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ABSTRACT. Approved space astrometry missions, like GAIA and SIM, are aimed to measure
positions and/or parallaxes of celestial objects with an accuracy of 1-10 microarcseconds (µas).
At such a level of accuracy, it will be indispensable to take into account the influence of the
multipole structure of the giant planets (mainly Jupiter and Saturn) on the gravitational light
deflection. Using the Nordtvedt-Will parametrized post-Newtonian formalism, we present an
algorithmic procedure enabling to determine this influence on a light ray connecting two points
located at a finite distance.

1. INTRODUCTION

Two major space astrometry missions, GAIA and SIM, are planned to be launched in the
next years. The accuracy in the measurements of positions and/or parallaxes of celestial objects
is expected to attain a level of 1-10 µas. In this context, we have to describe precisely the
propagation of light inside and outside Solar System in a fully relativistic framework. By the
time of Hipparcos mission, it was sufficient to consider the light deflection due to a static
spherically symmetric Sun. Now, at the level of the µas accuracy, it is necessary to take into
account the masses of the planets, as well as the higher multipole moments of those among
them which are the most massive ones (Jupiter, Saturn, Uranus and Neptune). Table 1 gives
the order of magnitude of the different contributions to the bending of a light ray propagating
in Solar System. It is seen that for Jupiter, e.g., the effects of the multipole moments J2 and J4

may amount to 240 µas and 10 µas for a grazing light ray, respectively. So these effects must
be taken into account in GAIA mission.

To take into account these intricate effects, several studies have been performed in the last
decade. The first general relativistic model of positional observations at the level of 1 µas in space
was proposed by Klioner & Kopeikin (1992), where gravitating bodies are considered as mass
monopoles moving with constant velocities. More recently, a complete analytical description
of the light propagation in the field of arbitrarily moving spinning mass monopoles bodies has
been found by Kopeikin & Schäfer (1999) and Kopeikin & Mashhoon (2002) in the first post-
Minkowskian approximation. For treating the particular problem of the multipole structure of
celestial bodies, Hellings (1986) recommended to use the post-Newtonian formulas for the light
propagation in the field of a motionless body and to introduce the position of each gravitating
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Body δpn δJ2 δJ4 δJ6 δR δppn

Sun.................. 1.752 × 106 1 — — 0.7 11
Mercury........... 83 — — — — —
Venus.............. 493 — — — — —
Earth................ 574 0.6 — — — —
Moon............... 26 — — — — —
Mars................ 116 0.2 — — — —
Jupiter............. 16270 240 10 ≥0.1 0.2 —
Saturn............. 5780 95 6 ≥0.1 — —
Uranus............ 2080 8 — — — —
Neptune.......... 2533 10 — — — —

Table 1: Gravitational bending of light rays in Solar System. Here δpn and δppn are the post-
Newtonian and the post-post-Newtonian effects due to the spherically symmetric field of the
body, δJ2, δJ4 and δJ6 are the effects due to multipole moments J2, J4 and J6, respectively, and
δR is the gravitomagnetic deflection. Each effect is evaluated for a grazing light ray. Unit is µas.

body at the moment of closest approach of that body by the photon. Klioner & Kopeikin (1992)
apply this recommendation to treat the influence of the quadrupole moment of giant planets.
Moreover, a rigourous formalism for determining the light propagation in the gravitational field
of an isolated axisymmetric body was developped by Kopeikin (1997). However, the procedures
given in these works are based on the analytical solution of the geodesic equations and requires
cumbersome calculations. For this reason, only the influence of the quadrupole moment seems
to be workable by this method.

Quite recently, we have reconsidered the problem of propagation of light between two events
located at a finite distance in general spacetime (Linet & Teyssandier (2002) and Le Poncin-
Lafitte & al. 2004). First of all, we have established a direct relation between the travel time
of a photon and the vector tangent to the null geodesic at the emission point and the reception
point, respectively. This means that all theoretical problems related to the direction of light
rays may be solved as soon as the time transfer functions are determined. In addition, we have
developed a procedure enabling to calculate explicitly the time travel of a photon in a general
post-Minkowskian expansion, at any order of approximation without integrating the geodesic
equations, even if the gravitational field is not stationary. Applying these results, we outline
here a general method for determining the influence of the mass multipole moments of a planet
on a light ray within the post-Newtonian approximation.

In section 2, we show that the angle between two light rays as measured by an observer
can be computed when the time transfer functions are known. Then, we give the expression
of this angle up to the order 1/c3 in the framework of the post-Newtonian approximation. In
section 3, we restrict our attention to the case of an isolated, axisymmetric body. We suppose
that the contribution of spin multipole moments are negligible, so that the gravitational field
may be considered as a static one. On these assumptions, we give the contributions of the mass
multipole moments to the time transfer function and to the direction of a light ray.

In this paper, G is the Newtonian gravitational constant and c is the speed of light in a
vacuum. The Lorentzian metric of spacetime is denoted by g. The signature adopted for g is
(+ − − −). We suppose that spacetime is covered by a global coordinate system (xµ) = (x0,x),
where x0 = ct, t being a time coordinate, and x = (xi), the xi being quasi-Cartesian coordinates.
We assume that the curves of equation xi = const are timelike, which means that g00 > 0
anywhere. We employ the vector notation a in order to denote either (a1, a2, a3) = (ai) or
(a1, a2, a3) = (ai). Considering two such quantities a and b with, for instance a = (ai), we use
a.b to denote aibi if b = (bi) or aibi if b = (bi) (the Einstein convention on repeated indices is
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used). The quantity |a| stands for the ordinary Euclidean norm of a. In what follows, greek
indices run from 0 to 3, and latin indices run from 1 to 3.

2. ASTROMETRIC ANGLE WITHIN THE POST-NEWTONIAN APPROXIMATION

Let Γ1 and Γ2 be two light rays emitted at point xA1 = (ctA1 ,xA1) and xA2 = (ctA2 ,xA2)
respectively and simultaneously received by an observer B located at point xB = (ctB ,xB). Let
u be the unit 4-velocity of this observer. Denote by l(1) and l(2) the vectors tangent at xB to
Γ1 and Γ2, respectively. Since l(1) and l(2) are null vectors, the angle φ between these rays as
measured by the observer B is given by

cos φ = 1 −

[

l(1).l(2)

(u.l(1))(u.l(2))

]

B

. (1)

This formula holds in any gravitational field. Using the quasi-Cartesian coordinates system (xα)
introduced in section 1, Equation (1) may be explicitly written as

cos φ = 1 −









g00 + g0i

(

l
(1)
i

l
(1)
0

+
l
(2)
i

l
(2)
0

)

+ gij l
(1)
i

l
(1)
0

l
(2)
j

l
(2)
0

(u0)2
(

1 + vi

c
l
(1)
i

l
(1)
0

)(

1 + vi

c
l
(2)
i

l
(2)
0

)









B

, (2)

where vi = dxi/dt is the coordinate velocity of the observer. In Le Poncin-Lafitte & al. (2004),
we showed that the ratio li/l0 can be explicitly determined when the time transfer functions are
known. Let us recall that in general the travel time tB − tA of a photon between an emission
point (ctA,xA) and a reception point (ctB ,xB) may be considered as a function of tA, xA and
xB , or as a function of tB , xA and xB , so that we can put

tB − tA = Te(tA,xA,xB) = Tr(tB ,xA,xB) , (3)

where Te and Tr may be called the emission and reception time transfer functions, respectively.
We proved in the above-mentioned paper that the ratio li/l0 is given at reception point xB by
the relation

(

li
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)

B
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∂xi
B

[
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In what follows, we use the post-Newtonian approximation, so that the metric tensor may
be written as

g00 = 1 −
2W

c2
+ O

(

1

c4

)

, (5)

{g0i} = {h0i} = ~h = O
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)

, (6)

gij =
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)

ηij + O

(

1
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)

, (7)

where W = U + O(1/c2), U being the Newtonian-like potential of the body. For a light ray
emitted at point xA and received at point xB , we may write

li
l0

= −N i + ∆i , (8)
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where

N i =
xi

B − xi
A

RAB
, RAB = |xB − xA|

and ∆i is the relativistic contribution to the light deflection. As a consequence, Eq. (2) becomes
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where

N (1)i =
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A1
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, N (2)i =

xi
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A2

|xB − xA2 |
, (10)

Let us note that Eq. (9) holds even if the gravitational field is not stationary.

3. TIME TRANSFER AND LIGHT DEFLECTION

Let us apply these results to a light ray propagating in the field of an isolated, axisymmetric
body. We suppose that the gravitational effects of the internal angular momentum of the body
may be neglected. So we consider that the gravitational field is static. The center of mass of
the body being taken as the origin O of quasi-Cartesian coordinates (x), we choose the axis of
symmetry as the x3-axis. We put r =|x |, rA =|xA | and rB =|xA |. We denote by k the unit
vector along the x3-axis and we consider only the case where all points of the segment joining
xA and xB are outside the body. We denote by re the radius of the smallest sphere centered
on O and containing the body (for celestial bodies, re is the equatorial radius). We assume the
convergence of the multipole expansions formally derived below at any point outside the body,
such that r > re. On the above-mentioned assumptions, the two time transfer functions Te and
Tr reduce to a single function T (xA,xB) which may be expanded as
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where F (x,xA,xB) is defined by
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and TW,Jn is the contribution of the mass multipole moment Jn, given by
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Calculating explicitly the successive derivatives of F (x,xA,xB), we find
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where C
(−1/2)
l denote the Gegenbauer polynomial of degree l with parameter −1/2 (see Abramowitz

and Stegun 1970) and
∑′

is a summation over all positive integers i1, i2, ..., in−m+1, solutions

to the linear system

i1 + 2i2 + ... + (n − m + 1)in−m+1 = n , i1 + i2 + ... + in−m+1 = m .

We are now in a position to determine the covariant components of the vector tangent to the
light ray emitted at point xA and received at point xB. Applying Eqs. (4), (11) and (14), and
then noting that one may set l0 = 1 along the ray since the gravitational field is static, we find
at point xB

(l)B = −N + (lW )B , (15)

where
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Pl being the Legendre polynomial of degree l, and D(l) being defined by
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The contributions to angle φ due to l
W,Jn are on current study now.
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