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ABSTRACT. Relativistic modelling of Earth rotation represents one of the most complicated prob-
lems of Applied Relativity. The relativistic reference systems of IAU (2000) give a suitable theoretical
framework for such a modelling. Recent developments in the post-Newtonian theory of rigid Earth ro-
tation are reported below. We describe the STF approach to compute the post-Newtonian torque, the
framework to compute transformations between all relativistic time scales as the relativistic scaling of
various parameters of the theory.

1. EARTH ROTATION IN THE RELATIVISTIC CONTEXT

Early attempts to model rotational motion of the Earth in a relativistic framework (see, e.g., Brum-
berg, 1972) made use of only one relativistic references system to describe both rotational and transla-
tional equations of motion. That reference system was usually chosen to be quite similar to the BCRS.
This resulted in a mathematically correct, but physically inadequate coordinate picture of rotational
motion. For example, from that coordinate picture a prediction of seasonal variations of the LOD with
an amplitude of about 75 microseconds has been put forward.

At the end of the 1980s a better reference system for modelling of Earth rotation has been constructed
and after a number of modifications and improvements has been adopted as GCRS in the IAU 2000
Resolutions. The GCRS implements the Einstein’s equivalence principle and represents a reference system
in which the gravitational influence of external matter (the Moon, the Sun, planets, etc.) is reduced
to tidal potentials. Thus, for physical phenomena occurring in the vicinity of the Earth the GCRS
represents a reference system, the coordinates of which are, in a sense, as close as possible to physically
measurable quantities. This substantially simplifies the interpretation of the coordinate description of
physical phenomena localized in the vicinity of the Earth. One important application of the GCRS is
modelling of Earth rotation. The price to pay when using GCRS is that one should deal not only with
one relativistic reference system, but with several reference systems, the most important of which are
BCRS and GCRS. This makes it necessary to clearly and carefully distinguish between parameters and
quantities defined in the GCRS and those defined in the BCRS.

2. RELATIVISTIC EQUATIONS OF EARTH ROTATION

The model which is used in this investigation was discussed and published by Klioner et al. (2001)
and recalled in Klioner et al. (2008). Let us, however, repeat these equations one again not going into
physical details of the model since we will need them in our subsequent discussion. The post-Newtonian
equations of motion (omitting numerically negligible terms as explained in Klioner et al. (2001)) read

d

dT

(

Cab ωb
)

=

∞
∑

l=1

1

l!
εabcMbLGcL + La(C, ω,Ωiner), (1)

where C = Cab is the post-Newtonian tensor of inertia and ω = ωa is the angular velocity of the post-
Newtonian Tisserand axes (Klioner, 1996), T = TCG, ML are the multipole moments of the Earth’s
gravitational field defined in the GCRS, GL are the multipole moments of the external tidal gravito-
electric field in the GCRS. In the simplest situation (a number of mass monopoles) GL are explicitly
given by Eqs. (19)–(23) of Klioner et al. (2001).

The additional torque La depends on C, ω, as well as on the angular velocity Ωiner describing the
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relativistic precessions (geodetic, Lense-Thirring and Thomas precessions). The definition of Ωiner can
be found, e.g., in Klioner et al. (2001). A detailed discussion of La, its structure and consequences will
be published elsewhere (Klioner et al. 2009).

The model of rigidly rotating multipoles (Klioner et al., 2001) represents a set of formal mathematical
assumptions that make the general mathematical structure Eqs. (1) similar to that of the Newtonian
equations of rotation of a rigid body. The assumptions are

Cab =P ac P bdC
cd
, C

cd
= const (2)

Ma1a2...al
=P a1b1 P a2b2 . . . P albl Mb1b2...bl

, M b1b2...bl
= const, l ≥ 2, (3)

where the orthogonal matrix P ab(T ) is assumed to be related to the angular velocity ωa used in (1) as

ωa =
1

2
εabs P

db(T )
d

dT
P dc(T ). (4)

The meaning of these assumptions is that both the tensor of inertia Cab and the multipole moments of
the Earth’s gravitational field ML are “rotating rigidly” and that their rigid rotation is described by the
same angular velocity ωa that appears in the post-Newtonian equations of rotational motion. It means
that in a reference system obtained from the GCRS by a time-dependent rotation of spatial axes both
the tensor of inertia and the multipole moments of the Earth’s gravitational field are constant.

No acceptable definition of a physically rigid body exists in General Relativity. The model of rigidly
rotating multipoles represent a minimal set of assumptions that allows one to develop the post-Newtonian
theory of rotation in the same manner as one usually does within Newtonian theory for rigid bodies. In
the model of rigidly rotating multipoles only those properties of Newtonian rigid bodies are saved which
are indeed necessary for the theory of rotation. For example, no assumption on local physical properties
(“local rigidity”) is made. It has not been proved as a theorem, but it is rather probable that no physical
body can satisfy assumptions (2)–(4). The assumptions of the model of rigidly rotating multipoles will
be relaxed in a later stage of the work when a non-rigid Earth will be discussed. On the other hand, such
a model has been always tacitly used in the model of SLR data.

3. POST-NEWTONIAN EQUATIONS OF ROTATIONAL MOTION IN NUMERICAL
COMPUTATIONS

Looking at the post-Newtonian equations of motion (1)–(4) one can formulate several problems to be
solved before the equations can be used in numerical calculations:

A. How to parametrize the matrix P ab?

B. How to compute ML from the standard models of the Earth gravity field?

C. How to compute GL from a solar system ephemeris?

D. How to compute the torque εabcMbLGcL out of ML and GL?

E. How to deal with different time scales (TCG, TCB, TT, TDB) appearing in the equations of motion,
solar system ephemerides, used models of Earth gravity, etc.?

F. How to treat the relativistic scaling of various parameters when using TDB and/or TT instead of
TCB and TCG?

G. How to find relativistically meaningful numerical values for the initial conditions and various pa-
rameters?

Question A has been already discussion in Section 3 of Klioner et al. (2008). Questions B–D are
considered in Section 4 below. Question E is discussed in Section 5. Question F is the subject of Section
6. An analysis of question G will be published elsewhere.
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4. STF MODEL FOR THE TORQUE

The relativistic torque requires computations with STF tensors ML and GL. For this project special
numerical algorithms for numerical calculations have been developed. The detailed algorithms and their
derivation will be published elsewhere. Let us give here only the most important formulas. For each l
the component Da = εabcMbL−1GcL−1 of the torque in the right-hand side of Eq. (1) can be computed
as (Al = 4 l π l!/(2l+ 1)!!, a+

lm =
√

l(l+ 1) −m(m+ 1) )

D1=
1

Al

(

l−1
∑

m=0

a+

lm

(

−MR
lm GI

l,m+1 + MI
l,m+1 G

R
lm

)

+

l−1
∑

m=1

a+

lm

(

MI
lm GR

l,m+1 −MR
l,m+1 G

I
lm

)

)

, (5)

D2=
1

Al

(

l−1
∑

m=0

a+

lm

(

−MR
lm GR

l,m+1 + MR
l,m+1 G

R
lm

)

+

l−1
∑

m=1

a+

lm

(

−MI
lm GI

l,m+1 + MI
l,m+1 G

I
lm

)

)

, (6)

D3=
2

Al

l
∑

m=1

m
(

MI
lm GR

lm −MR
lm GI

lm

)

. (7)

The coefficients GR
lm and GI

lm characterizing the tidal field can be computed from Eqs. (19)–(23) of Klioner
et al. (2001) as explicit functions of the parameters of the solar system bodies: their masses, positions,
velocities and accelerations. A Fortran code to compute GR

lm and GI
lm for l < 7 and 0 ≤ m ≤ l has

been generated automatically with a specially written software package for Mathematica. It is possible
to develop a sort of recursive algorithm to compute GR

lm and GI
lm for any l similar to the corresponding

algorithms for, e.g., Legendre polynomials.
The coefficients MR

lm and MI
lm characterizing the gravitational field of the Earth can be computed

as

MR
l0 =

l!

(2l − 1)!!

(

4π

2l+ 1

)1/2

ME R
l
E Cl0, (8)

MR
lm =(−1)m 1

2

l!

(2l − 1)!!

(

4 π

2l+ 1

(l +m)!

(l −m)!

)1/2

ME R
l
E Clm, 1 ≤ m ≤ l, (9)

MI
lm =(−1)m+1 1

2

l!

(2l − 1)!!

(

4 π

2l+ 1

(l +m)!

(l −m)!

)1/2

ME R
l
E Slm, 1 ≤ m ≤ l, (10)

whereME is the mass of the Earth, RE its radius, Clm and Slm are usual harmonics (potential coefficients)
of the Earth gravitational field. If only Newtonian terms are considered in the torque this formulation with
STF tensors is fully equivalent to the classical formulation with Legendre polynomials (e.g., Bretagnon et

al., 1997, 1998). If the relativistic terms are taken in account, the only known way to express the torque
is that with STF tensors.

5. TIME TRANSFORMATIONS

An important aspect of relativistic Earth rotation theory is the treatment of different relativistic time
scales. The numerical code described in (Klioner et al., 2008) contains a subsystem dealing with the
transformations between time scales TCB, TCG, TT and TDB. The transformation between TDB and
TT at the geocenter (all the transformations in this Section are meant to be “evaluated at the geocenter”)
are computed along the lines of Section 3 of (Klioner, 2008b). Namely,

TT =TDB+∆TDB(TDB), (11)

TDB = TT −∆TT(TT), (12)

TCG =TCB+∆TCB(TCB), (13)

TCB =TCG−∆TCG(TCG), (14)
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so that

d∆TDB

dTDB
=ATDB +BTDB

d∆TCB

dTCB
, (15)

ATDB =
LB − LG

1 − LB
, (16)

BTDB =
1 − LG

1 − LB
= ATDB + 1, (17)

d∆TT

dTT
=ATT +BTT

d∆TCG

dTCG
, (18)

ATT =
LB − LG

1 − LG
, (19)

BTT =
1 − LB

1 − LG
= 1 −ATT, (20)

d∆TCB

dTCB
=F (TCB) =

1

c2
α(TCB) +

1

c4
β(TCB), (21)

d∆TCG

dTCG
=

F (TCG − ∆TCG)

1 + F (TCG − ∆TCG)
, (22)

where functions α and β are given by Eqs. (3.3)–(3-4) of (Klioner, 2008b) and Eq. (22) represents a
computational improvement of Eq. (3.8) of (Klioner, 2008b). Clearly, the derivatives d∆TCB

dTCB
and d∆TCG

dTCG

must be expressed as functions of TDB and TT, respectively, when used in (15)–(18).
The differential equations for ∆TDB and ∆TT are first integrated numerically for the whole range

of the used solar system ephemeris (any ephemeris with DE-like interface can be used with the code).
The initial conditions for ∆TDB and ∆TT should be chosen according to the IAU 2006 Resolution
defining TDB: for JDTT = 2443144.5003725 one has JDTDB = 2443144.5003725− 6.55× 105/86400 and
vice verse. The results of the integrations for the pairs ∆TDB and d∆TDB

dTDB
, and ∆TT and d∆TT

dTT
are

stored with a selected step in the corresponding time variable (TDB for ∆TDB and its derivative, and
TT for ∆TT and its derivative). A cubic spline on the equidistant grid is then constructed for each of
these 4 quantities. The accuracy of the spline representation is automatically estimated using additional
data points computed during the numerical integration. These additional data points lie between the grid
points used for the spline and are only used to control the accuracy of the spline. The splines precomputed
and validated in this way are stored in files and read in by the main code upon request. These splines are
directly used for time transformation during the numerical integrations of Earth rotation. Although this
spline representation requires significantly more stored coefficients than, for example, a representation
with Chebyshev polynomials with the same accuracy, the spline representation has been chosen because
of its extremely high computational efficiency. More sophisticated representations may be implemented
in future versions of the code.

6. RELATIVISTIC SCALING AND TIME SCALES

Let us again consider the post-Newtonian equations of rotational motion (1)–(4). Obviously, there
are two classes of quantities entering these equations that are defined in the BCRS and GCRS and,
therefore, naturally parametrized by TCB and TCG, respectively. It is important to realize that the
post-Newtonian equations of motion are only valid if non-scaled time scales TCG and TCB are used. If
TT and/or TDB are needed, the equations should be changed correspondingly.

The relevant quantities defined in the GCRS and parametrized by TCG are: (1) the orthogonal matrix
P ab, angular velocity ωa and corresponding angles ϕ, ψ and ω with which they are parametrized (see,
Klioner et al., 2008); (2) the tensor of inertia Cab; (3) the multipole moment of Earth’s gravitational
field ML. In principle, (a) GL and (b) Ωa

iner are also defined in the GCRS and parametrized by TCG,
but these quantities are computed using positions xA, velocities vA and accelerations aA of solar system
bodies. The orbital motion of solar system bodies are modelled in BCRS and parametrized by TCB or
TDB. The definition of GL is conceived in such a way that positions, velocities and accelerations of solar
system bodies in BCRS should be taken at the moment of TCB corresponding to the required moment
of TCG with spatial location taken at the geocenter (Klioner et al., 2001; Klioner, Voinov, 1993; Soffel
et al., 2003). Let us recall that the transformation between TCB and TCG is a 4-dimensional one that
involves the spatial location of an event.
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In all theoretical works aimed to derive and/or analyze the rotational equations of motion in the GCRS
one uses TCG as coordinate time scale parametrizing the equations. Although the natural time variable
for the equations of Earth rotation is TCG, in principle, using a corresponding re-parametrization any
time scale (including TCG, TT, TCB and TDB) can be used as independent time variable. Thus, simple
rescaling of the first and second derivatives of the angles entering the equations of rotational motion
should be applied to use TT instead of TCG:

dθ

dTCG
=(1 − LG)

dθ

dTT
, (23)

d2θ

dTCG2
=(1 − LG)2

d2θ

dTT2
, (24)

where θ is any of the angles ϕ, ψ and ω used in the equations of motion to parametrize the orientation
of the Earth. If TDB is used as independent variable the corresponding formulas are more complicated:

dθ

dTCG
=(1 − LG)

(

dTT

dTDB

∣

∣

∣

∣

xE

)

−1

dθ

dTDB
, (25)

d2θ

dTCG2
=(1 − LG)2

(

dTT

dTDB

∣

∣

∣

∣

xE

)

−2

d2θ

dTDB2
− (1 − LG)2

(

dTT

dTDB

∣

∣

∣

∣

xE

)

−3

d2TT

dTDB2

∣

∣

∣

∣

xE

dθ

dTDB
, (26)

where the derivatives of TT w.r.t. TDB should be evaluated at the geocenter (i.e., for x = xE). These
relations must be substituted into the equations of rotation motion to replace the derivatives of the angles
ϕ, ψ and ω w.r.t. TCG as appear e.g., in Eqs. (7)–(9) of (Bretagnon et al., 1998). It is clear that the
parametrization with TDB makes the equations more complicated.

The values of the parameters naturally entering the equations of rotational motion must be interpreted
as unscaled (TCB-compatible or TCG-compatible) values. If scaled (TT-compatible or TDB-compatible)
values are used, the scaling must be explicitly taken into account. The relativistic scaling of parameters
read (see e.g. Klioner, 2008a):

GMTT
A = (1 − LG)GMTCG

A , GMTCG
A = GMTCB

A , GMTDB
A = (1 − LB)GMTCB

A , (27)

XTT = (1 − LG)XTCG, xTDB = (1 − LB)xTCB, (28)

V TT = V TCG, vTDB = vTCB, (29)

ATT = (1 − LG)−1ATCG, aTDB = (1 − LB)−1 aTCB, (30)

where GMA is the mass parameter of a body, x, v, and a are parameters represents spatial coordi-
nates (distances), velocities and accelerations in the BCRS, respectively, while X , V , and A are similar
quantities in the GCRS.

Now, considering the source of the numerical values of the parameters used in the equations of Earth
rotation we can see the following.

a. The position xA, velocities vA, accelerations aA and mass parameters GMA of the massive solar
system bodies are taken from standard JPL ephemerides and are TDB-compatible.

b. The radius of the Earth comes together with the potential coefficients Clm and Slm from a model
of the Earth’s gravity field (e.g., GEMT3 was used in SMART). These values come from SLR and
dedicated techniques like GRACE. GCRS with TT-compatible quantities is used to process these
data. Therefore, the values of the radius of the Earth is TT-compatible. Obviously, Clm and Slm

have the same values when used with any time scale. The mass parameter GME of the Earth
coming with the Earth gravity models is also TT-compatible.

c. From the definitions of MR
lm and MI

lm given above and formulas for GL given by Eqs. (19)–(23) of
Klioner et al. (2001), it is easy to see that the TCG-compatible torque F a =

∑

∞

l=1
1

l! εabcMbLGcL

can be computed using TDB-compatible values of mass parameters GMTDB
A , positions x

TDB
A , ve-

locities v
TDB
A and accelerations a

TDB
A of all external bodies, TDB-compatible value of the mass

parameter of the Earth GMTDB
E and the value of Earth radius formally rescaled from TT to TDB

as RTDB
E = (1 − LB) (1 − LG)−1RTT

E . Denoting the resulting torque by F a
TDB, it can be seen that

the TCG-compatible value is F a
TCG = (1 − LB)−1 F a

TDB.
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d. The values of the Earth’s moments of inertia Ai, i = 1, 2, 3 can be represented as GAi = GMER
2
Eki,

where ki is a factor characterizing the distribution of the matter inside Earth. Clearly, the factors
ki do not depend on the scaling. Therefore, the moments of inertia can be scaled as

ATT
i = (1 − LG)3 ATCG

i . (31)

The last question is how to interpret the values of the moments of inertia Ai = (A,B,C) and the initial
conditions for the angles ϕ, ψ and ω and their derivatives given in (Bretagnon et al., 1998). Obviously,
the initial angles at J2000 are independent of the scaling. For the other parameters in question it is not
possible to clearly claim if the given values are TDB-compatible or TT-compatible. Arguments in favor
of both interpretations can be given. The rigorous solution here is only possible when all calculations
leading to these quantities are repeated in the framework of General Relativity. In this paper we prefer
to interpret the SMART values of Ai, ϕ̇, ψ̇ and ω̇ as being TT-compatible. Therefore, if TDB is used
as independent variable, the values of the derivatives should be changed accordingly. For any of these
angles one has

dθ

dTDB
=

(

dTT

dTDB

∣

∣

∣

∣

xE

)

dθ

dTT
. (32)

Thus, we have all tools to treat correctly the relativistic scaling of all relevant parameters of the
Earth rotation theory as well as relativistic time scales. A numerical integration of Earth rotation over
the full range of DE403 shows that the effect of these two factor is relatively small: periodic effects of an
amplitude of 0.15 − 0.25 µas (depending on the angle) and a period of 18 years plus secular trends in ϕ
and ψ (−68.4 and 74.7 µas per century, respectively). Further details will be published elsewhere.
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