudes from DE406 over the same interval of time. A better ap-
proximation accuracy by Chapront (2000) is reached in case of Mercury and Venus, a better accuracy by
us is reached in case of EMB and Mars. However, Chapront (2000) made his expansion for the difference
between the planetary mean longitudes from DE406 and those provided by the VSOP87 analytical theory
of planetary motion (Bretagnon and Francou 1988). Therefore, the series by Chapront (2000) should be
completed by the corresponding terms from VSOP87. As a result, the total number of terms necessary
to represent the planetary mean longitude is there essentially more than that in our solution.

The current version of the VSOP2010 analytical theory approximates the DE406 mean longitudes of
the telluric planets with a maximum error of a few 0.1 arcsec over 6,000 years (Francou and Simon 2010).
However, these values might be not the final ones, because the work on this exceptional theory is being
continued.
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