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ABSTRACT. In this investigation, we start the study of the dynamics of non-isobarycentric three-layer
celestial bodies, that is to say, of bodies whose internal layers have barycenters located in different points
of the space. Due to the complexity of the problem, our first step focuses on determining the translational
internal motions of a simple three-layer body composed by a spherical rigid mantle, a homogeneous fluid
outer core and a spherical rigid inner core. To this end, we construct the Lagrangian of the system
by considering an irrotational fluid motion. On the basis of assuming a small relative motion of the
mantle with respect to the inner core, the analytical expression of its associated free frequency, usually
referred as Slichter mode, is found. This expression is in agreement with others provided by quite different
approaches. Finally, we discuss the dependence of the frequency with the rheological parameters that
characterize the Earth model.

1. INTRODUCTION

Usually, Earth rotation studies assumes isobarycentric models, that is to say, models for which the
barycenters of all the components, or layers, are located always at the same point. This is an approxi-
mation, since the rigid motions around the barycenter of the Earth also contain a translational part. In
this way, we face the problem to consider non-isobarycentric bodies, in such a way that the rigid internal
motions around the barycenter of the body is composed of rotational and translational motions. This is
the case, for example, of a three layer Earth model composed of a solid mantle, a fluid core and a solid
inner core that we will study in this investigation.

One possibility to tackle this problem is to apply the normal modes techniques (Rogister 2003).
However, they present some disadvantages. For example: (1) they provide numerical solutions, what
makes difficult to interpret the interdependence between the different internal motions and to analyze
the influence of the Earth model characteristics in them; (2) a precise data set describing the rheology of
the body is need, this information is not available for the main part of the celestial bodies. Therefore, it
becomes evident a need to develop complementary analytical treatments to these kind of approaches.

As far as we know, currently there is not any analytical approach that considers the whole internal
dynamics of a non-isobarycentric three–layer Earth model. The only exceptions are referred, on the one
hand, to Earth rotation studies that do not consider the translation among the barycenter of the layers.
On the other hand, there have been developed two investigations, due to Busse (1974) and Grinfeld
& Wisdom (2005), which worked out the translational motions by constructing the linear momentum
equations of the inner core with the help of vectorial mechanics by different Earth models. Busse (1974)
considers an Earth model composed of a motionless spherical rigid mantle, an homogeneous fluid outer
core and a spherical rigid inner core. Grinfeld & Wisdom (2005) discussed the translational internal
motion of an Earth model composed of a spherical rigid mantle, an homogeneous fluid outer core and
a spherical rigid inner core, neglecting the effect of the rotation. These translational motions have
geophysical interest since it has been proposed (Slichter, 1961) that the internal translational motion
of the inner core barycenter could be observed in precise gravimeter records after great earthquakes,
providing information about the rheology in the fluid–inner core boundary. In fact, this is a simplified
model since one should consider the effects of the Earth rotation.
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In this note, we start the study of the dynamics of the internal motion by means of Analytical
Mechanics methods, since these approaches have provided competitive Earth rotation models (e.g. Getino
& Ferrándiz, 2001). The first step in this task is to give a proper description of the internal translational
motion in this framework.

2. LAGRANGIAN OF THE SYSTEM

Next, we will consider a three-layer Earth model similar to that of Grinfeld & Wisdom (2005), that
is to say, a body isolated in the space and composed of an external rigid spherical shell (mantle) and
an internal rigid sphere (inner core). The space between these layers is filled with a perfect fluid (fluid
outer core); all the components of the system are assumed to have constant densities distributions (see
figure 1). In addition, we will only consider the translational motion of the rigid layers. To describe the
dynamics of the system, we will construct the Lagrange equations

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi

= 0, i = 1, . . . , n, (1)

being L = T − V the difference between the kinetic and potential energy. The dynamical system is
properly described by considering six generalized coordinates: three, ~ξM , are the components of the
mantle barycenter OM with respect to a reference frame whose origin is located at barycenter of the
Earth, O, and the remaining ones, ~ξS , the components of the inner core barycenter OS referred to the
same frame. With respect to the motion of the fluid, let us point out that under the above mentioned
conditions it is generated by that of the solids layers (Lamb, 1932). In these circumstances, the fluid

velocity ~vF is irrotational and we can introduce a velocity potential f ,~vF = ~∇f , such as

~∇2f = 0 (2)

with the boundary conditions

~vF · ~n = ~VM · ~n at ∂DM , ~vF · ~n = ~VS · ~n at ∂DS, (3)

being ~VM = d~ξM/dt and ~VS = d~ξS/dt, and ~n the normal vector on the boundaries ∂DM and ∂DS (see
figure 2). Anyway, it is possible a further reduction in the number of the degrees of freedom of our system.
Namely, we have the two relationships

mM
~ξM + mF

~ξF + mS
~ξS = ~0; mF

~ξF = mF
~ξM +

ρF

ρS

mS
~ξM −

ρF

ρS

mS
~ξS , (4)

being mi the mass of each layer, m the mass of the Earth and ~ξF the components of the fluid barycenter
with respect to R. The first one reflects the fact that the barycenters of the layers are referred to O; the
second one is due to the simple geometry of our model (see figure 3). Hence, our model can be described

with three generalized coordinates. The most expedient choice is to take ~ηS = ~ξS − ~ξM . In this way, the
mantle and the inner core barycenters can be written as

~ξM =
mS

m

(

ρF

ρS

− 1

)

~ηS = αM~ηS , ~ξS = (1 + αM ) ~ηS . (5)

To construct the Lagrange equations, we will assume that the instantaneous configuration (figure 2)
remains always close enough to the reference configuration (figure 1). It will allow a simpler mathematical
treatment of the problem, since all the functions which involves the fluid motion will be developed up to

the first order in the perturbation-like parameter e =
∣

∣

∣

~ξM − ~ξS

∣

∣

∣
/RS .

The kinetic energy of the system is T = TM + TS + TF . Since the mantle and the inner core are rigid
bodies, the expression of their kinetic energy is straightforward and with the help of 5 can be written as

TM + TS =
1

2

[

mMα2

M + mS (1 + αM )
2

]

(

d~ηS

dt

)2

. (6)

The kinetic energy of the fluid is given by

TF =
1

2

∫

fluid

~v2

F ρF dV =
1

2

∫

fluid

(

~∇f
)2

ρF dV. (7)
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Figure 1 Figure 2 Figure 3

By considering the solution of equations 2 and 3, expressed in terms of an spherical harmonics expansion,
and Gauss theorem, it can be shown (Escapa & Fukushima, 2009) that, at the first order in e, this
expression has the value

TF =
1

2

(

2

3
πρF c

) (

d~ηS

dt

)2

=
1

2

{

2

3
πρF

[
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MR3

F − 2 (1 + αM )
2
R3

S + 3
R3

F R3

S

R3

F − R3

S

]}

d~ηS

dt

2

. (8)

The potential energy of the system is due to the gravitational interaction among the layers. However,
since the mantle is an rigid spherical shell of constant density the gravitational potential inside it takes a
constant value, so it does not play any role in the dynamics of the system. Hence, the gravitational poten-
tial energy of our model arises from the fluid–solid inner core interaction. Its expression can be computed
by considering the the potential gravitational energy of a homogeneous sphere and the decomposition
sketched in the figure 3. Namely, we have

V =
2π

3
GρF mS

(

1 −
ρF

ρS

)

(~ηS)
2
. (9)

Taking into account the equations 6, 8 and 9, the Lagrangian of the system turns out to be

L =
1

2

[

mMα2
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M

+
3

2
πρF c

] (

d~ηS

dt

)2

−
1

2

[

4π
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ρF

ρS

)]

(~ηS)
2
. (10)

3. DISCUSSION

Equation 10 shows that the dynamics of the system is completely specified since it is the same as
that of a harmonic oscillator of frequency. Therefore, the barycenter of the solid inner core performs
harmonics oscillations with respect to the mantle barycenter, being the equilibrium position the reference
configuration. The dependence of this translational internal motion with the characteristics of the Earth
model is clearly reflected in the functional dependence of the frequency, ω0, which with the aid of the
equations 5 and 8 can be written as

ω2

0
=

4π

3
GρF

(

1 −
ρF

ρS

)

1
[

1 +
1

2

ρF

ρS

+
3

2

(

ρF
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)2
mS

mF

]

−

[

mS

mM + mF + mS

(

1 −
ρF

ρS

)2
] . (11)

This expression allows easy comparisons with the previous investigations by Busse (1974) and Grinfeld
& Wisdom (2005). In particular, we can recover the results of Busse by equating the rotation to 0 in his
formula, and by taking m → +∞ (mantle rest condition) in equation 11. This is also the case for the
expression of Slichter mode of Grinfeld & Wisdom (2005) which, after some tedious algebra, agrees with
equation 11 in spite of the quite different methods employed.

On the other hand, the derived expression of the Slichter frequency ω0 makes possible to discuss the
influence of the model on it. In particular, we can compute for different three-layer celestial bodies the
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effect that has the motion of the mantle in the frequency. The contribution of this effect appears in the
denominator of equation 11 through the term

∆ =
mS

mM + mF + mS

(

1 −
ρF

ρS

)2

. (12)

By considering some numerical data given in Grinfeld & Wisdom (2005) for the Earth and Mercury, we
can compute the period Tω0

associated to the frequency ω0; its counterpart when considering a mantle
in rest Tω0|~ξM =~0

and the absolute value of the relative difference between these two periods. The results

are displayed in the next table.

Body Tω0
Tω0|~ξM =~0

Rel. dif.% mS/m 1 − ρF /ρS

Earth 4.2356 4.2358 .003 .016 .077
Mercury 8.3900 8.3977 .091 .598 .158

As it can be seen, the contribution of the mantle motion to the period in the case of the Earth is
completely negligible. This is due to two factors. On the one hand, to the small mass of the inner core
with respect to the mass of the whole planet. On the other one, the relative density contrast between the
fluid an the inner core, 1 − ρF /ρS , is also small. So, as Busse (1974) did rightly the effect of the mantle
motion in the case of the Earth can be safely disregarded when computing the value of the Slichter mode.
In addition, following Grinfeld & Wisdom (2005), we can examine the Slichter mode of Mercury. For this
planet the mass of the inner core is more than the half of the total mass, so one could expect the effect
of the mantle motion to be significant (Grinfeld & Wisdom, 2005). However, that is not the case. With
help of equation 12 derived following our analytical treatment, the reason is clear since also for Mercury
the relative density contrast between the fluid an the inner core is very small, so when taking its square
in equation 12 the value of ∆ still remains small.

To summarize, it has been developed a model to describe Earth translational internal motions with
the methods of Analytical Mechanics, providing an analytical expression of Slichter mode. In particular,
it have been shown that the effect of the mantle motion in the value of the Slichter mode should be
considered depending both on the existence of a heavy inner core and the value of the density contrast,
conditions that are not fulfilled by the planets Earth and Mercury but that could be verified in the case of
other celestial bodies. Future steps of this investigation should consider the joint effects of the rotational
and translational internal motions, as well as improvements in the rheological characterization of the
Earth model.
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