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ABSTRACT. We report on the semi-analytical part of the Descartes-nutation project (see
Folgueira et al. 2005, and this Volume, Session 2.3) devoted to the integration of the dynamical
equations of Earth’s rotation in terms of the X, Y celestial coordinates of the Celestial Interme-
diate Pole (CIP) and Earth Rotation Angle (ERA). We first explain how the Earth’s rotational
equations have been developed as functions of those variables. We then describe the integration
method that has been used to get the semi-analytical solution for an axially symmetric Earth
(Capitaine et al. 2006a) and we report on tests of the efficiency of the method. We finally de-
scribe how this approach has be used (Capitaine et al. 2006b) to get new series for the X, Y
CIP coordinates that best represent the rigid Earth precession-nutation of the CIP equator.

1. INTRODUCTION

The series for the X, Y coordinates of the celestial intermediate pole (CIP) unit vector in the
geocentric celestial reference system (GCRS) that are currently available have been derived from
expressions for the IAU 2000A nutation for the classical nutation angles (Mathews et al. 2002)
and either the IAU 2000 precession (Capitaine et al. 2003a and IERS Conventions 2003) or P03
precession (Capitaine et al. 2003b) for the classical precession angles.

The work described in this paper aims at obtaining the X, Y series directly as solutions of
the equations for Earth rotation (Capitaine et al. 2006a and b). The first part has consisted in
(i) establishing the equations in terms of X, Y , (ii) developing an integration method, (iii) testing
the efficiency of the method and the accuracy of the solution and (iv) extending the approach
to a non-rigid Earth. The second part has consisted in computing the rigid Earth solution using
the expression for the external torque acting on the Earth based on the best currently available
semi-analytical solutions for the orbital motions of the Moon, the Sun and the planets. All the
semi-analytical computations performed in this work have been based on the software package
GREGOIRE developed by Chapront (2003) devoted to Fourier and Poisson series manipulations.
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2. THE EQUATIONS OF EARTH ROTATION AS FUNCTION OF X AND Y

The equations for Earth rotation are based on the equations for the Earth’s angular momen-
tum balance in space but require, for obtaining a rigorous solution in an appropriate way, to be
written explicitly as function of the components ω1, ω2, ω3 of the instantaneous rotation vector
in the terrestrial system (i.e. Euler’s kinematical equations) where the inertia momenta A, B and
C, have the simplest formulations.

Expressing ω1, ω2, ω3 as functions of the transformation parameters between the International
Terrestrial System (ITRS) and the GCRS, allows us to obtain the rigorous equations of Earth
rotation in terms of X, Y and ERA (= θ). This requires using the GCRS-to-ITRS transformation
as recommended by IAU 2000 Resolution B1.8 (IAU Transactions 2000), based on the Celestial
Intermediate Origin (CIO) (i.e. the new name recommended by the IAU NFA Working Group
(2006) for the Celestial Ephemeris Origin, also called “non-rotating origin” (Guinot 1979)). As
we are looking for the solution relative to the motion in space of the CIP and we are considering
the axially symmetric case, the ITRS motion of the CIP can be omitted, which reduces the
relationship to:
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where R = R3(Θ), Z =
√

1 − (X2 + Y 2) and Θ = θ−s, with θ̇ = Ω (the mean angular velocity
of the Earth) and s is the distance along the CIP equator between the point Σ and the CIO (see
Fig. 1). We denote CIRS’ the intermediate system defined by the CIP and the point Σ.
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Figure 1: Relationship between various points: Σ0 is the GCRS origin, M is the ascending node of
the CIP equator on the GCRS equator, Σ is the point on the CIP equator such that Σ̂M=Σ̂0M ,
γ0 is the J2000 equinox, γ is the equinox of date and γ1 is the ascending node of the J2000
ecliptic on the CIP equator. ERA=σ̟̂ is the Earth rotation angle (θ), EO=σ̂γ is the equation
of the origins and γ̂1γ is the precession of the ecliptic along the CIP equator.

For an axially symmetric rigid Earth, an appropriate form for practical integration is:

− Ÿ + (C/A)Ω Ẋ = (L/A) + F ′′

Ẍ + (C/A)Ω Ẏ = (M/A) + G′′, (2)

where only the prominent terms have been retained in the first member, the other terms (F ′′

and G′′), which are of the second order in the X and Y quantities, having been moved to the
second member; L and M are the CIRS’ components of the external torque.
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3. METHOD FOR SOLVING THE EQUATIONS

Equations (2) can be integrated in a semi-analytical way by successive approximations. We
have used the method of “variations of parameters” described in Woolard (1953) and Bretagnon
et al. (1997). This consists in using the solution for the reduced system and get a particular
solution of the general equations as an expression with the same form, but with the constants of
integration transformed into time-dependent quantities.

The solutions of the reduced equations have the following form:

Ẋ = −K ′
c sinσ t + K ′

s cos σ t

Ẏ = K ′
s sinσ t + K ′

c cos σ t (3)

where σ = (C/A)Ω is the Euler frequency in the CIRS’ and K ′
s and K ′

c are the constants of
integration of this free motion.

In order that the particular solution for X ,Y verifies Eqs (2), the quantities K ′
s(t) and K ′

c(t)
should be derived from the following equations:

K̇ ′
s = −L

A
sinσ t +

M

A
cos σ t− F ′′ sinσ t +G′′ cos σ t

K̇ ′
c = −L

A
cos σ t − M

A
sinσ t − F ′′ cos σ t −G′′ sinσ t . (4)

The solution forX and Y can thus been obtained by a quadrature of Eqs. (3) with substituting
the expressions for K ′

s(t) and K ′
c(t) derived from Eqs. (4). The final solution results from an

iterative process that ensures that the solution converges to the required level of accuracy.

4. TEST OF THE INTEGRATION METHOD

We have performed a number of semi-analytical simulations for testing the approach and
the integration process described in the previous sections. These simulations have consisted in
computing the expression of the (pseudo-) IAU 2000 torque using (i) the rotational equations for
the Euler angles (Woolard 1953) and (ii) the IAU 2000A precession-nutation series for the Euler
angles. The (pseudo-) torque components obtained in this way are in the intermediate system
linked to the CIP and the point γ1 (see Fig. 1). They have been transformed into components in
the CIRS’. The rotational equations (2) based on those (pseudo-) torque components have then
been integrated to get series for X and Y .

These simulations have shown that the integration method is efficient in providing a solution
for X ,Y that converges at a 0.01 µas level after only a very few iterations. Comparison of this
solution with respect to the current IAU 2000 expressions for X ,Y have shown that its accuracy
is compliant with that of the current IAU 2000A precession-nutation model. This validates (i)
the rotational equations in terms of X ,Y established in this work (c.f. Sect. 2) and (ii) the
integration process described in Sect. 3.

5. EXTENSION OF THE APPROACH TO A DEFORMABLE EARTH

We have extended this approach to a model of a deformable Earth compliant with the P03
precession solution of Capitaine et al. (2003b) that includes the contribution of the secular
variation of the dynamical ellipticity of the Earth. We have shown that the solutions for a
deformable Earth can be obtained in a form similar to that for a rigid Earth with using dynamical
equations expressed as functions of X ,Y that include the additional contributions from the tidal
deformation of the Earth, the J2 rate variation and the rotational deformation.
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6. SOLUTION FOR A RIGID EARTH

In a further step, we have computed the X ,Y solutions of the dynamical equations of Earth
rotation for an axially symmetric rigid Earth model corresponding to the solutions VSOP87 for
the orbital motions of the Earth and planets and ELP2000 for the Moon.

We have first developed the semi-analytical expressions for the components of the external
torque in the CIRS’, based on the solutions VSOP87 and ELP2000, and we have then integrated
the dynamical equations in terms of X ,Y (i.e. Eqs. (2)) using the method described in Sect. 3.
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