
STABILITY OF EQUATORIAL SATELLITE ORBITSV. MIOC, M. STAVINSCHIAstronomical Institute of the Romanian AcademyStr. Cut�itul de Argint 5, RO-040558 Bucharest, Romaniae-mail: vmioc@aira.astro.ro, magda@aira.astro.roABSTRACT.We study satellite orbits lying in the equatorial plane of a planet via the geometricmethods of the theory of dynamical systems. To model the planetary gravitational potential,we expand it to the sixth zonal harmonic. The motion equations are regularized by meansof McGehee-type transformations of the second kind. Naturally considering the motion to becollisionless and escapeless, we take into account the whole interplay among �eld parameters,total-energy level and angular momentum. This gives rise to various phase-portraits. In themost general case as regards the changes of sign of parameters, we meet: saddles generatingsimple or double homoclinic loops, double loops inside one loop of a larger double loop, centerssurrounded by periodic and quasiperiodic trajectories, heteroclinic orbits, etc. Of course, lessgeneral cases lead to simpler phase portraits. Every type of phase orbit is translated in terms ofphysical motion. Such qualitative results are useful to the analysis of circumplanetary motionof major or in�nitesimal satellites, rings, etc.1. INTRODUCTIONConsider a planet that presents mass-distribution symmetry with respect to an axis. Theequatorial motion of a satellite in the gravitational �eld of such a planet will be governed by thepotential U(q) = 7Xn=1 an= jqjn ;where q is the radius vector of the satellite with respect to the mass centre of the planet andan are real parameters. We consider a1 > 0 (the Newtonian term), a2 = 0, a3 < 0, as in thegeneral planetary case in the solar system. To obtain the most general situations, we consideredthe whole sign interplay among a4 � a7.Since we deal with satellites, we naturally consider the motion to be free of collision andescape. Collisionless dynamics is possible only for a7 < 0, while escapeless dynamics is possibleonly for negative energy levels. To regularize the motion equations, we use the coordinatesintroduced by McGehee (1974). To identify the stability zones, we resort to the reduced 2Dphase space, describing all possible phase curves, and using a foliation by the constant angularmomentum. The stable orbits are either circular (relative equilibria) or noncircular (periodicand quasiperiodic); see Figure 1. The initial data that lead to quasiperiodic trajectories have255



positive Lebesgue measure.2. BASIC EQUATIONSModelling the motion of a satellite in the considered �eld, the associated two-body problemcan be reduced to a central-force problem. The planar motion of the satellite with respectto the planet is described by the Hamiltonian H(q;p) = jpj2 =2 �P7n=1 an= jqjn, where q =(q1; q2)2R2nf(0; 0)g, p = (p1; p2) 2 R2 are the con�guration vector and the momentum vectorof the satellite, respectively. The problem admits the �rst integrals of angular momentum(q1p2 � q2p1 = L = constant) and of energy (H(q;p) = h=2 = constant).To regularize the motion equations, we apply the following sequence of McGehee-type trans-formations (McGehee 1974; see also Mioc and Stavinschi 2001, 2002):r = jqj ;� = arctan(q2=q1);� = _r = (q1p1 + q2p2)= jqj ; (1)� = r _� = (q1p2 � q2p1)= jqj ;which introduce standard polar coordinates,x = r7=2�;y = r7=2�; (2)which scale down the velocity components, and a Sundman-type rescaling of time d� = r��dt,� 2 N. (This last transformation does not interest us in what follows.)In this way we obtain regular equations of motion. Under the transformations (1)�(2), theangular momentum integral and the energy integral become respectivelyy = Lr5=2; (3)x2 + y2 = hr7 + 2 7Xn=1anr7�n; (4)whereas the singularity at r = 0 was replaced by the collision manifold M0 = f(r; �; x; y) j r =0; � 2 S1; x2 + y2 = 2a7g pasted on the phase space.One sees that, for a7 < 0, the motion is collisionless (see the expression of M0). Also, by(4), that escape (r!1) is not possible for h < 0. We shall hence study the motion within theframework of these two assumptions.One could ask: why using McGehee-type coordinates to collisionless motion? On the onehand, the dynamics in these coordinates appears very simple. On the other hand, they will serveas a basis for a next investigations including collision and escape.The regularized equations of motion do not contain � explicitly, so we can factorize the 
owby S1. Next, we eliminate y between (3) and (4). In this way the phase-space dimension wasreduced from 4 to 2. The energy integral in the (r; x)-plane will readx2 = f(r) = hr7 + 2a1r6 � L2r5 + 2a3r4 + 2a4r3 + 2a5r2 + 2a6r + 2a7;where we took into account the fact that a2 = 0.We shall describe the phase-space structure for negative energy levels, analyzing the be-haviour of the function x = �pf(r). Since f(r) = x2, it must be nonnegative, so we have to con-sider only the regions on the real line where this condition is ful�lled. Also since r is a distance,256



we consider only the positive roots of f(r). We also shall consider, for the same purpose, the pos-itive roots of the polynomial ~f(r) = df(r)=dr = 7hr6+12a1r5�5L2r4+8a3r3+6a4r2+4a5r+2a6.To deal with the most general case, we suppose that f(r) has six changes of sign (themaximum possible) for h < 0, a1 > 0, a3 < 0, a7 < 0. This entails a maximum of six positiveroots (according to Descartes' rule) for f(r), and �ve positive roots for ~f (r).3. PHASE-SPACE STRUCTUREThe phase-space structure for the considered case is plotted in Figure 1.

There exists a critical energy level hc that creates, along with the interplay of the �eldparameters, three di�erent phase portraits. The foliation performed by making jLj increasepoints out a great variety of phase orbits, as well as bifurcations (corresponding to criticalvalues of L) concretized by relative equilibria: three centres S (stable circular orbits) and twosaddles U (unstable circular orbits).Figure 1a plots the case h < hc < 0. The inner saddle U1 generates a double homoclinic loop,whose outer "petal" shelters another double homoclinic loop, generated by the outer saddle U2.There are three kinds of quasiperiodic and periodic orbits. The ones that correspond tophase curves surrounding all equilibria have signi�cant eccentricities. The ones that correspondto phase curves lying inside the outer loop generated by U1, but outside the double loop of U2,have smaller eccentricities. By comparison, the quasiperiodic and periodic orbits situated insidethe double loop of U2 have smaller eccentricities, but we can say nothing about the eccentricitiesof such orbits lying inside the inner loop of U1. All these orbits are stable.The �gure corresponding to the case hc < h < 0 is wholly similar to Figure 1a, but invertedleft-right.Figure 1b plots the case h = hc. The two saddles U1 and U2 generate: an inner homoclinic257



loop (U1), an outer homoclinic loop (U2), and two heteroclinic trajectories that link U1 and U2.There are two kinds of quasiperiodic and periodic orbits. The ones that correspond to phasecurves surrounding all equilibria have signi�cant eccentricities. The ones that correspond tophase curves lying inside the separatrices have smaller eccentricities. All these orbits are stable.4. CONCLUDING REMARKSTo search for stability regions in our problem, we described the phase portraits for the wholeinterplay among �eld parameters (with the restrictions a1 > 0, a2 = 0, a3 < 0, a7 < 0), energylevel (restricted to h < 0), and angular momentum.The most important features of the model are:4.1. There exist cases (h < hc, h > hc) in which two double homoclinic loops (one shelteredin one "petal" of another) associated to two saddles create �ve zones of stable quasiperiodic andperiodic orbits (Figure 1a). There also exist cases (h = hc) in which there are four zones ofstable quasiperiodic and periodic orbits (Figure 1b).4.2. The sets of quasiperiodic and noncircular periodic orbits have positive Lebesgue measure.Indeed, choosing initial data on such an orbit, and considering the foliations performed, in aneighbourhood of this point there exists an open set of initial data that lead to the same kindof orbit.4.3. The role of the angular momentum is of the same importance as that of the energy. Itcreates bifurcations within the same energy level.4.4. Our results were obtained for the maximum number of changes of sign of f(r) and ~f(r).Simpler mathematical situations entail simpler phase portraits.4.5. Such qualitative are useful to analyze the stability of the circumplanetary motion ofmajor or in�nitesimal satellites, rings, etc.Acknowledgments. The paper was done within the framework of the grant 18/2003 of theRomanian Academy.5. REFERENCESMcGehee, R., 1974, Invent. Math., 27, 191.Mioc, V., Stavinschi, M., 2001, Phys. Lett. A, 279, 223.Mioc, V., Stavinschi, M., 2002, Phys. Scripta, 65, 193.
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