VECTORIAL HARMONICS: FROM LINK OF FRAMES TO STELLAR KINEMATICS

A.K. SHUKSTO, V.V. VITYAZEV
Saint-Petersburg State University
198504 Petrodvorets, Universitetsky pr., 28., S. Petersburg, Russia
e-mail: shuksto@ntc-it.ru

1. OUTLINE OF THE METHOD

In astrometry, the vectorial spherical functions were used for the first time for determination of the orientation and spin between the FK5 and HIPPARCOS reference frames [1]. The present paper is devoted to elaboration of this approach to the kinematical analysis of the proper motions.

Let the proper motions in galactic coordinate system be $\mu_{l}(l, b) \cos b$ and $\mu_{b}(l, b)$. We are looking for decomposition of the proper motions in such a way that

$$
\begin{equation*}
\mu_{l}(l, b) \cos b \vec{e}_{l}+\mu_{b}(l, b) \vec{e}_{b}=\sum_{j=1}^{\infty}\left[t_{j} \vec{T}_{j}(l, b)+s_{j} \vec{S}_{j}(l, b)\right] \tag{1}
\end{equation*}
$$

where \vec{e}_{l} and \vec{e}_{b} are the unit vectors in the directions of longitude and latitude, and $\vec{T}_{j}(l, b)$ and $\vec{S}_{j}(l, b)$ are given in [1].

In case of the Ogorodnikov-Milne model [2] the stellar velocity field is given by expression

$$
\begin{equation*}
\vec{V}=\vec{V}_{0}+M^{+} \vec{r}+M^{-} \vec{r} \tag{2}
\end{equation*}
$$

where the following notations are used:
\vec{V}_{0} — the velocity of the Sun with respect to given centroid of stars. This velocity is defined by components U, V, W in the directions of the principal galactic axes x, y, z;
M^{+}_ the diverging matrix with the dilation coefficients $M_{11}^{+}, M_{22}^{+}, M_{33}^{+}$, and $M_{12}^{+}, M_{13}^{+} M_{23}^{+}$ standing for shears in the galactic planes $(x, y),(x, z),(y, z)$. Since proper motions reflect tangential motions only, we set $M_{22}^{+}=0$. In this case the unknowns M_{11}^{+}and M_{33}^{+}are replaced with $M_{11}^{*}=M_{11}^{+}-M_{22}^{+}$and $M_{33}^{*}=M_{33}^{+}-M_{22}^{+}$respectively;
M^{-}- the rotation matrix with the components ω_{1}, ω_{2} è ω_{3} about axes x, y, z;
The crucial point of our method is that the elements of M^{+}and M^{-}are connected to the low-order coefficients of the decomposition (1) by the following equations (with R_{j} standing for the normalization factor of corresponding vectorial harmonic \vec{T}_{j} or $\left.\vec{S}_{j}\right)$:

$$
\begin{gather*}
t_{1}=\frac{\omega_{3}}{R_{1}}, \quad t_{2}=\frac{\omega_{2}}{R_{2}}, \quad t_{3}=\frac{\omega_{1}}{R_{3}} \tag{3}\\
s_{4}=\frac{M_{33}^{*}-\frac{1}{2} M_{11}^{*}}{2 R_{4}}, \tag{4}
\end{gather*}
$$

$$
\begin{array}{ll}
s_{5}=\frac{M_{23}^{+}}{R_{5}}, & s_{6}=\frac{M_{13}^{+}}{R_{6}}, \\
s_{7}=\frac{M_{12}^{+}}{2 R_{7}}, & s_{8}=\frac{M_{11}^{*}}{4 R_{8}}, \tag{6}
\end{array}
$$

whereas the rest of harmonics does not belong to the Ogorodnikov-Milne model and may be used to study the effects that are beyond the model.

2. "EXTRA-MODEL" COMPONENTS OF THE PROPER MOTIONS

When applied to stellar kinematics of HIPPARCOS catalogue, the main advantage of the vectorial harmonics over traditional approach is a chance to detect the motions which are not included in the Ogorodnikov-Milne model. Indeed, in the global solution the method of vectorial functions detected the terms $(-12.9 \pm 4.6) \times \vec{S}_{10},(12.2 \pm 4.4) \times \vec{S}_{14},(-12.7 \pm 4.6) \times \vec{S}_{20},(11.1 \pm$ $4.3) \times \vec{S}_{34}$ (all in $\mathrm{km} \mathrm{s}^{-1} \mathrm{kps}^{-1}$). Besides the global solution we applied our method to several samples of stars with different distances and spectral classes. The "extra-model" terms specified by the functions $\vec{T}_{4}, \vec{T}_{6}, \vec{S}_{10}$ and \vec{S}_{14} were found to be common to all examined samples including the global solution.

In conclusion, we state that contribution of the "extra-model" components to the proper motions is comparable with the contribution of the "classical" terms (see Figure 1). The next paper will be devoted to the physical properties of the "extra-model" terms detected here.

Figure 1: Contribution to the proper motions in longitude from the model harmonic \vec{S}_{7} (Oort's coefficient $A=M_{12}^{+}$, solid line) in comparison to the significant "extra-model" harmonic \vec{S}_{14} (dashed line).

Acknowledgements. The authors appreciate the support of this work by the grant 05-0217047 of the Russian Fund of Fundamental Research and by the grant 37552 of the Ministry of Education and Science.

REFERENCES

[1] Mignard F., Morando B., Analyse de catalogues stallaires au moyen des harmoniques vectorelles, Journees 90. Systemes de reference spatio-temporels. Paris, pp.151-158, 1990.
[2] du Mont B., A three-dimensional analysis of the kinematics of 512 FK4 Sup. stars. A\&A, 61, N 1. pp. 127-132, 1997.

