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ABSTRACT. The BCRS is presently defined for an isolated solar system by ignoring effects
from cosmology. Various problems that arise if one tries to match the BCRS with a cosmological
metric that describes the expansion of the universe are discussed. An approximate solution for
the BCRS with cosmological constant A is given.

1. THE BCRS AND COSMOLOGY

According to TAU-Resolution B1.3 the BCRS with coordinates (¢,x) is defined by a metric
tensor of the form

go = -1+ -—F+0()
C C
4 . _
goi = —c—3wl+0(0 %) (1)

2
gij = (52']' (1 + c—2w> + 0(0_4).

Here, the gravito-electric potential w generalizes the usual Newtonian gravitational potential
U and the gravito-magnetic potential w’ describes gravitational effects resulting from moving
gravitational sources. The order symbols in Eq.(1) indicates that the validity of the metric
tensor is restricted to the first post-Newtonian approximation of Einstein’s theory of gravity. In
that approximation, using the harmonic gauge condition, the field equations read

1 82 2 —4
_c___|_v w = —47TGO'—|—O(C ), (2)
Viw' = —4rGo' + 0(0_2) .

Here o and o¢ are the gravitational mass and mass current density, respectively. Mathematically
they are related to the energy-momentum tensor T by

1 S Gy
o= (T"+T%), o' =-T". (3)
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For the present definition of the BCRS spacetime is assumed to be asymptotically flat, i.e.,

lim g, = diag(=1,+1,+1,+1). (4)
t=const
This condition assumes that all kinds of gravitational sources outside the solar system, as well
as the vacuum energy (or cosmological constant) that pervades every volume element of our
universe, are ignored.

As is well known the (averaged) global mass-energy distribution on large cosmic scales de-
termines the global geometry of the universe as well as its global dynamical development. For
a description of the universe on large scales the so-called “cosmological principle” is of great
value. This principle says that on very large scales our universe is homogeneous and isotropic.
Mathematically the Robertson-Walker metric follows from this principle. For a flat space in
suitable coordinates (T',X) this metric takes the form

ds? = —c*dT? + o*(T) dX?, (5)

where a(T') is the cosmic scale factor. Such a cosmic metric has profound consequences for
astrometry: it describes cosmic red shift effects due to the expansion of the universe and leads
to various distance measures like parallax distance, luminosity distance, angular diameter dis-
tance or proper motion distance that differ from each other (Weinberg, 1972). The question of
empirical validity of the cosmological principle has been investigated in detail in recent years
(Lahav, 2000 and references quoted therein). Up to scales of order of some 100 Mpc the universe
is obviously very clumpy and dominated by a hierarchical structure (our galaxy (0.03 Mpc), the
local group (1-3 Mpc), the local supercluster (20-30 Mpc)). Deep red shift surveys like the 2dF
Galaxy Redshift Survey show distinct structures like the great wall with dimension of 150 X 70 x 5
Mpc. On scales larger than about 100 Mpc the cosmological principle, however, seems to be
satisfied well. Further support comes from studies of the anisotropies of the Cosmic Microwave
Background Radiation (CMBR), especially the data from the Wilkinson Microwave Anisotropy
Probe WMAP. The data show (Lahav, 2000) that for scales larger than about 1000/H Mpc
(H is the the Hubble constant in units of 100 km/s/Mpc) density fluctuations dp/p are smaller
than 10~*. Thus the Robertson-Walker metric can be justified empirically for such large spatial
scales. Theoretically one expects such a metric to result from some spatial averaging procedure
(unfortunately such a rigorous averaging algorithm has not yet been worked out for Einstein’s
theory of gravity) and the question is what kind of signatures of this cosmic metric can be found
locally, e.g., on solar-system scales.

The WMAP data just mentioned also contributes significantly to the present cosmological
standard model. According to that model the age of our universe is about 13.7 billion years, the
Hubble constant Hy = (71 +4) km/s/Mpc and the total density parameter €2 that determines
the global geometry of the universe is about 1, i.e. our universe is practically flat (which is also
implied theoretically from the inflation scenario). More specifically the contribution to €2 from
luminous matter is about 0.04, from dark matter 0.23 and from the vacuum energy 0.73.

2. RELATING THE BCRS WITH A COSMOLOGICAL METRIC

Due to the hierarchical structure of our cosmic neighbourhood one might extend the hierarchy
of astronomical reference systems from the GCRS and the BCRS to some “GaCRS” (galactic
celestial reference system), some “LoGrCRS” (local group celestial reference system) etc. In
such a hierarchy each system will contain tidal forces due to effects from the external matter.
Nevertheless, at a certain scale cosmologiocal effects can no longer be ignored and the expansion
of the universe has to be taken into account.
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Theoretically one faces the problem how to match a local metric such as the one defining
the BCRS with the Robertson-Walker metric that describes the gravitational physics on large
cosmic scales. As a first step in the present paper we considered the vacuum energy only. The
vacuum energy can be described by a cosmological constant A. We started with the following
ansatz for the local metric

goo = -1+ 32 ’UJ(t, X) - E4 wZ(t,x) + 0(075)1
C C
4 .
go;i = _0_3 wz(ta X) + 0(0_5)7
2
gij = (52']' <1 + 0_2 w'(t, X)) + 0(0_4). (6)

Since the constant A is very small (A ~ 2-107°2 m~2) we neglect all terms O(A G) (G being
the Newtonian gravitational constant). In this approximation and implying the gauge condition
wy+w'; = O(c?) the field equations read

wii— swy = —4nGo+ A, (7)
c
wz’j]‘ = _47TGO'Z. (8)
Denoting w, a potential satisfying
1
Wq i — C_Q'wa,tt = —4rGo, (9)
one gets
Loy i
wo = ’wg—i-gc Az'z’, (10)
1 L
w = wy — — Az (11)

12

Note that for positive values of A the vacuum yields a repulsive gravitational force. Potential
w, denotes the contribution of ordinary solar system matter and the remaining terms describe
the influence of the overall vacuum energy in the universe. In our local coordinates at this level
of approximation the cosmological constant leads to a static cosmic tidal-like term that grows
quadratically with coordinate distance r (r?> = z'z?). Looking at orders of magnitude one finds
that these cosmic tidal terms are completely negligible in the solar system (see also Cooperstock
et al., 1998). Only at cosmic distances where the cosmic red shift are not negligible they play a
role.

It is important to note that there exists a well-known exact solution of the Einstein field
equations with cosmological term called the Schwarzschild-de Sitter solution:

ds® = —AcdT* + A~'dp® + p*(db* + sin” dy?), (12)
p 3

where m is the Schwarzschild radius (normalized mass) of a spherically symmetric body em-
bedded in the de Sitter universe with cosmological constant A. In the limit A = 0 this solution
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coincides with the Schwarzschild solution in the Schwarzschild standard coordinates. In the
limit m = 0 Eq. (12) describes the de Sitter cosmological solution (empty static universe with
cosmological constant A). This well-known metric can be transformed into isotropic form which,
neglecting terms of order O(m A), coincides with the metric (6) potentials with (10) for the case
of a spherically symmetric mass distribution. On the other hand the same metric (12)—(13) can
be transformed into the form (Robertson, 1928)

ds? = gooc®dT? + grr dX2, (14)
1—-m_\?
T 2ap R
go = —\|\v7—m | (15)
<1+2ar/r\LR>
m 4
grr = ai(T) <1+2aAR>’ (16)

ar(T) = exp (\/§0T>, (17)

which can be though of as a perturbed Fermi-Walker solution (5). This form of the metric can
be used to match the BCRS metric (6) with (10) to the Robertson-Walker metric. Indeed, at
the cosmic distances where the A terms in (10) play a role, the non-spherical part of the local
potential w, and the local vector potential w’ can be neglected, and the rest can be directly
matched to (14)-(17). This matching and further details will be published elsewhere.

The general Robertson-Walker metric (5) with arbitrary a(7') can be also transformed in
what we can call “local coordinates”. Indeed, the transformation

_ i -2 P2 4
b= T+g50d® R+ O(RY), (18)
x = a(t)X <1+4i2a2R2+O(R4)> (19)
C

brings the metric (5) into the form

. N 2
ds? = <—1 L llpey O(R4)> 2 dt? + (1 4 <9> R+ O(R4)> dx%.  (20)
2 a 2¢2 \a

The same procedure can be done to any order of R. In the limit of de Sitter universe the function
a(T) is defined by (17) and (20) coincides with the Schwarzschild-de Sitter metric and with the
BCRS metric with A in the corresponding limits. The fact that local coordinates exist also for
general Robertson-Walker metric fosters the hope that the BCRS can be also matched to the
Robertson-Walker universe in the general case. Details will be published elsewhere.

We might finally ask about the contribution of visible and dark matter to the spacetime met-
ric and formulate the 'Local Expansion Hypothesis’: the cosmic expansion induced by ordinary
(visible and dark) matter occurs on all length scales, i.e., also locally. The question whether this
hypothesis is true or not has a long history and one must confess that this fundamental problem
so far has no satisfying solution. If we forget about the A-term the famous Einstein-Strauss solu-
tion (Einstein, Strauss, 1945, Bonnor, 2000), where a pure static Schwarzschild solution without
mass-energy inside of some spherical vacuole can be matched exactly to a global Robertson-
Walker metric indicates that this hypothesis might be wrong. It has been argued that such a
solution is unstable and cannot be generalized to situations of less symmetry but nevertheless
the sign of warning is clear. This also indicates that the transition from the local metric to the
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cosmic one cannot be studied by looking at a single spherically symmetric density inhomogene-
ity; one rather has to study theoretically a basically clumpy universe, defining some suitable
spatial averaging procedure and then study the limit of larger and larger scales. Likely the inho-
mogeneity scale determined by the two-point correlation function will also theoretically indicate
the validity of the cosmic Robertson-walker metric.

In conclusion let us summarize that if one is interested in cosmology, radial coordinates
of remote objects (e.g., quasars) should be defined with respect to a metric which turns into
a cosmological metric (e.g. the Robertson-Walker one) in the limit of very large barycentric
distances. Several possibilities to construct such a metric have been sketched above. The
implications of such a “local cosmological” metric on the processing of astrometrical data should
be further investigated.
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