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ABSTRACT. We determine the relativistic effects of the tidal potentials on the time and frequency
transfers between an atomic clock orbiting round the Earth and a ground clock. These effects are
estimated for ESA Atomic Clocks Ensemble in Space (ACES) mission planned to be launched in 2012.

1. INTRODUCTION

The ACES mission is planned to compare a cold atom clock PHARAO onboard the ISS with terrestrial
clocks by the mean of a microwave link. PHARAO is expected to reach a frequency stability of 1 · 10−16

for an integration time of ten days, with a relative accuracy of 1 · 10−16 (see Blanchet et al. 2001 and
Duchayne et al. 2007). A primary objective of ACES will be to compare ground clocks in common view
below the 1 · 10−17 level after one day of integration. This level of performance requires to determine the
influence of the tidal potentials on the frequency shifts in the vicinity of the Earth.

2. GENERAL FORMULA GIVING THE FREQUENCY SHIFT

We assume that space-time can be covered by a global coordinate system xα = (x0, xi) ≡ (ct, x), in
which the metric

ds2 = gµνdxµdxν (1)

is such that
gµν = ηµν + hµν , ηµν = diag (1,−1,−1,−1). (2)

The coordinate travel time tB − tA of a photon between an emission point xA = (ctA, xA) and a
reception point xB = (ctB, xB) may be considered as a function of xA, tB and xB, so that we can write

tB − tA = Tr(xA, tB, xB), (3)

where Tr(xA, tB, xB) represents what we call the “reception time transfer function”. For the decompo-
sition of the metric given by Eq. (2), the function cTr(xA, tB, xB) may be written in the form

cTr(xA, tB, xB) = |xB − xA| + ∆r(xA, tB, xB), (4)

where ∆r(xA, tB, xB) is of the order of the gravitational perturbation hµν .
The knowledge of ∆r(xA, tB, xB) enables to treat both the problems of time transfers and of frequency

transfers. Indeed, consider a light signal emitted at point xA by an observer A moving with a unit 4-
velocity vector uα

A = dxα
A/dsA and received at point xB by an observer B moving with a unit 4-velocity

vector uα
B = dxα

B/dsB. Let νA be the frequency of the signal as measured by A at xA and νB the
frequency of the signal as measured by B at xB . A simple reasoning shows that within the geometric
optics approximation the frequency shift between xA and xB is given by the formula
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where vA = (dx/dt)A and vB = (dx/dt)B are the coordinate velocities of observers A and B, respec-
tively. It follows from gµνuµuν = 1 that u0

A and u0
B may be calculated by the relation
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(6)

applied to the observers A and B, respectively.
The formula (5) shows that it is sufficient to determine ∆r(xA, tB, xB) at the order 1/c2 when the

frequency shift is required at the order 1/c3.

3. EFFECT OF THE TIDAL POTENTIALS

Since we are concerned here by time and frequency transfers between a satellite of the Earth and
a ground station, we now suppose that the coordinate system (ct, x) constitutes a local nonrotating
geocentric reference system (GCRS). Then it may be assumed with a sufficient approximation that the
gravitational potentials are given by (see Klioner & Soffel 2000):

G00 = 1 −
2

c2
W + O(1/c4), (7)

G0i = O(1/c3), (8)

Gij = −

(
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c2
W

)

δij + O(1/c4), (9)

where γ is the well-known post-Newtonian parameter involved in light deflection (γ = 1 in general
relativity) and W may be decomposed as

W (t, x) = W⊕(t, x) + W (T )(t, x) + Qix
i + O(1/c2), (10)

where W⊕(t, x) is the potential of the Earth , W (T )(t, x) is the tidal potential and Qi is the non geodesic
acceleration of the Earth center of mass with respect to the GCRS. At the order O(1/c3), the ratio νA/νB

is given by
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where (δν/ν)g contains all the contributions of the gravitational field:

(

δν

ν

)

g

=
1

c2
(WA − WB)

[

1 −
1

c
NAB. (vA − vB)

]

+
∂∆r

∂xi
A

vi
A

c
+

∂∆r

c∂tB
+

∂∆r

∂xj
B

vj
B

c
+ O(c−4). (12)

It follows from Eq. (8) that the contributions of G0i may be neglected. So the expression of
∆r(xA, tB, xB) reduces to (see Linet & Teyssandier 2002):

∆r(xA, tB, xB) =
1

c2
(γ + 1)|xB − xA|

∫ 1

0

W (zα
−(λ))dλ + O(1/c3), (13)

the integral being taken along the null straight line in Minkowski space-time defined by the parametric
equations

z0
−(λ) = −λ|xB − xA| + x0

B, zi
−(λ) = −λ(xi

B − xi
A) + xi

B .

At the order 1/c3, the potentials W⊕ and W (T )(t, x) involved in Eqs. (12) and (13) may be replaced
by their respective Newtonian expressions. Moreover the contribution of the non geodesic acceleration
to (WA − WB)/c2 is completely negligible since |c−2Qix

i| < 10−20.
The contributions of W⊕(t, x) were analyzed in Blanchet et al. (2001), Duchayne et al. (2007), Le

Poncin-Lafitte & Lambert (2007), and Linet & Teyssandier (2002). So we discuss only the contributions
of the tidal potentials. The dominant effects are due to the Moon ((|) and to the Sun (⊙). Putting

h = rB − rA, ζA =
h

rA
, κA =

|xB − xA|

rA
, (14)
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we get to a sufficient approximation:

(
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where
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, (16)

DK being the vector position of the body K exerting a tidal influence. Since they are slowly varying
with respect to time, the values of D(| and D⊙ may be taken at any instant in the range tA ≤ t ≤ tB.

For the ACES mission, we have h ≈ 400 km. So ζA ≈ 0.063. Moreover, we may admit that a
comparison of clocks will be acceptable only when the elevation angle of the ISS over the horizon of the
ground station will be greater than 20◦. Then, 0.063 ≤ κA ≤ 0.154. Under these conditions, Eq. (15)
leads to inequalities as follow
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≤ 9.6 · 10−18. (17)

We conclude that the influence of the tidal potentials will be negligible in the comparison of PHARAO
with a ground clock. However, a more detailed discussion will be necessary for the comparison of ground
clocks in common view.
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