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ABSTRACT. This paper summarizes the contents of recent analytical studies related to the
rotation of the asteroid Eros 433 (Souchay et al.,2003; Souchay and Bouquillon,2004). Thanks
to the very accurate observational data obtained by the intermediary of the probe mission
NEAR (Near Earth Asteroid Rendez-Vous) and detailed by Miller et al.(2002), it is possible
to determine with an exceptional accuracy the ephemerides of the rotation of the asteroid, and
more specifically the values of the coefficients of precession and nutation. After explaining the
parametrization of the problem and the way of calculation, we give the principal results, which
enable to modelize Eros’ rotation both for long-term (100 years) and very short term (a few
hours).

1. INTRODUCTION

As any celestial body, the rotation of Eros can be separated into two independent parts,
which must be combined each together : one is the free motion of rotation, i.e., the rotation
when not considering any perturbing body, and the other is the forced motion, i.e., the motion
caused by the gravitational torque exerted by any external celestial body (Sun, planet, satellite
etc...). In the case of Eros, we only consider here the perturbation caused by the Sun. Concerning
the free motion, two rotation modes for celestial bodies can be found : one is a rotation along
the shortest axis, which generally corresponds to the axis around which the moment of inertia is
maximum , the other is along the longest axis, generally with minimum moment of inertia. These
modes are respectively called short axis modes and long-azxis modes. Exhaustive studies about
these two kinds of rotational free modes can be found, for instance in Kinoshita (1972), starting
from an Hamiltonian based theory. The short axis mode is ordinary stable and secularly stable,
whereas the long-axis mode is ordinary stable but secularly unstable. In case of dissipation, the
long axis mode becomes unstable, whereas the short-axis mode remains stable. Notice that in
the solar system, a major part of asteroids undergoes a short-axis rotational mode, although
long-axis modes have been found, for example in the case of Toutatis (Burns and Safronov,
1973, Harris,1994) Therefore, although no clear information can be reached from the NEAR’s
exploration to know if Eros free motion belongs to the first or the second of the categories above,
we can assume with no doubt that Eros undergoes a short-axis rotational mode. Therefore we
will consider in the following that Eros’ rotational motion is around the axis of maximum moment
of inertia C, quoted as the azis of figure, thus applying the usual terminology available for the
planets. Another fundamental bu unknown parameter (in fact this parameter is known only for
the Earth) which plays a large place in the rotational mode is the value of the angle (called
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here J) between the axis of figure and the axis of rotation (see Kinoshita,1977), and which is
one of the two parameters enabling us to determine what is called for the Earth, the polhodie or
polar motion. We can consider that this angle is very close or equal to 0, which is adequate to
a condition of minimum of energy.

In order to compute the gravitational torque exerted by the Sun on Eros, which depends
on the latitude and the longitude of the Sun with respect to a reference system related to the
asteroid, we need to know its orbital osculating elements, which can be found for instance from
the MPCORB (Minor Planet Centre Orbit Database). Eros has a semi-major axis close to Mars’
one (¢ = 1.4583145A.U.), and its orbit has a relatively high excentricity (e = 0.2228487). This
explains why the asteroid can be considered as a Near Earth Asteroid, its perihelion distance
being of the order of 1.13 A.U. Notice that the values above have been obtained at 2002,
June 5th. Eros’ inclination is : ¢ = 10°.83019, and its mean motion is n = 3.5677539rd/y,
which corresponds to an orbiting period of roughly 1.76 year. All these elements are subject to
dramatic changes, due to the possibility of becoming very close to the Earth as well as to Mars.

2. THE NEAR PROBE : A PRECIOUS DATA FOR THE ROTATION

After some technical problems, the NEAR probe was finally inserted into an orbit around
Eros, starting from February 14, 2000. A set of several techniques, as radiometric tracking data,
optical imaging and laser data, led to very precious and accurate informations about parameters
which are fundamental to elaborate ephemerides of the rotation of the celestial object : these
are the shape, gravity field and rate of rotation, as well as the location of the polar axis at a
given instant (Miller et al.,2002).

For instance, it was possible to elaborate a shape model at 180th. degree order (Zuber
et al.,2000), and to determine the gravity field of the asteroid as a combination of spherical
harmonics at the order 15 (Miller et al.,2002). It was also shown in this last paper that the very
small offset between the center of figure and the center of mass indicates that the asteroid has a
very uniform density (£ 1%) on a large scale. The rotation rate was measured with a precision
of £0.00023°/d, that is to say roughly 1”7 /d, whereas the equatorial coordinates o and ¢ of the
pole have been obtained with a precision respectively of £0.003° and £0.005°, which gives a
global precision for the orientation of the pole in the space of roughly 25”7 (Miller et al.,2002;
Konopliv et al., 2002).

Eros belongs to S-Class asteroids, which can be generally found in the inner part of the main
asteroid belt and its albedo is moderate (the geometric value is 0.27). The absolute magnitude
of Eros, which means the magnitude at 0° phase angle and 1 AU from the Sun and the Earth,
is 11.16.Eros’ mass could be estimated to 6.6904 4 0.003 x 10'°kg, corresponding to a volume
of 2503 & 25km3>. This gives an equivalent mass per volume unit equal to 2.67¢/cm? Eros is
a very irregular body, with a large variation of the distances from the center of mass to the
surface, with 3.19 km as the minimum value, and 17.67 km as the maximum one. The Eros’
moments of inertia, which play a fundamental role in the rotation, have been determined at the
4t digit. Their normalized values are : A = 17.09km?; B = 71.79km? and C' = 74.49km?. As
a consequence the dynamical ellipticity, which characterized the flattening of the object in a
dynamical point of view, is : Hy = W = 0.40341. This is by two orders of magnitude
larger than the dynamical ellipticity of telluric planets as the Earth or Mars. At last the rotation
period, which is also fundamental for the determination of the constant of precession and of the
coeflicients of nutation, is 5.27025547 h.
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3. THE PARAMETRIZATION OF EROS’TROTATION

As we are concerned here with the motion of Eros’ figure axis in space and by analogy with
the case of the Earth, a natural reference frame for the parametrization of this motion should
be built from a basic plane and an origin on this plane, which are the Eros orbital plane (F)
and the ascending node of (F) with respect to the Eros equator. By analogy with the Earth,
this point can be called Eros’ vernal equinox, written as vg,.s. For sake of commodity, the basic
plane (£) Eros’ orbital plane for a given epoch, and not of the date, as it is conventionally the
case for the Earth.

In order to determine the mean value of Eros’obliquity ¥, we have to calculate the coordi-
nates of both the unit vector parallel to the figure axis fand the unit vector d perpendicular to
the orbital plane . The most suitable way to do that is to calculate the coordinates of fand o with
respect to an ecliptic reference system. The equatorial coordinates of the figure axis fare given
by Miller et al.(2002) : a; = 07457285 §, = 17°.227. Through the classical transformations
between equatorial coordinates and ecliptic coordinates we obtain easily the ecliptic rectangular

—

coordinates of the unit vector falong the figure axis : f = (0.936397,0.290552,0.1968248). In
another way, the ecliptic coordinates of o are obtained through the orbital parameters ¢ and
Q: ¢ = (sinisin 2, —sinicosQ,cosi) = (—0.1550278,—0.1061713,0.9821883). Therefore, the
obliquity € can be obtained from one among the two formulas below, involving vectorial and
scalar products: % f: wsin e 0 f: cose where 0 is the unit vector along the direction
of the descending node N’ of Eros orbit (E°) with respect to Eros true equator. Choosing this
way of calculation, Souchay et al.(2003) have shown that Eros’ mean obliquity at the reference
epoch (J2002) is ¢ = 89°.008 a 89°0'29”, which means that Eros’ figure axis is nearly aligned
with Eros orbital plane, in a similar manner as for Uranus.

4. FREE ROTATIONAL MOTION

Eros free rotational motion can be studied from Hamiltonian formalism (Kinoshita,1991),
involving such parameters as e and D defined in the following way :

1 1 1/1 1
6_5(1/B—1/A)D 1/D_5—§(Z_|_E) 0
The very large value of e leads to the use of specific approximated formula for the determi-

nation of n; and ng (Kinoshita,1991) which are the frequencies of the polar motion and of the
proper angle of rotation, respectively defined from a meridian origin.

G 1 G
- 2 2 N L/ 2
ny= 1—e X[l 30 e)]]—I—O(j)N 1—e (2)

ngz%(1/A+1/B)G+%(1—\/1—e2)>< [1+% (1+e)/(1=e)j*| +0("

z%(l/A—kl/B)G—k%(l—\/l—e?) (3)

Where (G is the amplitude of the angular momentum. Notice that [ + g = ® is the rotation
angle, whose the rate has been determined with a remarkable precision (about 2” /day) by Miller
et al.(2002), who set the value : n;j+n; = ® = 28.612732rd/d With the ratio n;/ng = 1/7.59160
deduced from the preceding equations, we finally obtain : n; = —4.3407869rd/d and n; =
32.953519rd/d.
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Therefore it is possible to modelize completely the free rotational motion, at the condition
that the angle J is known, which is not the case. As an example Souchay and Bouquillon (2004)
gave the curve of the free motion for a value J = 17.

5. FORCED MOTION : PRECESSION AND NUTATION

Long periodic variations

The method to calculate the coefficients of nutation and precession is taken from Kinoshita(1977u
and has been applied extensively for the Earth (Souchay et al.,1999)

Finally, the expressions of the nutations in longitude and in obliquity are given by the
following formulas :
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Where M is Eros’ mean anomaly, I the obliquity, and with K = % x Hqy With Hy =
2C' — A — B/2C. We thus get the numerical value for K : K = 30404”.165/cy. C and S are
terms dependent on slow orbital parameters which can be taken as constant terms for a long
time span (Souchay et al.,2003)

We can notice that because of the large value of the eccentricity (e ~ 0.222) the sub-
harmonics of M remain relatively large, whereas in the case of the nutation of the Earth, for
which the eccentricity is small (e ~ 0.0167) the corresponding amplitudes decline very fastly.

The Oppolzer terms, which make the difference between the nutations for the axis of angular
momentum and the axis of figure have been calculated ion detail by Souchay et al. (2003), and
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are very small, so that we can assimilate the nutation of the axis of figure to that of the angular
momentum.
Finally, we obtain the following numerical results for the nutation respectively in longitude

Asp, and in obliquityAe.
Ay =07.590sin M + 07.042cos M — 07.192sin2M — 07.166 cos2M — 07.128 sin 3M

—07.087 cos3M — 07.054sin4M — 07.035cos4M — 07.024 sin 5M
—07.014 cos5M — 07.008 sin 6 M — 0”.005 cos 6 M (6)
Ae =27.420sin M — 47.054 cos M — 9”.614sin 2M + 16”.037 cos2M — 5”.073 sin 3M
+87.464 cos3M — 27.052sin4M + 37.424 cos4M — 07.853 sinb5M
+17.423871 cos5M — 07.299905 sin 6 M + 07.500370 cos6 M (7)

Notice the very large ratio (roughly 27) of the leading amplitude in obliquity, with respect to
the leading amplitude in longitude, which is explained by the value very close to 90° of Eros
obliquity, and which is the contrary of what happens for the Earth. Moreover, the leading
amplitude with respect to the same effect of the Sun on the nutation of the Earth, is also much
larger (167 instead of 0.5”). This is due to the large value of Eros’ dynamical ellipticity Hg.

Eros’ precession is calculated by integrating the constant part of the potential. It is given
by the following expression, at the 4* order of the eccentricity :

1& ~ K x [1 + ;ez + %64] cos (8)
We thus obtain the numerical value : 1& = 27.840133/y. We can thus observe that this
rate, which represents the displacement of the mean Eros equinox along the orbit plane, is very
small in comparison with the Earth, because of the value of the obliquity I, close to 90°. Thus,
according to this precession rate, the Eros equinox accomplishes one revolution in more than
450 000 years, to be compared with the 26 000 years precession cycle for the Earth.
The curve of the figure axis given analytically in this paper has been compared with that
given by Miller et al., and the agreement is fairly good (Souchay et al.,2003)

Short periodic variations

The short periodic variations of Eros’rotation are coming from the fact that the asteroid
has a strongly triaxial shape. This results in terms in the potential exerted by the Sun with
rate close to 2w, where w is Eros’rotational rate (Kinoshita,1977;Souchay et al.,1999). These
terms have been computed by Souchay and Bouquillon (2004), and the related coefficients of
the nutation A are listed in the table 1 below. The coefficients in obliquity are exactly the
same with inversion of the sine and cosine parts. The combination of the Fourier terms with
close periods leads both for Ay and Ae to a beating with amplitudes oscillating between 0 and
07.02.
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Table 1: Coeflicients of the high-frequency forced nutation in longitude Azbjforced of Eros. w is
the argument for the sidereal Eros’rotation, and M is Eros’ mean anomaly.

20 0.0846  0.0000 2"38m106*
2w—M  0.4890 -0.2610 2"38™"(8*
2w+ M -0.4182 -0.2517 2h38mn(5s

2w—2M -3.4287  2.0655 2"387"10°
2w+ 2M  3.3211  1.9900 2"38mn(3s
2w—3M -2.7241  1.6361 2h38mn11s
2w+ 3M 26271  1.5746 2738mn()2s
2w —4M -1.4715  0.8831 2h38mn13s
2w+ 4M  1.4636  0.8489  2"3877"(0°
20— 5M  -0.7662  0.4592 2h3gmni5s
20+ 5M  0.7357  0.4409 2"377758¢
20— 6M -0.3236  0.1937 2h38mnigs
20+ 6M  0.3100 0.1858 23777570
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