
MODELLING IRREGULARITIES OF THE EARTH’S ROTATION

V.V. BONDARENKO1, V.V. PEREPIOLKIN2

1 Keldysh Institute of Applied Mathematics
Miusskaya sq., 4 Moscow, 125047, Russia
e-mail: vvb@saintdmtr.comcor.ru
2 Moscow Aviation Institute (State Technical University)
Volokolamskoe Shosse 4, 125993,GSP-3, Moscow, Russia
e-mail: vadimkin1@yandex.ru

ABSTRACT. The methods of celestial mechanics can be used to construct a mathematical model for
the perturbed rotational motions of the deformable Earth that can adequately describe the astrometric
measurements of the International Earth Rotation Service. This model describes the gravitational and
tidal influences of the Sun and Moon. Fine resonant interactions of long period zonal tides (annual, semi-
annual, monthly and biweekly) with the diurnal and semidiurnal tides are revealed. These interactions
can be reliably confirmed via a spectral analysis of the IERS data. Emphasis is placed on the variations
of the day duration on short time intervals with periods of one year and less (interaannual fluctuations).

To study the axial rotation of the deformable Earth, we will use the classical dynamical EulerLiouville
equations with a varying inertia tensor:

Jω̇ + ω × Jω = M, ω = (p, q, r)T , J = J∗ + δJ, J∗ = const,

J∗ = diag(A∗, B∗, C∗), δJ = δJ(t), ‖δJ‖ ≪ ‖J∗‖, (1)

M = MK + M
S + M

L.

Here, ω is the angular-velocity vector in a coordinate system (reference frame) fixed to the Earth. The
axes of this frame approximately coincide with the main central inertia axes J∗ of the ”frozen” Earths
figure allowing for the equatorial bulge. The reference frame chosen agrees qualitatively and quantitatively
with the ITRF coordinates. The small variations in the inertia tensor δJ can contain harmonics due to
regular perturbations exerted by the solar and lunar gravitational diurnal tides, and probably some other
harmonics as well (annual, semiannual, monthly, biweekly, etc). Additional perturbations result from
differentiating the vector of the kinetic moment of the deformable Earth. These terms are included in
the vector MK , which has a very complex structure and is, in turn, additively included in M. Note that
the equations for the components p and q were examined during analyses of the Earths polar oscillations.

Let us rewrite the third equation of (1) for the Earths axial rotation component r(t):

C∗ṙ + (B∗ −A∗)pq + (Jqrp− Jprq)r = MS
r +ML

r . (2)

Here, Jpr and Jqr are small nondiagonal elements of the inertia tensor, and MS,L
r are the gravitational

tidal solar and lunar perturbing moments, respectively [1]. For example, MS
r includes:

MS
r = 3ω2

0
[(B∗ + δB − (A∗ + δA))γpγq + δJpq(γ

2

p − γ2

q )+

+δJqrγpγr − δJprγqγr], (3)

γp = sin θ sinϕ, γq = sin θ cosϕ, γr = cos θ.

where ω0 is the frequency of the orbital motion; γp, γq, and γr the direction cosines of the radius-
vector in the fixed frame; ψ, θ, and ϕ the Euler angles; and A∗, B∗, and C∗ the effective main central
moments of inertia, allowing for deformations of the ”frozen” Earth, which can be calculated accurately.
The coefficients δA, δB, δJpq, δJqr, and δJpr are due to the tidal diurnal and semidiurnal gravitational
influences of the Moon and Sun, which cannot be measured directly. These coefficients can be indirectly
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estimated using measurements of the characteristics of the process themselves. Averaging over the fast
variable ϕ (ϕ is the angle of the proper rotation) yields the simple expression for MS

r

MS
r = 3ω2

0
[χS

1r sin2 θ + χS
2r sin θ cos θ]. (4)

The quantities χS
1r and χS

2r in (4) are due to the semidiurnal and diurnal tides, respectively, and
these result from the ϕ-averaging of the coefficients of sin2 θ and sin θ cos θ in the solar gravitational force
moment components:

χS
1r =

1

2

〈

δB − δA

C∗
sin 2ϕ

〉

ϕ

−

〈

δJpq

C∗
cos 2ϕ

〉

ϕ

, (5)

χS
1r =

1

2

〈

δJqr

C∗
sinϕ

〉

ϕ

−

〈

δJpr

C∗
cosϕ

〉

ϕ

.

Integrating (2), we obtain the l.o.d. fluctuations:

l.o.d.(τ) = c+ aS
c cos(2πτ) + aS

s sin(2πτ) + bSc cos(4πτ) + bSs sin(4πτ)+

+aL
c cos(2πνmτ) + aL

s sin(2πνmτ) + bLc cos(2πνfτ) + bLs sin(2πνfτ). (6)

Here, νm and νf are the frequencies of the monthly and biweekly oscillations due to the lunar pertur-
bation, while the unknown quantities c, aS,L

c,s , and bS,L
c,s must be determined from the IERS measurements

via least-squares fitting. These coefficients are uniquely related to the unknowns contained in (2). The
parameter τ in (6) and below is measured in standard years.

With account for the spectral analysis of the IERS data, the model parameters are identified by means
of the least squares method. A statistically reliable interpolation of the measured data over a time interval
of one year (and longer) is obtained, and the nonuniformities of the Earths rotation (that is, the variations
of the day duration and the UT1-UTC correction) are predicted on an interval of 4 to 10 months. A
comparison of the real and theoretical trajectories for the irregularity of tidal oscillations of the rotational
angular velocity indicates agreement between the constructed model and the IERS observations.

The theoretical model constructed demonstrates a good agreement with the IERS forecast, according
to the accuracy of the approximation.
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