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ABSTRACT. Although a full and detailed discussion of the effects of the Venus atmosphere and Venus
interior on its rotation has already been done by several authors (Correia & Laskar, 2001; Yoder, 1995), a
precise analytical determination of its precession and nutation coefficients has been poorly investigated. In
that aim, we use the same theoretical framework as Kinoshita (1977) for the Earth, in order to construct
the tables of nutation of Venus, together with its precession constant. A comparative study with the
Earth is done, which shows that two fundamental characteristics of Venus lead to very specific rotational
properties: its very long sidereal retrograde rotation (243 d) and its very small flattening.

1. INTRODUCTION

One of the important results of Venus’ radar ranging observations was the discovery of its retrograde
rotation, with a period of -243.16 days. Various efforts were made to explain this particular rotational
mode. Soon after the discovery, Goldreich & Peale (1970) explained that thermally driven atmospheric
tidal torque and dissipation of energy at the boundary between a rigid mantle and a differentially rotating
liquid core are possible mechanics for maintaining the retrograde spin. Lago & Cazenave (1979) have
studied the past evolution of the rotation of Venus using the hypothesis that only solar tidal torques and
core-mantle coupling have been active since formation. They have found quite conceivable that Venus
had originally a rotation quite similar to the other planets and had evolved in 4.5 x 109 years from a
rapid and direct rotation to the slow retrograde one. Yoder(1995) has made a full account of the various
internal mechanisms acting on Venus’ obliquity, as core friction, CMB (core-mantle boudary) ellipticity,
and resonant excitations. More recently Correia & Laskar (2001) showed that the atmospheric torque on
Venus is large enough for a synchronous rotation to become unstable. Then two configurations appear,
one prograde and the other retrograde. From numerical simulations they investigated four possible scenari
of change of the obliquity, one leading to the present state. Although these various studies concern the
evolution of Venus’ rotation at very long time scales, few attempts were made to modelize accurately
the rotation for a short time span. An analytical study of the rotation of rigid Venus was carried out by
Habibullin (1995) with rather uncommon parametrization, showing that Venus rotates almost uniformly
with libration harmonics being negligible. In the following we propose an alternative construction of a
rigid Venus rotation contradicting in some extent these last results.

2. MODELING VENUS’ ROTATION

In Table 1 we present the various orbital, rotational and physical characteristics of Venus together with
the corresponding values for the Earth. Some elements tend to make the amplitudes of the precession
constant and the coefficients of nutation larger for Venus than for the Earth : these are the smaller
heliocentric distance as well as the very long period of rotation. On the opposite the comparative small
value of the dynamical ellipticity should reduce these amplitudes. The fact that the Venus eccentricity
is significantly smaller than the Earth’s should also lead to a smaller number of coefficients for a given
level of amplitude. The moments of inertia A, B, and Chave been taken from Habibullin (1995).

In our study, Venus is considered as a rigid body. Therefore in order to construct the analytical theory
of its rotation, we use the same analytical framework as Kinoshita (1977) when computing the coefficients
of nutation of the Earth for a rigid model. Thus we use the Andoyer variables (Andoyer, 1923) allowing
a full description of the rotation, by considering three different and close axis : the axis of figure, the axis
of angular momentum and the axis of rotation. The precession-nutation angles in longitude and obliquity
are respectively given by h and I with : H = G cos I.
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Table 1: Results of cross-identification between A–H and HB.

Earth Venus
Semi-major axis 1.000000 U.A 0.723332 U.A
Eccentricity 0.0167 0.0068
Density 5.51 g/cm3 5.25 g/cm3

Equatorial radius 6378 km 6051 km
Mass 5.97 × 1024kg 4.87 × 1024kg
Period of revolution 365.25 d 224.70 d
Inclination 0 3◦.39
Obliquity 23◦.43 2◦.63
Period of rotation 0.997 d -243.02 d
Ascending node 174◦.87 76◦.67
Triaxiality A−B

4C
−5.34× 10−6

−2.67 × 10−6

Dyn. Flattening : 2C−A−B

2C
3.27 × 10−3 1.7 × 10−5

B−A

2∗(2∗C−A−B) -0.0016 -0.15

Then the Hamiltonian for the Venus’ rotation becomes : K = F0 + U + E, where F0 stands for
the Hamiltonian of the free motion of rotation, U is the perturbing potential and E is a part of the
Hamiltonian corresponding to a change of reference plane, from Venus’ orbital plane at the fundamental
epoch J2000.0 (the equivalent of the ecliptic of J2000.0 for the Earth) to the orbital plane at the date t.
At the first order U can be divided into two parts, one involving the Venus’ dynamical flattening (term
depending on 2C−A−B) and the other one Venus’ triaxiality (term depending on A−B): U = U1 +U2

with :

U1 =
k2M′

r3
[
2C− A − B

2
P2(sin δ)] U2 =

k2M′

r3
[
A− B

4
P2
2
(sin δ) cos 2α] (1)

Where M’ is the mass of the Sun, r its distance from Venus geocenter and α et δ its planetocentric
coordinates (respectively the longitude et latitude of the Sun with respect to a meridian origin. The Pm

n

are the classical Legendre functions.
The basic canonical equations are (Kinoshita, 1977) :

d

dt
(L, G, H) = −

∂K

∂(l, g, h)

d

dt
(l, g, h) =

∂K

∂(L, G, H)
(2)

Where K is obtained by integrating directly U . Following the same methodology as Kinoshita (1977) we
have computed the precession constant as well as the nutation coefficients of Venus. Complete results will
be published soon (Cottereau & Souchay, in prep.) The scaling factor k for these computations is given
by kV enus = 3(n2/ω) × (2C − A − B/2C). Although the dynamical flattening (2C − A − B/2C) at the
nominator is much smaller than for the Earth, this is compensated by the fact that the angular rotational
velocity ω at the denominator is itself much smaller. Thus we have calculated that the precession constant
is ψ̇ = 6133.7 ”/cy by taking the same values of A, B, and C as Habibullin (1995). It is roughly 3.5 times
larger than the solar part of the precession constant of the Earth. The largest nutation coefficients has
a 3” amplitude and a period (112.35 d) half the period of revolution of Venus. Complete computations
are on the way (Cottereau & Souchay, in prep.)
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Andoyer, H., 1923, Cours de Mécanique Céleste, Paris, Gauthier-Villars ed.
Correia, A. C., Laskar, J., 2001, Nature 411,767
Goldreich, P., Peale, S.J., 1970, AJ 75, No. 3, 273
Habibullin, S.T., 1995, Earth, Moon and Planets 71, 43
Kinoshita, H., 1977, Celest. Mech. 15, 277
Lago, B., Cazenave, A., 1979, The Moon and the Planets 21, 127
Yoder, 1995, Icarus 117, 250

134


