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ABSTRACT. In neglecting by very small relativistic direct third—body perturbations it is pos-
sible to use formally Newtonian equations of the Earth’s rotation in DGRSC, dynamically non-
rotating geocentric ecliptical reference system with Terrestrial time TT as the time argument.
To obtain relativistic indirect third-body perturbations in the SMART theory of the Earth’s
rotation one can use the relativistic formulae expressing the DGRSC position vectors referred
to TT in terms of the VSOP BRSC (barycentric ecliptical reference system) position vectors
referred to Barycentric dynamical time TDB. Then the right-hand members become functions
of TT alone and one can use the standard SMART iteration techniques to obtain the relativistic
contributions into three Euler angles relating ITRS and DGRSC.

1. INTRODUCTION

SMARTY7 (Bretagnon et al. 1997, 1998, 2003) represents the most accurate semi-analytical
theory of rotation of the rigid Earth constructed so far. In the recent years Pierre Bretagnon, the
principal author of this theory, was extending it for the case of the non-rigid Earth (Bretagnon
2002) using the transfer function of Mathews et al. (2002). SMART97 is a purely Newtonian
theory. Bretagnon was going also to convert it into relativistic theory (Bretagnon and Brumberg
2003) but his death broke off this work. The aim of the present paper is to continue it.

One may find in literature relativistic equations of the Earth’s equations of different type
in dependence on adopted Earth’s model (see Brumberg 1998; Klioner and Soffel 1998, 1999
and references therein). Instead of dealing with such complicated equations we prefer to start
with by taking into account in SMART97 the relativistic indirect third—body perturbations as
proposed by Bretagnon and Brumberg (2003). In doing so, we neglect by very small direct
relativistic third—body perturbations. It enables us to retain the formally Newtonian differential
equations of the Earth’s rotation and to get the relativistic extension of SMART97 solution
by applying in the right-hand members of these equations the four-dimensional transformation
between geocentric and barycentric quantities. It leads to the main relativistic terms in the
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Earth’s rotation problem called by us the relativistic indirect third—body perturbations.

All expressions below are given in the post-Newtonian approximation within ¢~2 accuracy.

2. RS HIERARCHY

2.1 Barycentric and geocentric reference systems

We use below the hierarchy of relativistic reference systems (RSs) constructed in (Brumberg et
al. 1996; Brumberg 1997; see also the detailed exposition by Bretagnon and Brumberg 2003)
and illustrated by Fig. 1.

GRS™ DGRS KGRS (GCRS) DGRSC KGRSC DG_RSQ K(iRSQ GRS level

[ - @
(ITRS) TCG time
BRS level

[ L & ® - - - - - .. °
BRS* BRS (ICRS, BCRS) BRSC BRSQ TCB time

Figure 1: Barycentric and Geocentric Reference Systems (RSs)
B — barycentric, G — geocentric, C — ecliptical, Q — equatorial,
D — dynamical, K — kinematical, © — rotating (BBG, 1996);
ICRS — International Celestial RS, ITRS — International Terrestrial RS (IERS);
BCRS — Barycentric Celestial RS, GCRS — Geocentric Celestial RS (IAU 2000)

The four reference systems of the barycentric (B) level referred to the barycentric coordinate
time ¢ =TCB (or to TDB in practice) are related by means of

[BRS] = P(#)[BRSC] = P(t)P[BRS] = P(t)PoPS[BRSQ). (1)

[ ] means here and below a triplet of the corresponding spatial coordinates.
The corresponding reference systems at the geocentric (G) level referred to the geocentric
coordinate time u =TCG (or to TT in practice) are related by means of

[GRST] = lf’(u)[DGRSC] = llf’(u)Pc [DGRS] = Jf(u)Pcpg[DGRSQ], (2)
[GRS*] = I;D(u)[KGRSC] = I;D(u)PC [KGRS] = I;D(u)Pch [KGRSQ). (3)

Kinematically (K) or dynamically (D) non-rotating GRSs are distinguished by subscript g, i.e.
q = 0 for K versions and ¢ = 1 for D versions. K and D versions of GRSs are related by means
of

[KGRS] = (E — ¢ 2F)[DGRSY], [KGRSC] = (E — ¢ ?F¢)[DGRSC],
[KGRSQ] = (E — ¢ ?Fg)[DGRSQ] (4)
and
{’(u) = If(u)(E — ¢ *Fe). (5)
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Here F' stands for the geodetic rotation matrix (its expression vanishing for J2000.0 is given by
Bretagnon and Brumberg 2003) whereas Fo and F represents its analogues for the ecliptical
(C) and equatorial (Q) GRSs, respectively, i.e.

Fo=PcFPL,  Fo=PoFP}. (6)

The constant rotation matrices Pc, Pg used in this paper are taken in accordance with DE403,
i.e.

Pc = Di(e)D3(x), Pq = Ds(x) (7)
where e = 23°26'21.40928" , x = —0.05294". The slightly different values are proposed in (Bre-
tagnon 2002; Bretagnon et al. 2003) for future analytical planetary ephemerides. The problem
of consistency of the existing analytical and numerical planetary and lunar theories as well as
of the Earth’s rotation theory with the hierarchy of relativistic reference systems is not still
completely solved.

Operations with rotation matrices are often replaced by operation with rotation vectors by
using the relationships of the type

Fi =l Fik, F9 = i F* eijk = 3(i — 3)(j — k) (k —1). (8)

A

P(u) represents the Earth’s rotation matrix relating DGRSC and terrestrial matrix ITRS (des-
izgnated here also as GRS™). Since SMARTY7 is supposed to be constructed in DGRSC three
Euler angles, 1,10, ?, <1P, of matrix I;’(u) may be regarded as dynamical Earth orientation param-
eters (EOP). The analogous Euler angles 1,00, g, ®, of matrix ](?(u) relating KGRSC and ITRS
may be regarded as kinematical EOP. One has

I;D(U) = D3(¢)Di(=0)D3(=4)  (¢=0,1), (9)

q q q
D; being the elementary rotation matrices. The dynamical and kinematical Euler angles are
related by the formulae

072

p—p=— (Fésinq,b—l—F(%cosz/)), f—9=c? (Fécosw—nginz/)),
1 0 1 0

sin 6

Cosz (Fl sing + F2 cos ) (10)

Y=o Fe -
1 0 Sin
(in the post-Newtonian approximation there is no need to distinguish between Newtonian and
relativistic values in the relativistic right—-hand members). These relationships have been actually
used in SMART. In taking into account only the geodesic precession and nutation in narrow

sense, one has Fé = Fg = 0 and, hence, ¥ =¥, § = 6.
1 0 1 0

Note that to get the designations of the original papers on SMART (Bretagnon et al. 1997,
1998) one should put ¢ = —¢ and 0 = —w.
To complete the discussion of the RS hierarchy of Fig. 1 let us note that the Earth’s rotation

matrix relating GCRS and ITRS is determined in our notation as T' = P(u)Pc. The Earth’s
0
rotation in BRS may be described by the rotation matrix P(t*) = P(u) where t* is the solution
0

of the relativistic time equation

u=t"—c 2A(t") (11)
with the time function determined by
GMy4
TEA

A(t) = v+ Up(t,xp),  Up(t.xp)= ) (12)

A£E

304



with initial condition A(tg) = 0, o being the 1977 Origin (see the detailed discussion by Bre-
tagnon and Brumberg 2003). However, rotating system BRS™ is not used in practice.

2.2 Relativistic extension of SMART97 by using RS hierarchy

It is assumed that VSOP theories are constructed in BRSC with TDB as a time argument
while SMART97 is considered in DGRSC with TT as a time argument. Therefore, in treating
SMART in the relativistic framework the values of masses should be adequately adjusted taking
into account that (GM)rpp coefficients in VSOP and (GM )yt coefficients in SMART are related
by

(GM)rr = (1 + Lc¢)(GM)TDB (13)
with the value of L = 1.480826855667 x 10~8 obtained with the VSOP solution (Bretagnon and
Brumberg 2003). But this mass-adjustment is not made in the present work aimed to evaluate
the influence of the relativistic indirect third—body perturbations. Indeed, the main perturbation
factors in the right—hand members of the DGRSC equations of the Earth’s rotation, are due
to the action of the Sun (S) and the Moon (L). Initially, these right-hand members contain
geocentric position vectors w4 for A = S, L. As proposed in (Bretagnon and Brumberg 2003)
these geocentric vectors are to be expressed by virtue of BRSC+DGRSC transformation in
terms of BRSC quantities as follows:

w'y(u) = 2% (u) — 2 (u) + 2 [A(t*, Fap) + VEL ARV 5], (14)
with xg, vg, x4, v4 denoting BRSC coordinates and velocities of the Earth and the disturbing
body, respectively, rap = x4 — Xg, Vaogp = U4 — Vg and

AL, rap) = %vErAEva - qsiijjrff]E + Ug(t,xp)ryp + aprapriys — %rE‘EaiE, (15)
ap being BRSC acceleration of the Earth. The moment ¢* means here
TDB* = TT + ¢ %4, (16)
if time function A(¢) is represented in TDB as
A(t) = Lot + Ap(t). (17)

The function sz representing the BRSC position of the Earth in terms of TCG or TT is given
in our case by

(1 — Le) 2 (TT) = 2'5(TDB*) = 2% (TT) + ¢ 2405 + ... . (18)

The function zfq is determined by the same formula by replacing F for A. The power—trigonometric
time series for all functions occurring here are tabulated in (Bretagnon and Brumberg 2003).

Functions z%(TT), %, (TT) represent just VSOP series of the argument TDB taken for the
moment TT. Therefore, they are expressed in terms of 11 fundamental arguments (mean longi-
tudes of eight major planets and Delaunay arguments D, F', [ of the lunar theory) representing
now linear functions of TT. One more fundamental argument ¢ (the linear part of the expression
for the Euler angle ¢) is specific for SMART solution. In such a way, the right—hand members of
the DGRSC equation of the Earth’s rotation become functions of TT and may be solved by iter-
ations just in Newtonian case (Bretagnon et al. 1997, 1998). In result we get the solution taking
into account relativistic indirect third—body perturbations. Based on the dynamical solution for
P, 0, 910 one finds by means of (10) the kinematical solution v, 0, 900 and then the astrometric
11 0o 0

Earth’s rotation matrix T' = P(u)P¢ including now the main relativistic corrections.
0

3. RIGHT-HAND MEMBERS
Computation of the right—hand members of the Earth’s rotation equations in the SMART theory
(Bretagnon et al. 1997, 1998) is based on the VSOP series for x4 (TDB) where (C) indicates
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the ecliptical system BRSC and A stands for the body A (A = E for the Earth, A = S for
the Sun, A = L for the Moon, etc.). In the original SMART theory referred to TDB the
geocentric coordinates of the Sun and the Moon in DGRSC are treated just as the differences of
the corresponding BRSC coordinates x(c)s — X(¢)r and x(c)z, — x(o)g referred to TDB. In the
present work the equations of the Earth’s rotation are referred to TT with using w(c)4(TT) for
the geocentric coordinates of the Sun (A = S) and the Moon (A = L). Considering the smallness
of the planetary perturbations in the Earth’s rotation problem all disturbing planets may be
treated just as in the Newtonian case, i.e. by putting w(cy4(TT) = x(¢)4(TDB) — x(¢y4(TDB)
and TT~TDB.

Starting from the VSOP values x(¢)4(TDB) for A = E, S, L and the ICRS coordinates
of the Earth zg(TT) resulted from the data of (Bretagnon and Brumberg 2003) we compute
successively the series for the solar BRSC coordinates z(cys(TT), for the lunar BRSC coordi-
nates x(¢)r,(TDB) — x(¢)p(TDB) and z¢)1,(TT) — z(¢)r(TT), and finally for the solar DGRSC
geocentric coordinates wc)s(TT) and for the lunar DGRSC geocentric coordinates wcyz, (TT).
All series are presented in the compact form adopted presently in VSOP, i.e.

wiy(t) =t | Y X5 cos(yf + v t) (19)
a k

The time argument ¢ is in fact either TDB or TT. The fundamental trigonometric arguments of
the semi-analytical SMART series are given in Appendix A.

4. FINAL EXPANSIONS

Having got the relativistic coordinates wcy4(TT) (A = S, L) we perform iterations as described
in (Bretagnon et al. 1997, 1998) to obtain the solution with taking into account the main rel-
ativistic indirect third—body perturbations. This solution is compared with the Newtonian
SMART solution based on the Newtonian luni-solar coordinates x(cy4(TDB) — x(¢)r(TDB)
(A = S, L). Since in the Newtonian theory there is no difference between TT and TDB we
may just compare the coefficients of the series (19) for both solutions. The differences between
the dynamical Euler angles 1), ?, 910 (relating ITRS and DGRSC) in the Newtonian (N) and
1

relativistic solutions demonstrate the influence of the indirect relativistic third-body perturba-

tions. The dynamical Euler angles for both (Newtonian and relativistic) versions are converted

by means of (10) into the kinematical Euler angles v, 9, ¢ (relating ITRS and KGRSC) also
0 0 0

for the Newtonian (N) and relativistic solutions. The differences between the dynamical and
kinematical Euler angles for the relativistic solution (evidently, within the post—-Newtonian ap-
proximation the similar differences for the Newtonian version are practically the same) exposed
in Appendix B (Tables (1)-(3)) improve the corresponding values given in (Bretagnon et al.
1997). The differences between the kinematical Euler angles in the Newtonian and relativistic
solutions (Tables (4)-(6) of Appendix B) differ only slightly from the corresponding differences
between the dynamical angles (this discrepancy reveals only in terms of the third and higher
power of time). For the sake of completeness, we reproduce also the series for the geodesic
rotation vector F¢ (Tables (7)-(9) of Appendix B).

Let us note once again that the Newtonian and relativistic SMART solutions are distin-
guished just with respect to the employed luni—solar coordinates as stated above. When con-
verting from DGRSC to KGRSC both these solutions are transformed practically in the same
manner as prescribed by the geodesic rotation (10). Newtonian solutions in DGRSC and KGRSC
are differ by relativistic terms caused by the mutual rotation of reference systems not affecting
the Newtonian nature of the solution itself.
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The final expansions show that the differences in the Euler angles for the Newtonian and
relativistic solutions are of the order of 35 pas over 20 yrs (cf. the precision of SMART97 of
2 pas) and 150 pas over 100 yrs (cf. the precision of SMART97 of 12 pas). Therefore, the
relativistic indirect third—body perturbations found here are within the accuracy of SMART97
theory and may be used to improve this theory.

5. OPEN QUESTIONS

Before concluding this paper we would like to mention some points of possible confusion due to
the lack of rigorous astronomical definitions.

1. The main astronomical reference systems ICRS and GCRS being now well defined
(TAU 2001) it is necessary that the orientation of the reference systems underlying the ex-
isting ephemerides such as DE, LE, EPM, VSOP, ELP, SMART, etc., be rigorously related with
these fundamental RSs. The constant rotation matrices Po, P relating ICRS with BRSC and
BRSQ, respectively, just illustrate the adjustment of the VSOP RS (BRSC) to ICRS.

2. The geodesic rotation vector F is given by its first order derivative (see, e.g., Bretagnon
and Brumberg 2003) but no one TAU resolution specifies the arbitrary constant involved in
integrating this equation. In our work we imply the condition F = 0 for J2000.0 as suggested
in (Bretagnon and Brumberg 2003).

3. In spite of the TAU definition of the epoch J2000.0 with respect to TT the existing
planetery and lunar theories often make use of the epoch J2000.0 with respect to TDB.

4. The use of AS (astronomical system of units) in BRS and GRS needs to be specified as
well. In using ‘practical’ time scales TDB (or else Tepn) and TT instead of ‘theoretical’ time
scales TCB and TCG one has to deal with the scaling factors (1 — Lp) and (1 — L¢) for the
coordinates x, w and mass—coefficients GM, GM in BRS and GRS, respectively (Brumberg et
al. 1998). L is now fixed by the IAU Resolution B1 (2000) as a defining constant. By contrast,
Lp and L¢ related by means of 1 — Lp = (1 — L¢)(1 — L) depend on specific planetary
theories. Within the currently employed approximation M = M one has (13). The AS unit of
time d = 1day = 86400s is defined directly by its relationship to the SI unit of time. The AS
unit of mass is defined as the mass of the Sun Mg. The AS unit of length AU is defined by the
condition k = v/G = 0.01720209895 provided that the units of measurement are d, Mg and AU.
This definion involves the relationship with the SI unit of length

2\ 1/3
AU = (Gﬂgd ) : (20)

in form 1 AU = x m. The defining relation (20) results from the Kepler’s third law in standard
designations n%a® = GMs. To distinguish between TDB and TCB values let us mark TDB
values by the asterisk *. One has (in ST units)

a*=(1-Lgp)a, vt =w, (GMg)* = (1 - Lp)(GMg), n*=0-Lg) 'n (21)
with the third Kepler’s law n*2a** = (GMs)*. In astronomical units there results
n?a® = GMs x*, n*2a*? = (GMs)* x** (22)

where 1(AU)rpp = x* m. Hence,
3 2 3
* * * M
(X ) (n ) <a ) i (23)
b% n a M,
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Therefore, the standard AS values d = 1 day, Mg = 1, AU = 1 correspond to BRS with TCB.
When using BRS with TDB there results d* = (1 — Lg)d = (1 — Lp) day and one has to choose
between two currently used options.

First option:

Mg =(1-Lg)Ms = (1-Lp), AU* = (1 - Lg)AU = (1 - Lp), X=X (24)

(the unit of mass = (1 — L) solar mass of AS TCB, the unit of length = (1 — L) astronomical
units of length of AS TCB, all formulae (21) are valid both in SI and AS units, the same
numerical value of the AS unit of length in m both for TDB and TCB).

Second option (based on E.M.Standish comments at the GA TAU 2003):

Mi=Mg=1, AU*=AU=1, yx*'=(1-1Lp)' 3y (25)
resulting to
a_* (- Ly’ v_* —(1=Lp)BY (26)
X X X
or just
a* = (1— Lg)*?a [AU], v* = (1-Lp) v [AU/day] (27)

(the unit of mass = 1 solar mass of AS TCB, the unit of length = 1 astronomical units of length
of AS TCB, formulae (21) are valid only in ST units to be replaced by (27) in AS units, the same
numerical value of the heliocentric constant GMg in SI units both for TDB and TCB).

6. CONCLUSION

The relativistic indirect third-body perturbations considered in this paper contribute within
35uas accuracy in the Euler angles determining the Earth orientation parameters (relating ITRS
with DGRSC or KGRSC). Therefore, they are indeed of practical importance for the SMART
solution. Using the formalism of (Bretagnon and Brumberg 2003) it is possible to compute the
rotation vector A of GCRS—ITRS transformation for the Newtonian and relativistic SMART
solutions and to find explicitly the relativistic contributions in the components of this vector.
Denoting the triplet of the ITRS spatial coordinates by y we may represent the GCRS—ITRS
in form

y=Tw (28)
T = 105(u)PC. (29)
T = D3(f)D1(— Q)D3(— Tf)Dl(@)D:a(X) : (30)

Introducing the rotation vector A one may use the rotation formula
T = R(A), R(A)x = x —sina(A x x) + (1 — cosa)[A x (A x x)] (31)

where a = |A] is the rotation angle, A= A /a is the unit vector along the rotation axis, x is an
arbitrary coordinate vector. Vector A is given in (Bretagnon and Brumberg 2003) in three forms
corresponding to ‘dynamical’ representation with three Euler angles, ‘classical kinematical’ rep-
resentation (precession/nutation, diurnal rotation and polar motion) and modern ‘kinematical’

representation involving the non-rotating origin. The first representation in terms of ¥, 9, ¢
0 0 0

is most closely related with the SMART solution. Evaluating the variation dA between the
relativistic and Newtonian values of A one may find the influence of the relativistic terms on
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the GCRS—ITRS transformation (see (A.24), (A.25) in Bretagnon and Brumberg 2003). This
work is now in progress.

Numerical values exposed in this paper are given mainly for the illustration purposes. The
complete expansions involved in the Newtonian and relativistic SMART solutions may be avail-
able in the electronic form by request to the second author .
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APPENDIX
A. Fundamental arguments

As stated above, the expansions of the present paper have 12 trigonometrical arguments as
follows:

A1(t) = 4.40260867435 4 26087.9031415742 ¢,
Ao(t) = 3.17614652884 + 10213.2855462110¢,
A3(t) = 1.75347029148 + 6283.0758511455¢,
A(t) = 6.20347594486 + 3340.6124266998 ¢,
As(t) = 0.59954632934 + 529.6909650946 ¢,
Xe(t) = 0.87401658845 + 213.29909543801,
A7(t) = 5.48129370354 4 74.7815985673 ¢,
As(t) = 5.31188611871 + 38.13303563781¢,
D(t) = 5.19846640063 + 77713.7714481804 ¢,
F(t) = 1.62790513602 + 84334.66157178371¢,
I(t) = 2.35555563875 + 83286.9142477147¢,
d(u) = 4.89496121282 + 2301216.7536515365 w .
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The mean longitudes of eight major planets A;(¢) are referred to ICRS (to the reference system
of of DE403 in practice). Therefore, their constant parts are those given in (Bretagnon et al.
1998). Their frequencies are also issued from (Bretagnon et al. 1998) but without taking into
account the precession. The Delaunay arguments D(t), F'(t), [(t) of the lunar theory are taken
from (Bretagnon et al. 1998). Originally, these arguments are functions of ¢ =TDB but in ac-
cordance with (18) they are used here just as the linear functions of w =TT. The last argument,
¢(u), representing the linear part of the Euler angle ¢ of the Earth’s rotation is taken from
(Bretagnon et al. 1998) as well. All values here and below are given using the astronomical unit
as the unit of length (1 AU=149597870.691 km as in DE403) and 1000 Julian years (365250
Julian days) as the unit of time (tjy).

B. Final expansions

This Appendix contains the initial terms of the final series described in Section 4. All series
are presented in form of (19). The data in the 6-column Tables 1-9 read: ordinal number of the
term, components of the trigonometric argument (mean longitudes of eight major planets from
Mercury to Neptune, arguments D, F, [ of the lunar theory and the Earth’s rotation angle ¢)
given to show the physical meaning of the term, coefficient X, the phase angle 7 of the argument,
the frequency v of the argument and exposant « of power of ¢. The time argument ¢ is either
TDB or TT as indicated explicitly. The negative components of the trigonometric arguments
are underlined. The coefficients of the series in Tables 1-6 are given in radians. The coefficients
of the series in Tables 7-9 for F¢ are given in arcseconds to facilitate their comparison with our
previous results and the results of other authors. The coefficient of the term No. 11 in Table 9
corresponds to geodesic precession. The truncation level is 0.1E-11 over 1000 yrs in Tables 1-3,
0.5E-11 over 100 yrs or 0.1E-9 over 1000 yrs in Tables 4-6, and 0.1E-7 arcsecond over 1000 yrs
in Tables 7-9.

Table 1. Differences ¢ — ¢ (TT) (GRSC)
1 0

1 001000000000 .742300349 — 09 .466926087 + 01 .628307585 +04 0
2000000000000 .397739929 — 10 .000000000 + 00 .000000000 +00 O
3 001000001100 .145708061 — 10 .252987892 + 01 .337814272 403 0
4 002000000000 .930524508 — 11 .462564700 4+ 01 .125661517 +05 O
5 000025000000 .203878362 — 11 .709948865 + 00 .711354700 + 01 O
6 000000000000 .930785387 — 04 .000000000 + 00 .000000000 + 00 1
7 001000000000 .474945452 — 10 .260332598 + 01 .628307585 + 04 1
8 001000001100 .355965693 — 11 .960586737 + 00 .337814272 403 1
9 002000000000 .116661765 — 11 .259734787 + 01 .125661517 +05 1
10 000000000000 .244280065 — 06 .314159265 + 01 .000000000 + 00 2
11 001000001100 .299152471 — 10 .417657693 + 01 .337814272 +03 2
12 001000000000 .203316536 — 11 .956674751 + 00 .628307585 + 04 2
13 002000000000 .172295028 — 11 .340748453 + 01 .125661517 + 05 2
14 000000000000 .365594907 — 08 .314159265 + 01 .000000000 + 00 3
15 001000001100 .117386023 — 10 .261099272 + 01 .337814272+03 3
16 002000000000 .121017860 — 11 .500979962 + 01 .125661517 + 05 3
17 000000000000 .579411556 — 08 .000000000 + 00 .000000000 + 00 4
18 001000001100 .269183168 — 11 .106628445 4 01 .337814272 +03 4
19 000000000000 .388062532 — 10 .314159265 + 01 .000000000 + 00 5
20 000000000000 .247036977 — 10 .314159265 4 01 .000000000 + 00 6
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Table 2. Differences § — 9 (TT) (GRSC)
1 0

001000001100
000000000000
000025000000
000000000000
001000001100
000000000000
001000001100
000000000000
001000001100
000000000000
000000000000
000000000000

631723382 — 11
.322968763 — 11
957304138 — 12
473867892 — 10
154310985 — 11
947355383 — 08
883496788 — 11
.228920555 — 07
216768803 — 11
653596505 — 10
.184605964 — 09
179171613 — 11

410068897 + 01
.000000000 4 00
.524343393 + 01
.000000000 + 00
.252997314 4+ 01
.000000000 + 00
.569290077 + 01
314159265 4 01
418750886 + 01
314159265 4 01
.000000000 4 00
314159265 4 01

337814272 + 03
.000000000 + 00
711354700 + 01
.000000000 + 00
337814272 + 03
.000000000 + 00
337814272 + 03
.000000000 + 00
337814272 + 03
.000000000 + 00
.000000000 + 00
.000000000 + 00

Table 3. Differences ¢ —¢ (TT) (GRSC)
0 1

001000001100
000000000000
000025000000
000000000000
001000000000
001000001100
000000000000
001000001100
002000000000
000000000000
001000001100
002000000000
000000000000
001000001100
000000000000
000000000000

.158810048 — 10
103746803 — 10
213211607 — 11
191527491 — 10
1423492232 — 11
387872333 — 11
.265537808 — 06
274735254 — 10
164479145 — 11
.388849875 — 08
115340467 — 10
116412840 — 11
631104235 — 08
.265593077 — 11
.380544861 — 10
267916561 — 10

567147813 + 01
314159265 + 01
376137398 + 01
.000000000 4 00
466929724 + 01
4409816916 + 01
.000000000 + 00
.104917664 + 01
.278147098 4 00
.000000000 4 00
575444761 + 01
.185998408 4+ 01
314159265 + 01
420628407 4 01
.000000000 4 00
.000000000 + 00

337814272 4 03
.000000000 + 00
711354700 + 01
.000000000 + 00
628307585 + 04
337814272 + 03
.000000000 + 00
337814272 + 03
125661517 4 05
.000000000 + 00
337814272 + 03
125661517 4 05
.000000000 + 00
337814272 4 03
.000000000 + 00
.000000000 + 00

Table 4. Differences ¥y — 1 (TT) (KGRSC)
0 0

00 1 000001100

00101903000000
00 1 000001100
00 2 000000000
00 2 000002000
00 2 000002200
00 1 000001100
00 2 000000000
00 0 000000000
00 0 000000000
00 1 000001100
00 2 000000000
00 0 000000000

.231266586 — 10
759550646 — 11
.780322332 — 08
115291472 — 08
.199920367 — 09
188795275 — 09
.190446025 — 08
.562966495 — 09
117110967 — 09
.382641250 — 09
.234166521 — 09
137527571 — 09
.250403635 — 08

.252922703 4 01
.284970036 4 01
959162770 + 00
365346519 + 00
447910095 + 01
191827564 4 01
568655793 + 01
194262028 4- 01
.000000000 + 00
314159265 4 01
420126686 + 01
.352339649 + 01
.000000000 + 00

311

337814272 4 03
980309527 + 00
337814272 4 03
125661517 4 05
167993695 + 06
675628545 + 03
337814272 4 03
125661517 4 05
.000000000 4 00
.000000000 + 00
337814272 4+ 03
125661517 4 05
.000000000 4 00
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Table 5. Differences gy — 0 (TT) (KGRSC)
0 0

001000001100
001000001100
002000000000
001000001100
000000000000
002000000000
000000000000
001000001100

123517565 — 10
416734462 — 08
.499381069 — 09
101645481 — 08
323583375 — 09
.243819609 — 09
.859605900 — 08
.124723404 — 09

.410001583 + 01
.252995484 + 01
507773508 + 01
965285401 + 00
.314159265 + 01
373329495 4 00
.314159265 + 01
577801150 + 01

337814272 4 03
337814272 4+ 03
125661517 4 05
337814272 + 03
.000000000 4 00
125661517 4 05
.000000000 4 00
337814272 4 03

Table 6. Differences ¥ — ¢y (TT) (KGRSC)
0 0

00 1 000001100

00101903000000
00 1 000001100
00 2 000000000
00 2 000002000
00 2 000002200
00 1 000001100
00 2 000000000
00 0 000000000
00 0 000000000
00 1 000001100
00 2 000000000
00 0 000000000

Table 7. ¢ 2FA(TT)

00 1000001100
00 0000000000
00 0025000000
0813000000000
03 5000000000
00 1000000100
00 1000000100
00 0020000000
00 0000000000
00 1000000000
00 0000000000
00 1000000000
00 0000000000
10 0000000000
10 0000000000

212112060 — 10
.265955171 — 11
715812097 — 08
105778263 — 08
183423115 — 09
173274092 — 09
174700634 — 08
516512839 — 09
107461963 — 09
.340588092 — 09
.214853535 — 09
126190931 — 09
.250626807 — 08

130302301 — 05
666116309 — 06
197458153 — 06
335755401 — 07
274317722 — 07
213556899 — 07
.155700142 — 07
113693032 — 07
956621901 — 05
311750820 — 07
.195442531 — 02
137268118 — 07
601796456 — 03
520765790 — 05
192780654 — 06

(GRSC)

567081957 4 01
625381360 + 00
410075543 + 01
350693917 4- 01
133750830 + 01
505986832 +- 01
.254497058 +- 01
.b08421183 + 01
314159265 4 01
.000000000 + 00
.105831374 4- 01
381968078 + 00
314159265 + 01

410074370 4 01
.000000000 + 00
.524343393 + 01
.214693239 + 01
418857071 4+ 01
.338135431 4 01
615764243 + 01
572693663 + 01
.000000000 + 00
1466912341 + 01
.000000000 + 00
.454103182 + 01
.000000000 + 00
314159265 + 01
314159265 + 01

312

337814272 4 03
980309527 + 00
337814272 4 03
125661517 4 05
167993695 + 06
675628545 + 03
337814272 4 03
125661517 4 05
.000000000 + 00
.000000000 4 00
337814272 4 03
125661517 4 05
.000000000 4 00

(coefficients in arcseconds)

337814272 4 03
.000000000 + 00
711354700 + 01
.262983048 + 02
775522617 4 03
906177374 4 05
780515857 + 05
105938193 + 04
.000000000 + 00
628307585 4 04
.000000000 + 00
628307585 4 04
.000000000 + 00
.000000000 4 00
.000000000 + 00
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Table 8. ¢=2FA(TT)

00 1000001100
00 0000000000
00 0025000000
0813000000000
03 5000000000
00 1000000100
00 1000000100
00 0020000000
00 0000000000
00 1000000000
00 0025000000
00 0000000000
00 1000000000
00 0000000000
10 0000000000
10 0000000000

Table 9. ¢ 2F2(TT)

001000000000
000000000000
002000000000
000000001000
004830000000
001010000000
022000000000
011000000000
001001000000
001200000000
000000000000
001000000000
002000000000
004830000000
000025000000
000000000000
001000000000
002000000000
000000000000
001000000000
100000000000

.130305083 — 05
.851215459 — 06
174934562 — 06
326128037 — 07
.267920049 — 07
213538259 — 07
155685742 — 07
114422842 — 07
140865733 — 05
347458181 — 06
129546311 — 07
217843218 — 01
.232329482 — 07
158568418 — 03
121552283 — 04
105689498 — 06

153110555 — 03
.624062608 — 05
191850004 — 05
371707163 — 06
174492597 — 06
207986602 — 06
127215510 — 06
912767135 — 07
788781114 — 07
531395177 — 07
191988304 + 02
944199242 — 05
.236615606 — 06
.222412262 — 07
113644375 — 07
.134870204 — 03
399915448 — 06
170005184 — 07
181895781 — 04
132810927 — 07
.252135692 — 06

(GRSC)

(GRSC)

(coefficients in arcseconds)

567154555 + 01
314159265 + 01
376137398 4 01
373005969 + 01
.260932664 + 01
181060019 + 01
.144520895 + 01
4415710213 4 01
.000000000 4 00
466925775 + 01
461641251 + 01
.000000000 + 00
.252863427 4 01
314159265 + 01
314159265 + 01
.000000000 4 00

337814272 4 03
.000000000 4 00
711354700 + 01
.262983048 + 02
775522617 4 03
906177374 4 05
780515857 4 05
.105938193 4 04
.000000000 4 00
628307585 + 04
711354700 + 01
.000000000 + 00
628307585 4 04
.000000000 + 00
.000000000 + 00
.000000000 4 00

(coefficients in arcseconds)

466926126 + 01
.000000000 + 00
462609811 4 01
486077422 4 00
.283203731 + 01
585127088 + 01
441820021 4 01
613529387 + 01
.559096259 + 01
358258491 4 01
.000000000 4 00
.267808013 + 01
.263508345 + 01
153676866 + 01
.884980375 — 01
314159265 + 01
107231782 4 01
867218932 4 00
314159265 4 01
.584295983 + 01
.000000000 + 00

313

628307585 + 04
.000000000 + 00
125661517 4 05
777137714 4 05
352311373 4 01
575338489 + 04
786041939 + 04
393020970 + 04
606977676 4 04
.398149002 + 03
.000000000 + 00
628307585 + 04
125661517 + 05
352311373 4 01
711354700 + 01
.000000000 + 00
628307585 + 04
125661517 4 05
.000000000 + 00
628307585 + 04
.000000000 + 00
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