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ABSTRACT. The PARallaxes of Southern Extremely Cool objects (PARSEC) program is designed to
measure trigonometric parallaxes of 150 confirmed brown dwarfs in the southern hemisphere with the
aim of using distances as fundamental calibrators for the investigation of star formation and evolution
in the very low-mass regime. A scientifically useful addition to the primary scope of the project is the
derivation of stellar proper motions, by combining observations from the full field of view, linked to the
UCAC2 catalogue, with first-epoch data from 2MASS. To date, a proper motion catalogue of about
200,000 objects has been compiled. Tailored reduction techniques allow to attain milliarcsecond accuracy
in the derived astrometric parameters, as validated by external comparisons.

1. OBSERVATIONAL STRATEGY

PARSEC observations are carried out with the Wide Field Imager on the ESO 2.2 m telescope at La
Silla. The detector is a mosaic of 8 CCDs sized 2k x 4k 15µm pixels, providing a scale of 0.2′′/pixel and a
total field of view of 0.3 square degrees. All images are taken in the z filter (central wavelength 964.8 nm),
a suitable compromise between the optimal QE of the system in the I band and the expected brightness
of the targets, whose (I − z) is typically larger than 1.5. Exposure times are indicatively 150 s and 300 s
for bright (z < 18) and faint (z ≥ 18) objects respectively; during nights with particularly poor seeing
(> 1.5′′), times are adjusted to obtain a highest-pixel signal of > 100 counts above the background.

With earliest observations dating back to April 2007, a frequency of 3-4 observing runs per year and
an envisaged time span of the program of 4 years, the parallax ellipse is optimally sampled for almost all
the targets. The end points of the ellipse’s major axis correspond to the most crucial observations, which
occur when the so-called parallax factor F reaches its highest numerical value. In fact, the star’s apparent
displacement in right ascension, due to its annual parallax, is adequately given by ∆αcosδ = Fπ, where
π is the trigonometric parallax and F ≡ (Y cosα − Xsinα) is a function of the star’s right ascension
α and the Sun’s geocentric equatorial coordinates (X, Y ) = (cosλ⊙, sinλ⊙cosǫ), ǫ being the inclination
between the equatorial and ecliptic planes. It is clear that, having fixed the measurement error on the
stellar displacement, a larger value of F would result in a smaller error on the estimated parallax. It
can be shown that |F | is maximum when the geocentric angle between the Sun and the star is 90◦.
When planning our observations, we also require that the target be near the meridian (+/- 20 min)
in order to minimize differential refraction effects; these two conditions are simultaneously best met
at evening/morning twilight, when stars crossing the meridian are approximately perpendicular to the
direction of the setting/rising sun. Therefore, twilight hours bear the most relevance to our observing
program.

Targets are picked from the nightly schedule according to a priority flag which reflects the observing
history of each object and which is updated at every run. Finally, after an initial acquisition, the pointing
is refined to move the target always in the same (x, y) position, which falls in the top third of CCD#7.
For all the subsequent parallax reductions we only use data from this portion of the detector: this is
sufficiently large that we have enough reference objects for a transformation to a common system and
sufficiently small to assume that a variation in astrometric distortion over the observational campaign
would be smaller than the errors of a linear transformation.

Once the raw CCD data are pre-reduced using the prescriptions illustrated in Andrei et al. (2010),
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the stellar density profiles are fitted with a bi-dimensional Gaussian model giving an estimation of the
objects’ centroiders (x(t), y(t)) at the time of observation, which are our basic astrometric measurements.

2. THE DERIVATION OF PARALLAXES

The target’s relative parallax and its relative-to-absolute correction are derived following the methods
discussed in TOPP (Smart et al. 2003, 2007). These have been extensively tested and successfully used to
produce the first PARSEC results (Andrei et al. 2010), i.e., preliminary parallaxes for 10 brown dwarfs,
2 of which within 10 parsecs, with a median rms error of 4.2 milliarcseconds.

In this contribution we focus on some aspects concerning the problem of rank deficiency intrinsic to
the task of parallax determination with small-field astrometry. Let’s consider n frames taken at different
observing times tν ; ν = 1, ..., n and m stars observed in each of those frames. For any star µ; µ = 1, .., m,
assuming that the change in position is only due to parallax and proper motion effects, its longitudinal
standard coordinate on the tangential plane, identified by the intersection of the telescope optical axis
with the celestial sphere, can be modelled as:

ξµ(tν) ≡ ξνµ = ξ0µ + ∆tνµν + Fνπµ (1)

where ξ0 is the tangential position at a chosen reference epoch t0 and ∆tν = tν − t0; µ, π are the star’s
proper motion in right ascension and its parallax, and F is the parallax factor defined in the previous
section.1 On the other hand, the ξµ(tν) are functions of the true values of the measured coordinates xνµ,
which we assume to be well represented by the linear transformation:

ξνµ = xνµ + Aνxµ + Bνyµ + Cν (2)

where the Aν , Bν , Cν are the so-called plate parameters. Equations 1 and 2 can be trivially combined
to obtain the observation equation for star µ on frame ν. We introduce now vector lT = (lT

1
, ..., lT

n
)

where lTν = (xν1, ...xνm) is the vector of measurements of all the stars on frame ν. Moreover, let’s
pT = (A1, B1, C1, ..., An, Bn, Cn, ξ1, µ1, π1, ..., ξm, µm, πm) be the vector of instrumental and astrometric
unknowns. With this formalism, the final system of equations can be expressed in matricial form as:

X · p = −l (3)

The explicit form of X is given by:

X =











M1 −I −∆t1I −F1I

M2 −I −∆t2I −F2I

. . .
...

...
...

Mn −I −∆tnI −FnI











where I is the identity matrix, ∆ti and Fi are defined as in equation 2, and the matrices

Mi =











xi1 yi1 1
xi2 yi2 1
...

...
...

xim yim 1











differ from each other inasmuch as the measurements of stellar positions in a given field of view change
in value from one frame to another. The number of columns of matrix X is 3m+ 3n, but its rank is only
3(m + n) − 3, meaning that some a-priori known position, proper motion and parallax must be used in
order to solve the system of equations 3. If we assume that the plate parameters are small (<< 1), which
is generally the case provided that the CCD axes are properly aligned and the scale factor well known,
the matrices Mi will be nearly identical, and can therefore be approximated by a unique matrix M by
choosing, e.g., M = M1. With this substitution, the dimension of the null space of X becomes equal
to 9 (Eichhorn 1988). If no approximations are made, only 3 singular values of X are exactly equal to
zero, and the rank deficiency of the problem decreases mathematically to 3; however, 6 of the remaining

1Analogous formulae hold for the ζ component in latitude, which is neglected in this treatment. We note that the

parallax factor in declination is sensibly smaller than the one in right ascension, bearing therefore much less weight into the

estimation process
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singular values are nearly zero; therefore, in a numerical sense, the singularity of the problem is still equal
to 9. The physical meaning of such indeterminacy relies in the impossibility of distinguishing, solely
based on the measurements, whether an observed translation, rotation, or scale factor are accountable to
instrumental effects as opposed to some global astrometric behaviour of the stellar field.

To solve equation 3 in the least-square sense, one must determine a particular solution out of the
infinite solutions of the associated normal system. Two different approaches are considered: the first
one is to add to matrix X nine linearly independent constraint equations in order to eliminate the rank
deficiency; the second one consists in finding a minimum norm solution using, e.g., the singular value
decomposition method, which allows to construct an orthonormal set of vectors spanning the range of X.

In the first approach, a suitable choice of constraints, as suggested by Eichhorn (1988) and subse-
quently analysed by Rapaport (1998), is represented by the set of equations

MTPs = C

with MT defined above;

Ps =











ξ01 µ1 π1

ξ02 µ2 π2

...
...

...
ξ0m µm πm











being the unknown astrometric parameters of the reference stars, and C an arbitrary 3x3 matrix.
While for the constraint equations involving stellar positions, the elements of C can be calculated using
reference stars’ catalogue values, this is not the case for the ones concerning parallaxes and proper
motions, which are not usually available. A suitable choice is to put all the other elements of C equal to
zero, which means fixing at zero the barycenter of parallaxes and proper motions of the reference stars,
plus adding an orthogonalization condition with respect to the plate measurements.

Both the described approaches should be equivalent, as in principle one can fully recover one solution
from the other by noticing that the so-called general solution, i.e., the one generating the complete set
of solutions of system 3, is given by the sum of a particular solution and a linear combination of the
orthonormal vectors spanning the null space of X. However, as already stated, the rank deficiency of
the problem is not exactly 9, and solutions obtained with different set of constraints are not exactly
equivalent. The method adopted in TOPP is an iterative one, naturally converging to a minimum-norm-
type solution without the necessity of adding extra conditions. We are currently investigating the extent
to which the choice of different constraints can influence the final determination of the relative-to-absolute
parallax correction.

3. THE DERIVATION OF PROPER MOTIONS

The raw data from the entire field of view of the ESO Wide Field Imager have been used to compute
proper motions of anonymous objects down to the magnitude limit of an average CCD exposure, i.e.,
I ≃ 19. To this end, independently for each CCD and each observing time, we have determined an
astrometric reduction relative to the Second US Naval Observatory CCD Astrograph Catalog (UCAC2,
Zacharias et al. 2004). With an average number of reference stars per CCD equal to 20, polynomial fits of
degree 2 or 3, depending on the actual number of UCAC2 stars available, were used to transform the (x, y)
measurements onto equatorial coordinates (α, δ). Then, each object was matched to the Two Micron All
Sky Survey (2MASS, Skrutskie et al. 2006) point source catalogue. We employed a nearest-neighbor
match, which should be sufficient to avoid mismatches even in the presence of high proper motions, given
that the epoch difference between 2MASS and PARSEC observations is small and that our targets are
clear of the Galactic disk. However, we are developing a more robust matching algorithm making use of
GSC2.3 positions at different epochs.

In Andrei et al. (2010), results for 197,500 sources are analysed by means internal and external
comparisons showing that our proper motions are well behaved, with a median rms error of 5 mas/year,
both for right ascension and declination. Figure 1 is a plot of the reduced proper motion H(K) =
K + 5log(µtot) + 5, as a function of the z − K color for all objects in the PARSEC proper motion
catalogue. The z magnitudes come from a zero-point correction to the instrumental magnitudes of the
first observations while K are 2MASS magnitudes. It can be seen that brown dwarf objects, which are
marked with diamonds, are well segregated in this diagram.
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Figure 1: A reduced proper motion diagram (H(k) versus z −K) of the 197,500 objects in the PARSEC
proper motion catalogue. The region of possible brown dwarf candidates is delimited by the solid line

4. CONCLUSIONS

The PARSEC program has been successfully using ESO 2.2m Wide Field Camera observations to
derive parallaxes of selected brown dwarfs, as well as proper motions of field stars at the milliarcsecond
level accuracy, with direct astrophysical applications. Different methods for overcoming the rank defi-
ciency inherent to the parallax derivation are being investigated. The PARSEC proper motion catalog,
which to-date counts ≃ 200, 000 objects, can be exploited to identify new brown dwarf candidates via
the reduced proper motion diagram, for spectroscopic follow-up.
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