
SOME PROPERTIES OF EMISSION COORDINATES

J.M. POZO

SYRTE, Observatoire de Paris – CNRS
61, Avenue de l’Observatoire. F-75014 Paris, France

Departament de Física Fonamental, Universitat de Barcelona
Martí i Franquès, 1. E-08028 Barcelona, Spain
e-mail: jose-maria.pozo@obspm.fr

ABSTRACT. 4 emitters broadcasting an increasing electromagnetic signal generate a system of
relativistic coordinates for the space-time, called emission coordinates. Their physical realization
requires an apparatus similar to the one of the Global Navigation Satellite Systems (GNSS).
Several relativistic corrections are utilized for the current precisions, but the GNSS are conceived
as classical (Newtonian) systems, which has deep implications in the way of operating them. The
study of emission coordinates is an essential step in order to develop a fully relativistic theory of
positioning systems. This talk presents some properties of emission coordinates. In particular,
we characterize how any observer sees a configuration of satellites giving a degenerated system
and show that the trajectories of the satellites select a unique privileged observer at each point
and, for any observer, a set of 3 orthogonal spatial axes.

1. INTRODUCTION

Practically all experiments in general relativity and all the uses of relativity in any application
are done from a classical (Newtonian) conceptual framework. In this framework, the “relativistic
effects" are added with the same status as any non-desired perturbation (gravitational influence
of other planets, effects of the atmosphere ...). This is made with corrections of first order,
coming from general relativity when compared with classical mechanics, in weak gravitational
fields and with small velocities (PostNewtonian formalism). Typically, this is what is done in
the Global Navigation Satellite Systems (GNSS), as the GPS or the future GALILEO, where
the corrections from both special and general relativity cannot be neglected.

This approach is perfectly justified from a practical and numerical point of view. However, if
the resolutions are increased (more accurate clocks), it will be necessary to consider corrections
of third or higher order. Then, it can be wondered if it would not be more convenient to change
the framework to an exact formulation in general relativity. This would imply to abandon the
classical framework. Obviously, this is a jump with many implications and difficulties of many
different kinds: from technical to sociological. The first one is that such a relativistic theory
of positioning systems has not been developed. Our project is aimed to develop a theory of
positioning systems in the framework of general relativity. This is a long term project which is
still in a state of theoretical construction.

Four emitters broadcasting an increasing electromagnetic signal generate a system of space-
time coordinates, the so called emission coordinates. The most natural case is the one in which
the emitted signal is the proper time of the emitter. The emission coordinates of an event (the
4 signals received) can be immediately known by this event, thus they constitute an immediate
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relativistic positioning system. Its physical construction is very similar to the one realized by
the GNSS, where the emitters are satellites. But the way of operating and conceiving the
positioning systems is very different. This is reflected in the fact that the 4 signals emitted by
the satellites are not considered as primary space-time coordinates, but the satellites are used as
mere beacons to obtain separately the time and the position in some predefined coordinates for
the Earth. The study of emission coordinates is aimed to develop a fully relativistic theory of
positioning and reference systems. A complete theory should be able to substitute the nowadays
classical perturbative approach to the satellite navigation and to provide a different framework
for experimental tests of general relativity.

Emission coordinates and the associated positioning systems has been extensively studied in
2-dimensional space-times, where several strong analytic results have been obtained (Coll 2001,
Coll 2002). Unfortunately, they are not trivially generalizable for the real case of 4-dimensional
space-times, where a more deep study is needed. But, some very interesting global and local
properties have been already obtained for 3 and 4 dimensions (Derrick 1981, Coll and Morales
1991, Rovelli 2002, Blagojević et al. 2002, Pozo and Coll 2005). In this work we briefly explain
some local properties of 4-dimensional emission coordinates.

2. EMISSION COORDINATES. A DEFINING DESCRIPTION

The first ingredient in our approach to positioning systems is the use of the 4 electromagnetic
signals emitted by each set of 4 satellites, directly as coordinates for the domain of interest of
the space-time. This type of coordinates are called emission coordinates. The usual treatments
of any relativistic problem, takes a somehow classical description of the space-time, using one
time-like coordinate which defines the instantaneous 3-dimensional spaces (synchronization) and
3 space-like coordinates to coordinate this sequence of spaces. This description is very adapted
to our intuition about space and time. However, when relativity is not negligible, the needed
synchronization is a convention which is not absolutely defined. For inertial observers in flat
space-time we can use the Einstein convention, which is dependent on the observer chosen. For
general observers, even in flat space-time, this is still worse since no standard synchronization is
well defined.

Figure 1: Representation of 3 emitters in a 3-dimensional space-time (time vertical). The lines are the
space-time trajectories (world-lines) of the emitters. The left figure shows the space-time surfaces visited
by each value of the signals emitted (future light-cones), which defines the grid of emission coordinates.
The right figure shows the past light-cone of an event. Its intersection with the trajectories of the emitters
gives the emission coordinates of this event.

The 4 families of hypersurfaces defining emission coordinates are light-like. This means that
the natural covectors {dτ1,dτ2,dτ3,dτ4} are light-like: dτA ·dτA = 0. In fact the metrically
associated vectors ~ℓA = g∗(dτA) (or with index notation, (~ℓA)µ = gµν(dτA)ν) are the directions
defined by the light-like geodesics followed by the signals (rays). Observe that this class of
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coordinates is radically different from the usual decomposition into space and time, where we
have 1 time-like coordinate and 3 space-like coordinates.

3. PROPERTIES OF THE METRIC

The light-like nature of the covectors implies that the contravariant metric in emission coor-
dinates has vanishing diagonal elements:

(gAB) =




0 g12 g13 g14

g12 0 g23 g24

g13 g23 0 g34

g14 g24 g34 0




And, since the covectors dτA are future oriented, the extra-diagonal elements are all positive
gAB > 0. Besides, the Lorentzian signature of the space time implies the triangular inequalities

A < B+C, B < A+C, C < A+B where A ≡
√
g14g23, B ≡

√
g24g13, C ≡

√
g34g12 .

The determinant of the metric can be factorized into

|gAB | = (A+B + C)(A−B − C)(B −A− C)(C −A−B) .

Given an observer u (that is, a field of unit time-like vectors representing the 4-velocity of a
local laboratory) the light-like vector ~ℓA is split into

~ℓA = νA(u+ n̂A),

where νA is a positive scalar representing the frequency of the signal seen by the observer, and
n̂A is a space-like unitary vector, n̂A · n̂A = −1, representing the direction toward which the
observer sees the propagation of the signal in its space.

The angle θAB between the directions n̂A and n̂B of two different signals (the apparent angle
between the two signals) are given by

cAB ≡ cos θAB = −n̂A · n̂B .

Result Given an arbitrary observer at an event, 4 light-like directions, dτA, are linearly depen-
dent at this event if and only if the observer sees the apparent sources of the signals τA arranged
in a circle in its celestial sphere.

4. THE INTRINSIC SPLITTING OF THE METRIC AND THE CENTRAL OBSERVER

Given a system of emission coordinates we can ask if there exists some observers who see the
constellation of satellites arranged in some special configuration. For instance, in 3 dimensions
we can ask for an observer who see the 3 satellites in his celestial circumference with all the
angles equal: θ12 = θ13 = θ23 = 2π/3. This property can be generalized to 4 dimensions by
asking for the 6 angles θAB between the 4 emitters to be equal. This would correspond to an
observer who would see the 4 emitters arranged in a regular tetrahedron in its celestial sphere.
This property is too restrictive. A different generalization is to ask for the 4 solid angles defined
by the trihedral of each 3 emitters to be equal: θ123 = θ124 = θ134 = θ234 = π. This corresponds
to an observer who sees the 4 emitters in an equifacial tetrahedron in its celestial sphere. This
property can be equivalently characterized by asking for the angle between each pair of directions
to be equal to the angle formed by the complementary pair: θ12 = θ34, θ13 = θ24 and θ23 = θ14.
An observer seeing the four emitters in this configuration will be called a Central observer. Let
us remark that (although called central) this property does not selects a position or an event in
the space-time, but a velocity at each event.

288



Result Given any system of emission coordinates the Central observer exists and is unique.
An equifacial tetrahedron defines 3 orthogonal axes in the space. This implies that the 4

trajectories of the emitters also select 3 orthogonal spatial directions, orthogonal to the central
observer. In addition, since any two observers define a pure boost that relate both, by applying
this boost to the spatial axes we obtain the following:
Result For any observer, the trajectories of the 4 emitters select 3 privileged orthogonal axis in
its space.

Figure 2: The left figure represents 4 points in the celestial sphere of an observer which lie in a unique
circle (the directions lie in a cone). The system of emission coordinates is degenerate at the events where
any observer see the 4 emitters in this configuration. The right figure represents 4 directions and the six
planar angles between them.

This result is intimately related with the existence of the following splitting of the metric:

(gAB) =




µ1 0 0 0
0 µ2 0 0
0 0 µ3 0
0 0 0 µ4







0 Ĉ B̂ Â

Ĉ 0 Â B̂

B̂ Â 0 Ĉ

Â B̂ Ĉ 0







µ1 0 0 0
0 µ2 0 0
0 0 µ3 0
0 0 0 µ4




Here, the 6 degrees of freedom of the metric are split into two types of parameters, which behave
in clearly different ways when the series broadcasted by the emitters is changed (that is, when
the clocks on board the satellites are modified):

• 4 parameters {µA} which scale, each of them, linearly with the series broadcasted by the
corresponding satellite and are independent of the others.

• 3 parameters (2 degrees of freedom) Â, B̂, Ĉ which are invariant respect to the change of
the series broadcasted. They only dependent on the satellite world-lines.

This splitting is a promising tool in order to study the consequences of the derive of the
clocks, the election of different corrections for this, and the possible role that some arbitrary or
geometrically justified synchronization could have in the positioning system.
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