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ABSTRACT. Astrometric missions like GAIA and SIM will require microarcsecond accuracy
in the measurement of the direction of light rays. At this level of precision, it is necessary to
develop a relativistic modelling of the light deflection up to the order G2, G being Newton’s
gravitationnal constant. We emphasize that this modelling may be achieved without integrating
the differential equations of null geodesics, by improving the method of the world function devel-
oped by Synge. As an example, we give a detailed calculation of the light deflection in a static,
spherically symmetric space-time considered in the post-post-Minkowskian approximation. The
world function also makes it very easy to determine the time transfer function.

1. INTRODUCTION

With advances in technology, great improvements in astrometric accuracy will certainly be
made in the near future. Two major space astrometric missions are already planned to measure
the positions of celestial objects with typical uncertainties in the range 1-10 pas (microarcsec-
ond). The Global Astrometric Interferometer for Astrophysics (GAIA, Perryman et al. 2001)
mission, to be launched not later than 2012, will be capable to measure the positions of 25
million stars with a global uncertainty better than 10 pas and a few million with an uncertainty
better than 4 pas. The Space Interferometric Mission (SIM, Danner and Unwin 1999) will be
capable of at least 4 pas accuracy for 3000 quasars and fundamental stars.

For these missions, and for those which will follow them, all relativistic effects contributing
to the deflection of light must be determined at a level of 1 pas, or significantly better. It was
shown that this level of accuracy can be achieved by the GATA mission if one retains only the
perturbative terms of the background metric which are of the first order with respect to the
Newtonian gravitational constant G (the so-called post-Minkowskian approximation). However,
it must be emphasized that this approximation is sufficient only because the light rays received
by GAIA will be propagating sufficiently far from the Sun. If we want to build a relativistic
model for any light ray propagating through the Solar System, it will be necessary to take into
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account terms of order G2 in the metric. The aim of the present paper is to furnish a general
method allowing the calculation of the deflection of light within the post-post-Minkowskian
approximation of any metric.

Since the pioneering works (see, e.g., Will 1988 and Refs. therein), a lot of papers investigated
the deflection of light and/or the time delay effects in the linearized, weak-field limit of general
relativity ( Klioner 1991, Klioner and Kopeikin 1992, Kopeikin 1997, Kopeikin and Schéfer 1999,
Ciufolini and Ricci 2002). In (Kopeikin and Schifer 1999) especially, one finds an exhaustive
determination of light rays in the field of an arbitrary large number of moving point masses in
terms of retarded Liénard-Wichert potentials.

In contrast with the generality of the results obtained at the first order, the investigations
undertaken at the second order in G have been confined to static spherically symmetric fields
(see Epstein and Shapiro 1980, Fischbach and Freeman 1980 for the deflection angles, Klioner
and Kopeikin 1992, Richter and Matzner 1982 and 1983, Brumberg 1987, for the time delay and
light bending).

In the above-mentioned studies, the deflection of light and the time delay are calculated by
integrating the differential equations of null geodesics. This procedure is workable as long as one
contents oneself with analyzing the effects in the first-order post-Minkowskian approximation
or considering the case of a static spherically symmetric field. However, analytical or numerical
integrations of the geodesic equations require very cumbersome calculations when the effects in
G? are taken into account. So we explore an alternative method, based on the two-point world
function, as developed by Synge (Synge 1964). This method presents the decisive advantage to
avoid the solution of the null geodesic equations. Moreover, the knowledge of the world function
allows an explicit determination of the travel time of a photon. We summarize here the results
that we have obtained for a general metric within the second post-Minkowskian approximation
and we apply them to a static, spherically-symmetric ds® containing three post-Minkowskian
parameters. Thus we recover with simple quadratures formulae obtained in John 1975 with
heavy calculations.

In the following, we suppose that space-time is covered by a global quasi-Cartesian coordinate
system z# = (2°,2') = (ct,x), ¢ being the speed of light in a vacuum. The signature of the
metric is (+ — ——).

2. THE WORLD FUNCTION

Consider two points x4 and g in a given space-time endowed with a metric g,, and assume
that £ 4 and zp are connected by a unique geodesic path I'. Throughout this paper, A denotes
the unique affine parameter along I' which fulfills the boundary conditions A4 = 0 and Ap = 1.
The so-called world-function of space-time (Synge 1964) is the two-point function Q(x4,xpg)
defined by

1t o dz# dz”
Qzavan) = 5 [ (" () G- Grah, 1)

the integral being taken along T'. Tt is easily seen that Q(za,z5) = €[sap]?/2, where sap
is the geodesic distance between x4 and zp and ¢ = 1,0, —1 for timelike, null and spacelike
geodesics, respectively. It results from Eq. (1) that the world-function Q(z 4,2 p) is unchanged
if we perform any admissible coordinate transformation.

The utility of the world-function for our purpose comes from the following properties (Synge

1964) :
i) The world function satisfies the Hamilton-Jacobi equations
1 .5 o0 of
59 TA) G 4\ LA, ZB)— 7 \TA,TB :QIA,IEB ) 2
5 4°704) g (028) 5 (0asom) = Uoason) )
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S0 ) o (w0, 25) (@, 2) = O, ) ®)
Tp 3$B
i1) The vectors (dz®/d\)4 and (dz®/d)\)p tangent to the geodesic I' respectively at z 4 and
xp are given by
daP 09 da? Y 4
<ga5H>A__@a <gaﬁK>B_ax%' (4)

As a consequence, if Q(z 4, zp) is explicitly known, the determination of these vectors does not
require the integration of the differential equations of the geodesic.
ii1) Points x4 and zp may be linked by a light ray if and only if the condition

Qza,2z8) =0 (5)

is fulfilled. Thus, Q(z 4, x) = 0 is the equation of the light cone C(z4) at 2 4. This fundamental
property shows that the knowledge of Q(z 4, zp) yields (at least in principle) the knowledge of
the travel time tp — t4 of a photon connecting two points z4 and zp. It must be pointed out,
however, that solving the equation Q(cta, x4, ctp,xp) = 0 for tp yields two distinct solutions
t5 and t5 since the timelike curve 2 = 2% cuts the light cone C(z4) at two points 2, and 7,
a:E being in the future of z;. In the present paper, we shall always regard x4 as the point of
emission of the photon and zp as the point of reception, and we shall write ¢tp for tzg,. With
this convention, tg — t4 may be considered either as a function of t4, 4, g, or as a function
of tp, x4, xp. So we put

th—ta=Tc(ta,xa,zp) = T;(tp, Ta,TB), (6)

and we call T,(ta, x4, xp) the emission time transfer function and 7, (¢, x4, xp) the reception
time transfer function.

Consider now a stationary space-time. In this case, we use exclusively coordinates (z*) such
that the metric does not depend on z°. Then, the world-function is a function of a:UB — x?q, T A
and zp, and (6) reduces to a relation of the form

t;-—tA::'T(mA,mB). (7)

The knowledge of T enables to determine the direction of light rays since a comparaison between
Eq. (5) and Eq. (7) immediately shows that the vectors (I#) 4 and (I*) g defined by their covariant
components

()4 =1. (ks = e T(@aop), ©
T

(o) =1, ()5 = —c5o=T(@a,2n), o)
B

are tangent to the ray at x4 and xp, respectively. It must be pointed out that these tangent
vectors correspond to an affine parameter such that o = 1 along the ray (note that such a
parameter does not coincide with \). Generally, extracting the time transfer formula Eq. (7)
from Eq. (5), next using Eqgs. (8)-(9) will be more straightforward than deriving the vectors
tangent at x4 and zp from Eq. (4), next imposing the constraint (5).

In the present work, we assume that the gravitational potentials may be expanded as

Guv = T + Gh() + G*h(Z) + O(G?). (10)
As a consequence, the world function admits an expansion as follows

Qza,zp) = QO (@4, 25) + GO (24, 25) + G2 (24, 25) + O(G?), (11)
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where Q) is the Minkowskian world function
1 7

A (w2, 58) = Sy (2 — 24) (2 — 2'y) (12)

and Q) is given by (Synge 1964, Linet and Teyssandier 2002)

1 14 14 1
O (z4,25) = 5(95’13 —ahy) (2% — wA)/U i) (z0)(X))dA. (13)

Using a method inspired by Buchdahl 1990, we show elsewhere (Le Poncin-Lafitte et al.
2004) that Q®)(z 4, zp) may be written in the form

oo 020 ) AL NIEA
-1 OzP (anx([])( )) uua(x([])( ))
19100 o0
Zphv

where the line integrals are taken along the unperturbed geodesic connecting = 4 and zp defined
by the parametric equations

2%, (\) = (2% —2%)A+25, 0<A<L, (15)

3. APPLICATION TO A STATIC, SPHERICALLY SYMMETRIC BODY

In order to apply the general results obtained above, let us determine the world function
and the time transfer function in the second post-Minkowskian approximation when points z 4
and xp are both outside a static, spherically symmetric body of mass M. We suppose that the
metric components may be written as

m_ 2M ) _ 1y _ _29yM .
hoy = T2y hyy =0, hy' =— 2 dij »
(16)
2) 2,6M2 (2) (2) 30 M2
hoy = A2 h[]i =0, hz'j T T 92 ij o

where  and y are the usual post-Newtonian parameters and ¢ is a post-post-Newtonian param-
eter (in general relativity, 5 =y = 6 = 1). Furthermore, we suppose that x4 and zp are such
that the connecting geodesic path is entirely in the exterior space. We use the notations

r=lz|, ra=|zal, rp=|rB], Rap=|TB—TAl.

It is easily seen that GQ(I)(xA, xpg) is the term due to the mass in the multipole expansion
of the world function given by Eq. (56) in Linet and Teyssandier 2002 (see also John 1975) :

M
OO, wa, 5%, w5) = 5 [ — %) +7Fap] Fl@a.zp), (18)
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where

X 1 <7"A +rp+ RAB) (19)

1
Flxa,xp) = = In
(@4, 25) /0 [z0)(A)|  Ras ra+rp— Rap

For the integrals of second order involving hf,,) and terms quadratic in hE},,), we find

1 1
30t =) = o) [ [ B2 () = 0 B o) () B a0y ()]

= 2 -2y - ot + (202 - £ By Blacan) (20)

where E(x4,xp) is given by

Bloa,z )_/1 d\ B arccos(ng - npg)
B o lzNP?  rarpy/1—(na-ng)?’

ny and np being defined as

nA=xA/TA, ng=xg/rp. (22)

For the integral involving the gradient of Q(!), we obtain

1 ) v oM
- 5at =) (e — ) [ 0" G (a0 () Aty (ai ()

oxP
M?2 < ) (z% — 2%)* + YR
)2

0
= — [(«% — 29%)? + yR?
4 [( A Y AB RAB 7"A7"B+($A mB)

c
(95 - xA - ’YRAB F(za,zp)
R,24B rB

—2vE(x A, zB) — (23)

Substituting Egs. (20) and (23) into Eq. (14), and then carrying out the calculation of the
square of the gradient of Q(l)(ac A, ), we obtain an expression for the world function as follows

1 1
Qza,zB) = 5(95% - 9521)2 - §R313

—— (% — 2%)* + yR%p] F(@a, zp)
G2 M? { (% — 29)* [ 1
RE‘B rarg+ (A 2B)

2 2y (9 _ -
Pl e — 2 A+ 2)B@a )

+ 249 F(@a,zp)]
,.YZ 39 2

— g P@azp) - —F (za.zp)| ¢ +O(G?).
[TATB—F(:BA zpg) 4 ]}

- %FZ(mA,a:B)] (24)

+(z% — 2%

+R% 5

Now substituting for Q(z4,zp) from Eq. (24) into Eq. (5) and then solving this equation
thus obtained for % — 2%, we find for the time transfer function in the second post-Minkowskian
approximation

T(mA,CBB) =

1HGM
RAB+ (’)’+ )G In <TA+TB+RAB> (25)

c c3 ra+ 1R — Rap
G?’M?Rp (1+~)? :|
+ ———— |kE(x4g,xB) — ,

cd (@1, 25) rarg+ (xa-xp)

328



where

30

(26)

For v = 8 = § = 1, we recover the expression of time transfer found by Brumberg (1987) within
general relativity. Now, substituting for 7 from Eq. (25) into Egs. (8)-(9) and then putting
Nup = (£ — ®a)/Rap yield for the covariant components of the vectors tangent at &4 and

Tp

la=(lj)a=—-Nap+ G’l(l)(mA,azB) + G21(2>(mA,az3) + O(G3),
Ig = (li)p = ~Nap — Gl (zB, Ta) - G21(2)(m3,mA) +0(G?),

where contributions 1) are given in Linet and Teyssandier (2002)

M (ra+rp)Nap+ Rapna
l(l)(ﬂ?A,mB) = _(’Y + 1)6_2 TATB(]- + nA-nB) .

For the post-post-Minkowskian effect we find

loy(xa,zp) = —krarpE(xa,zp)| Nap
(2)

1+na.np
M? RAB[ (14+~)? _HTATBE(mA,mB)—nA.nB

M? (14 )2
crarg

cArarg ra |[[1 +nangl? 1—(nang)? na
M? Rap (1+’Y)2 _Hl—(nA.nB)TATBE(wA,iBB)
cArarg T4 |[[1 + nanpgl? 1—(nanpg)?
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