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ABSTRACT. Astrometri missions like GAIA and SIM will require miroarseond aurayin the measurement of the diretion of light rays. At this level of preision, it is neessary todevelop a relativisti modelling of the light deetion up to the order G2, G being Newton'sgravitationnal onstant. We emphasize that this modelling may be ahieved without integratingthe di�erential equations of null geodesis, by improving the method of the world funtion devel-oped by Synge. As an example, we give a detailed alulation of the light deetion in a stati,spherially symmetri spae-time onsidered in the post-post-Minkowskian approximation. Theworld funtion also makes it very easy to determine the time transfer funtion.1. INTRODUCTIONWith advanes in tehnology, great improvements in astrometri auray will ertainly bemade in the near future. Two major spae astrometri missions are already planned to measurethe positions of elestial objets with typial unertainties in the range 1-10 �as (miroarse-ond). The Global Astrometri Interferometer for Astrophysis (GAIA, Perryman et al. 2001)mission, to be launhed not later than 2012, will be apable to measure the positions of 25million stars with a global unertainty better than 10 �as and a few million with an unertaintybetter than 4 �as. The Spae Interferometri Mission (SIM, Danner and Unwin 1999) will beapable of at least 4 �as auray for 3000 quasars and fundamental stars.For these missions, and for those whih will follow them, all relativisti e�ets ontributingto the deetion of light must be determined at a level of 1 �as, or signi�antly better. It wasshown that this level of auray an be ahieved by the GAIA mission if one retains only theperturbative terms of the bakground metri whih are of the �rst order with respet to theNewtonian gravitational onstant G (the so-alled post-Minkowskian approximation). However,it must be emphasized that this approximation is suÆient only beause the light rays reeivedby GAIA will be propagating suÆiently far from the Sun. If we want to build a relativistimodel for any light ray propagating through the Solar System, it will be neessary to take into324



aount terms of order G2 in the metri. The aim of the present paper is to furnish a generalmethod allowing the alulation of the deetion of light within the post-post-Minkowskianapproximation of any metri.Sine the pioneering works (see, e.g., Will 1988 and Refs. therein), a lot of papers investigatedthe deetion of light and/or the time delay e�ets in the linearized, weak-�eld limit of generalrelativity ( Klioner 1991, Klioner and Kopeikin 1992, Kopeikin 1997, Kopeikin and Sh�afer 1999,Ciufolini and Rii 2002). In (Kopeikin and Sh�afer 1999) espeially, one �nds an exhaustivedetermination of light rays in the �eld of an arbitrary large number of moving point masses interms of retarded Li�enard-Wihert potentials.In ontrast with the generality of the results obtained at the �rst order, the investigationsundertaken at the seond order in G have been on�ned to stati spherially symmetri �elds(see Epstein and Shapiro 1980, Fishbah and Freeman 1980 for the deetion angles, Klionerand Kopeikin 1992, Rihter and Matzner 1982 and 1983, Brumberg 1987, for the time delay andlight bending).In the above-mentioned studies, the deetion of light and the time delay are alulated byintegrating the di�erential equations of null geodesis. This proedure is workable as long as oneontents oneself with analyzing the e�ets in the �rst-order post-Minkowskian approximationor onsidering the ase of a stati spherially symmetri �eld. However, analytial or numerialintegrations of the geodesi equations require very umbersome alulations when the e�ets inG2 are taken into aount. So we explore an alternative method, based on the two-point worldfuntion, as developed by Synge (Synge 1964). This method presents the deisive advantage toavoid the solution of the null geodesi equations. Moreover, the knowledge of the world funtionallows an expliit determination of the travel time of a photon. We summarize here the resultsthat we have obtained for a general metri within the seond post-Minkowskian approximationand we apply them to a stati, spherially-symmetri ds2 ontaining three post-Minkowskianparameters. Thus we reover with simple quadratures formulae obtained in John 1975 withheavy alulations.In the following, we suppose that spae-time is overed by a global quasi-Cartesian oordinatesystem x� = (x0; xi) = (t;x),  being the speed of light in a vauum. The signature of themetri is (+���).2. THE WORLD FUNCTIONConsider two points xA and xB in a given spae-time endowed with a metri g�� and assumethat xA and xB are onneted by a unique geodesi path �. Throughout this paper, � denotesthe unique aÆne parameter along � whih ful�lls the boundary onditions �A = 0 and �B = 1.The so-alled world-funtion of spae-time (Synge 1964) is the two-point funtion 
(xA; xB)de�ned by 
(xA; xB) = 12 Z 10 g��(x�(�))dx�d� dx�d� d� ; (1)the integral being taken along �. It is easily seen that 
(xA; xB) = "[sAB ℄2=2, where sABis the geodesi distane between xA and xB and " = 1; 0;�1 for timelike, null and spaelikegeodesis, respetively. It results from Eq. (1) that the world-funtion 
(xA; xB) is unhangedif we perform any admissible oordinate transformation.The utility of the world-funtion for our purpose omes from the following properties (Synge1964) :i) The world funtion satis�es the Hamilton-Jaobi equations12 g��(xA) �
�x�A (xA; xB) �
�x�A (xA; xB) = 
(xA; xB) ; (2)325



12 g��(xB) �
�x�B (xA; xB) �
�x�B (xA; xB) = 
(xA; xB) : (3)ii) The vetors (dx�=d�)A and (dx�=d�)B tangent to the geodesi � respetively at xA andxB are given by �g�� dx�d� �A = � �
�x�A ; �g�� dx�d� �B = �
�x�B : (4)As a onsequene, if 
(xA; xB) is expliitly known, the determination of these vetors does notrequire the integration of the di�erential equations of the geodesi.iii) Points xA and xB may be linked by a light ray if and only if the ondition
(xA; xB) = 0 (5)is ful�lled. Thus, 
(xA; x) = 0 is the equation of the light one C(xA) at xA. This fundamentalproperty shows that the knowledge of 
(xA; xB) yields (at least in priniple) the knowledge ofthe travel time tB � tA of a photon onneting two points xA and xB . It must be pointed out,however, that solving the equation 
(tA;xA; tB ;xB) = 0 for tB yields two distint solutionst+B and t�B sine the timelike urve xi = xiB uts the light one C(xA) at two points x+B and x�B,x+B being in the future of x�B . In the present paper, we shall always regard xA as the point ofemission of the photon and xB as the point of reeption, and we shall write tB for t+B. Withthis onvention, tB � tA may be onsidered either as a funtion of tA, xA, xB , or as a funtionof tB, xA, xB . So we put t+B � tA = Te(tA;xA;xB) = Tr(tB ;xA;xB) ; (6)and we all Te(tA;xA;xB) the emission time transfer funtion and Tr(tB ;xA;xB) the reeptiontime transfer funtion.Consider now a stationary spae-time. In this ase, we use exlusively oordinates (x�) suhthat the metri does not depend on x0. Then, the world-funtion is a funtion of x0B � x0A, xAand xB, and (6) redues to a relation of the formt+B � tA = T (xA;xB) : (7)The knowledge of T enables to determine the diretion of light rays sine a omparaison betweenEq. (5) and Eq. (7) immediately shows that the vetors (l�)A and (l�)B de�ned by their ovariantomponents (l0)A = 1; (li)A =  ��xiAT (xA;xB) ; (8)(l0)B = 1; (li)B = � ��xiB T (xA;xB) ; (9)are tangent to the ray at xA and xB , respetively. It must be pointed out that these tangentvetors orrespond to an aÆne parameter suh that l0 = 1 along the ray (note that suh aparameter does not oinide with �). Generally, extrating the time transfer formula Eq. (7)from Eq. (5), next using Eqs. (8)-(9) will be more straightforward than deriving the vetorstangent at xA and xB from Eq. (4), next imposing the onstraint (5).In the present work, we assume that the gravitational potentials may be expanded asg�� = ��� +Gh(1)�� +G2h(2)�� +O(G3) : (10)As a onsequene, the world funtion admits an expansion as follows
(xA; xB) = 
(0)(xA; xB) +G
(1)(xA; xB) +G2
(2)(xA; xB) +O(G3) ; (11)326



where 
(0) is the Minkowskian world funtion
(0)(xA; xB) = 12���(x�B � x�A)(x�B � x�A) (12)and 
(1) is given by (Synge 1964, Linet and Teyssandier 2002)
(1)(xA; xB) = 12(x�B � x�A)(x�B � x�A)Z 10 h(1)�� (x(0)(�))d� : (13)Using a method inspired by Buhdahl 1990, we show elsewhere (Le Ponin-La�tte et al.2004) that 
(2)(xA; xB) may be written in the form
(2)(xA; xB) = 12(x�B � x�A)(x�B � x�A)�Z 10 h h(2)�� (x(0)(�))� ��� h(1)�� (x(0)(�))h(1)�� (x(0)(�))���� �
(1)�x� (xA; x(0)(�))h(1)��;�(x(0)(�))# d�+12��� �
(1)�x�B (xA; xB) �
(1)�x�B (xA; xB) ; (14)where the line integrals are taken along the unperturbed geodesi onneting xA and xB de�nedby the parametri equationsx�(0)(�) = (x�B � x�A)�+ x�A ; 0 � � � 1 : (15)3. APPLICATION TO A STATIC, SPHERICALLY SYMMETRIC BODYIn order to apply the general results obtained above, let us determine the world funtionand the time transfer funtion in the seond post-Minkowskian approximation when points xAand xB are both outside a stati, spherially symmetri body of mass M . We suppose that themetri omponents may be written ash(1)00 = �2M2r ; h(1)0i = 0 ; h(1)ij = �2M2r Æij ; (16)h(2)00 = 2�M24r2 ; h(2)0i = 0 ; h(2)ij = �3ÆM224r2 Æij ;where � and  are the usual post-Newtonian parameters and Æ is a post-post-Newtonian param-eter (in general relativity, � =  = Æ = 1). Furthermore, we suppose that xA and xB are suhthat the onneting geodesi path is entirely in the exterior spae. We use the notationsr = jxj ; rA = jxAj ; rB = jxB j; RAB = jxB � xAj :It is easily seen that G
(1)(xA; xB) is the term due to the mass in the multipole expansionof the world funtion given by Eq. (56) in Linet and Teyssandier 2002 (see also John 1975) :
(1)(x0A;xA; x0B ;xB) = �M2 �(x0B � x0A)2 + R2AB�F (xA;xB) ; (18)327



where F (xA;xB) = Z 10 d�jx(0)(�)j = 1RAB ln�rA + rB +RABrA + rB �RAB� : (19)For the integrals of seond order involving h(2)�� and terms quadrati in h(1)�� , we �nd12(x�B � x�A)(x�B � x�A)Z 10 h h(2)�� (x(0)(�))� ��� h(1)�� (x(0)(�))h(1)�� (x(0)(�))i d�= M24 �(� � 2)(x0B � x0A)2 +�22 � 3Æ4 �R2AB�E(xA;xB) ; (20)where E(xA;xB) is given byE(xA;xB) = Z 10 d�jx(0)(�)j2 = aros(nA � nB)rArBp1� (nA � nB)2 ; (21)nA and nB being de�ned as nA = xA=rA ; nB = xB=rB : (22)For the integral involving the gradient of 
(1), we obtain� 12(x�B � x�A)(x�B � x�A)Z 10 ��� �
(1)�x� (xA; x(0)(�))h(1)��;�(x(0)(�))d�= M24 �(x0B � x0A)2 + R2AB� ��1 + rArB� 1R2AB (x0B � x0A)2 + R2ABrArB + (xA � xB)�2E(xA;xB)� (x0B � x0A)2 � R2ABR2AB F (xA;xB)rB � : (23)Substituting Eqs. (20) and (23) into Eq. (14), and then arrying out the alulation of thesquare of the gradient of 
(1)(xA; x), we obtain an expression for the world funtion as follows
(xA; xB) = 12(x0B � x0A)2 � 12R2AB�GM2 �(x0B � x0A)2 + R2AB�F (xA;xB)+G2M24 � (x0B � x0A)4R2AB � 1rArB + (xA � xB) � 12F 2(xA;xB)� (24)+(x0B � x0A)2 � 2rArB + (xA � xB) � (2� � + 2)E(xA;xB)+ (2 + )F 2(xA;xB)i+R2AB � 2rArB + (xA � xB) � 3Æ4 E(xA;xB)� 22 F 2(xA;xB)��+O(G3) :Now substituting for 
(xA; xB) from Eq. (24) into Eq. (5) and then solving this equationthus obtained for x0B�x0A, we �nd for the time transfer funtion in the seond post-MinkowskianapproximationT (xA;xB) = RAB + ( + 1)GM3 ln�rA + rB +RABrA + rB �RAB� (25)+ G2M2RAB5 ��E(xA;xB)� (1 + )2rA rB + (xA � xB)� ;328
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