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ABSTRACT. It is shown that one of the possible ways to resolve the long-standing discrepancy between
the values of secular deceleration of the Earth’s rotation derived from astrometric observations (9×
10−6 sec/yr) and by the lunar laser ranging (LLR, 2.1×10−5 sec/yr) may be based on a more accurate
treatment of the Earth–Moon dynamics in the framework of General Relativity with an account for the
relativistic Λ-term, whose existence is well supported now by the cosmological data. In such a case,
any additional corrections for ancient observations of solar eclipses and secular decrease in the Earth’s
moment of inertia would be unnecessary.

1. DATA ON SECULAR DECELERATION OF THE EARTH’S ROTATION

It is well-known that the values of secular deceleration of the Earth’s proper rotation ṪE derived from
various data sets considerably differ from each other, namely:
• 0.9×10−5 sec/yr from telescopic observations during the last ∼350 years (e.g. the time series compiled
by Sidorenkov 2002);
• 1.4×10−5 sec/yr from the telescopic data supplemented by ancient observations of solar eclipses (Ste-
phenson & Morrison 1984);
• 2.1×10−5 sec/yr from the rate of secular increase in the Earth–Moon distance measured by the lunar
laser ranging (Dickey et al. 1994).

The most popular way to reconcile these data, proposed about 25 years ago, was based on taking
into account a secular decrease in the polar moment of inertia due to the viscous rebound of the solid
Earth from the decrease in load caused by the last deglaciation. (Namely, a huge amount of ice in the
polar regions during the glacial period resulted in the overdeformed state of the solid Earth. Next, when
the ice have melted, the Earth gradually restores its spherical shape, leading to the decrease in the polar
moment of inertia and the respective speed-up of the Earth’s rotation.) The first data on secular change
in the Earth’s moment of inertia, characterized by the zonal gravitational harmonic coefficient J2, gave
the value J̇2 = −3×10−11 yr−1 (Yoder et al. 1983), which apparently confirmed the above-mentioned
mechanism. In other words: ṪE from the telescopic observations + correction for the ancient data on

solar eclipses + correction for secular decrease in the polar moment of inertia = ṪE from LLR.
Unfortunately, the most recent studies have shown that the secular trend in J2 has a less amplitude

(Bourda & Capitaine 2004) or even the opposite sign in some time intervals (Cox & Chao 2002). As a
result, the value of long-term trend is still poorly known: for example, the various estimates discussed
in Sec. 3.5. of the paper by Cheng & Tapley (2004) are scattered from −2.75 × 10−11 yr−1 to −1.0 ×
10−11 yr−1. Moreover, reliability of the ancient data on solar eclipses is also doubtful. Therefore, the
problem of disagreement between the astrometric and LLR data remains now as acute as 25 years ago.

The aim of the present report is to show that the astrometric and LLR data can be well reconciled by
using only the series of telescopic observations for the last ∼350 years and taking into account the effect
of relativistic Λ-term (whose existence at large scales is well confirmed now by the cosmological data).
In other words: ṪE from telescopic observations + correction for Λ-term = ṪE from LLR.

2. EFFECT OF THE LAMBDA-TERM

The basic idea of our approach is that the rate of secular increase in the Earth–Moon distance measured
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by LLR (3.8 cm/yr, e.g. Dickey et al. 1994) consists actually of the two parts. The first of them is caused
by the well-known tidal exchange of angular momentum between the Earth and Moon (for more details
see, for example, Dumin 2003), and only this part should be taken into account in the calculation of ṪE;
while the second part is the “local” Hubble expansion, which does not affect the actual value of ṪE.

Next, we assume that the rate of the “global” Hubble expansion (at intergalactic scales) is caused
both by the uniformly-distributed Λ-term (“dark energy”) with density ρΛ0 and the irregularly-distributed
dust-like matter ρD0: H0 =

√

8πG/3
√

ρΛ0 + ρD0 ; while the local Hubble expansion is produced only

by the perfectly-uniform Λ-term: H
(loc)
0 =

√

8πG/3
√

ρΛ0 (Dumin 2008). Taking the standard values
H0 = 71 km/sec/Mpc and ρΛ0/ρD0≈ 3, we find that the Λ-term is responsible for a considerable part of
the secular increase in the Earth–Moon distance: ṘΛ = 2.2 cm/yr; while the remaining part should be
attributed to the tidal influence: Ṙtid = 1.6 cm/yr.

At last, using the well-known relation Ṙtid = k ṪE with k = 1.81×105 cm/sec (Kaula 1968), we get
ṪE = 0.9×10−5 sec/yr, which is in perfect agreement with the value of secular increase in the length
of day derived from the series of telescopic observations for the last ∼350 years (e.g. Sidorenkov 2002).
Therefore, any further corrections (for the ancient solar eclipses etc.) become unnecessary.

Of course, the above semi-empirical estimates must be verified by a rigorous analysis of the General
Relativity (GR) equations “from the first principles”. In general, the problem of local Hubble expansion
is discussed for a long time, starting from the early 1930’s (e.g. review by Bonnor 2000); the main
problem being a reverse influence of the local gravitating masses on the background cosmological matter
distribution. The situation is much simplified for the case of the Λ-dominated (de Sitter) cosmology, and
the respective GR metric was found long time ago by Kottler (1918). Unfortunately, there is still a large
controversy regarding a correct choice of coordinates for the interpretation of observational data. For
example, Soffel & Klioner (2004) and Klioner & Soffel (2005) constructed the local coordinates around the
barycenter and concluded that the effects of the Λ-term within the solar system, manifesting themselves as
tidal forces, should be completely negligible. On the other hand, when we tried to reduce the local Kottler
metric to the correct Robertson–Walker cosmological asymptotics (Dumin 2007), the contributions from
Λ-term looked appreciable. This contradiction should be resolved by a detailed analysis of the equations
of planetary motion and light propagation in the above-cited metrics. This work is currently under way.

I am grateful to Profs. N. Capitaine and S.A. Klioner for valuable suggestions and critical comments
on the present work.
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