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ABSTRACT. Special topics of astronomical nomenclature related with relativity are discussed:
the spatial orientation of the BCRS and GCRS, the problem of barycentric time scales TDB and
Teph and the notions of day, Julian date and Julian year.

1. THE SPATIAL ORIENTATION OF THE BCRS

The Barycentric Celestial Reference System (BCRS) was adopted by the International Astro-
nomical Union in the year 2000 as basis for modelling high-accuracy astronomical observations,
solar system spacecraft navigation, etc. Theoretically it is fixed by the form of the barycentric
metric tensor (see, IAU, 2001; Rickman, 2001; Soffel, et al., 2003 for more detail)
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Here the scalar function w generalizes the usual Newtonian gravitational potential and the vector
function wi describes gravito-magnetic type effects due to matter currents (moving masses). The
BCRS is a particular reference system in the curved space-time of the solar system. From a
mathematical point of view any kind of space-time coordinate system covering the solar system
could be employed for practical applications. However, to avoid confusions and provide an
unambigious way to interpret numerical values of various parameters (e.g. parameters of motion)
a particular reference system should be fixed. This BCRS is a standard reference system adopted
by the IAU. This does not mean, however, that other reference systems cannot be used. However,
if some other reference system is used, the final results (numerical values of the parameters)
should be transformed into the BCRS so that one can compare and/or combine these results
with other results in a consistent way.

This BCRS is a dynamical concept in the sense that its metric tensor fixes the form of
equations of motion for massive bodies as well as for light rays up to certain degrees of freedom.
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The BCRS coordinates, as they are defined by the Resolution B1.3 of the IAU (2000) are fixed
up to constant change of the origin of time reckoning and a time-independent (constant) rotation
of spatial coordinates. In this sense the adoption of the BCRS is similar to adopting Newtonian
equations of motion without Coriolis and centrifugal terms (i.e., to adopting a Newtonian inertial
reference system) in the Newtonian framework. Another usual degree of freedom of an inertial
reference system in the Newtonian framework is the choice the origin of spatial coordinates. For
the BCRS, however, the origin is fully fixed to be the post-Newtonian barycenter of the solar
system.

Now, the origin of time reckoning of the BCRS coordinate time t = TCB is also fixed by
the definition of TCB, TT and TCG given by the IAU 1991 Resolutions. According to those
Resolutions, on 1977 January 1, 00h 00m 00s TAI at the geocenter, the readings of TT, TCG
and TCB are 1977 January 1, 00h 00m 32s.184 (JD 2443144.5003725).

However, the orientation of spatial axes was not fixed in the IAU (2000) resolutions. This
orientation is irrelevant for physical laws, e.g., for equations of motion. Nevertheless this orien-
tation is of major concern for astrometric problems. It is now recommended that this orientation
is fixed by the ICRS. This means that in practice the spatial orientation of the BCRS is given
by the ICRF, that is by the coordinates of a set of extragalactic sources obtained by VLBI ob-
servations. In the next decade the ICRF will be realized in the optical by the final Gaia catalog
(ESA, 2004).

2. THE SPATIAL ORIENTATION OF THE GCRS

The Geocentric Celestial Reference System (GCRS) was adopted by the International As-
tronomical Union (2000) for modelling physical processes in the vicinity of the Earth and as
intermediate step for relating the BCRS with the terrestrial system ITRS. The GCRS was con-
structed such that the gravitational fields of external bodies is represented only in forms of
relativistic tidal potentials that grow at least quadratically with coordinate distance from the
geocenter. The internal gravitational field from the Earth itself “coincides” with the gravitational
field of a corresponding isolated Earth (in the absence of other bodies). The metric tensor of
GCRS
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is given by the geocentric metric potentials W and W a. They can be split into internal-, inertial-
and tidal- (external) parts. Again the GCRS is a dynamical concept and fixes the coordinates
up to the degrees of freedom that we had discussed for the BCRS.

However, the IAU 2000 framework explicitly gives the complete form of the coordinate trans-
formation between BCRS and GCRS. The implication of these coordinate transformations is
that once the BCRS coordinates are fully fixed the GCRS coordinates are also fully fixed by the
given coordinate transformation. If the BCRS is spatially oriented according to the ICRS the
spatial coordinates of the GCRS, being kinematically non-rotating, will get an ICRS-compatible
orientation.

It would be confusing and even dangerous to think that the GCRS has the same spatial
orientation as the BCRS or ICRS. The reason is that the transformations between the BCRS
and the GCRS are 4-dimensional time-dependent space-time transformations (for example, the
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BCRS vector (t, 1, 0, 0) is not transformed into the GCRS vector (T, 1, 0, 0)). The main part of
the change of the GCRS spatial axes with respect to the BCRS axes comes from the Lorentz
transformation. Therefore, the difference in spatial coordinates cannot simply be described by a
shift in origin plus a 3-dimensional rotation. Formal differences in spatial coordinates will be of
order (vE/c)

2 ∼ 10−8 or a few mas in angle, vE being the BCRS velocity of the Earth. These
differences are automatically taken into account in high-precision relativistic models, e.g., for
VLBI, astrometry etc.

3. DAY, JULIAN DATE, JULIAN YEAR AND JULIAN CENTURY

From the practical point of view it seems to be advantageous that day, Julian year and Julian
century are just defined as multiples of the second: 1 d ≡ 86400 s, 1 Julian year ≡ 365.25 d and
1 Julian century ≡ 36525 d. With these definitions these time intervals or ’units’ can be used
with any time scale: with TCG, TT TCB and TDB or proper time of some observer.

Also the concept of Julian date can be used for any of these time scales. E.g., on 1977 January
1, 00h00m00s TAI at the geocenter, the readings of TT, TCG and TCB are JD 2443144.5003725
(1977 January 1, 00h00m32s.184) and increase by 1 every 86400 seconds of the corresponding
time scale. The equivalent Teph reading depends upon the specific ephemeris: the same reading
for TDB(DE405) is JD 2443144.5003725 − 65.564518µs. It is suggested to use the notations
JDTT, JDTCG, JDTCB and JDTDB for the Julian dates in the corresponding time scales.

4. TDB AND Teph

Although the coordinate time TCB is a natural and physically adequate time scale for the use
for solar system ephemerides for historical reasons another time scale (TDB) has been used for
the same purpose. There has been a long and controversial discussion about the barycentric time
scale TDB (Barycentric Dynamical Time). According to the original definition from 1976 TDB
should differ from Terrestrial Time (TT) only by periodic terms. This implies, however, that
TDB would not be a linear function of TCB. On the other hand the relativistic Einstein-Infeld-
Hoffmann (EIH) equations of motion that form the basis of modern planetary ephemerides since
about 1970 are valid only with TCB or a linear function thereof. After this was realized Standish
(1998) introduced Teph as reaction to this concern. By definition Teph is a linear function of
TCB. The rate and the offset between TCB and Teph, being dependent upon the particular
ephemeris under consideration, were chosen so that Teph−TT remains as small as possible.

One can claim that TDB as defined in 1976 has never been used. Even the widely-used
analytical formulas for TDB as function of TT by Hirayama et al. (1987) and by Fairhead &
Bretagnon (1990) contain non-periodic terms (mixed and quadratic) while claiming that it is
TDB that is realized .

The only good reason to have a scaled version of TCB is to avoid a secular drift between
TT and the independent time argument of solar system ephemerides. Since TT (or TAI) is the
time scale used by typical users on the Earth, the driving force for TDB is the idea to avoid in
practice time scales deviating secularly. This idea, however, does not imply that the difference
between that time argument and TT is purely periodic. It just means that the constants in the
linear transformation between TCB and the time argument of solar system ephemerides should
be chosen to minimize the differences between the latter and TT.

A natural way to relate TCB to TT and to find the optimal linear coeffients for a scaled
version of TCB is a direct numerical integration of the TCB(TT) relation using some given
solar system ephemeris. This way was discussed in details by Fukushima (1995) and Irwin &
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Fukushima (1999). In this numerical approach it is not natural to distinguish between periodic,
mixed, secular, etc. terms: TT is calculated as function of TCB.

The current situation with TDB and Teph is unsatisfactory: (1) TDB as originally defined in
1976 is not compatible with widely-used equations of motion, (2) widely-used analytical realiza-
tions of TDB are not fully compatible with its original definition, (3) the linear transformation
between Teph and TCB is not a part of the definition of Teph, but can be restored aposteriori,
and, finally, (4) we have two different time scales for the same purpose. There are several ways to
cure, clarify and simplify this situation. Ongoing discussions within the corresponding Working
Groups of the IAU will hopefully achieve progress in this controversial question.
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