
HIGH-PRECISION NUMERICAL ANALYSISOF THE RIGID EARTH ROTATION PROBLEMWITH USING A HIGH-PERFORMANCE COMPUTERG.I. EROSHKIN, V.V. PASHKEVICHMain Astronomical Observatory of RASPulkovskoe chaussee, 65/1, 196140, St.Petersburg, Russiae-mails: eroshkin@gao.spb.ru, apeks@gao.spb.ruABSTRACT. The present investigation is a development of the previous research on the rigidEarth rotation problem (Eroshkin et al., 2002). The problem is studied numerically by usinga high-performance computer Parsytec CCe20. All the calculations are carried out with thequadruple precision. The problem is solved both for the Newtonian case (dynamical case) andfor the relativistic case (kinematical case) in which the geodetic perturbations in the Earthrotation are taken into account. Over the whole time interval of the numerical integration thesolutions are compared with the corresponding solutions of the semi-analytical theory SMART97(Bretagnon et al., 1998), corrected in accordance with (Brumberg and Bretagnon, 2000). Thebehaviour of the secular and periodical terms in the residuals is discussed.1. INTRODUCTIONIn the previous investigation (Eroshkin et al., 2002) a high-precision numerical solution ofthe rigid Earth rotation problem, accounting for the most essential relativistic perturbations |geodetic perturbations, was constructed by using a personal computer Pentium III 450 MHz.All the calculations were performed with a double precision. The precision of the numericalsolution was at the level of several microarcseconds (�as) over the time interval of 1500 years.Such precision was achieved by means of using the regularizing variables, the Rodriges-Hamiltonparameters, from which the main part of the secular variation of the angle of the proper rotationwas excluded. An important point of the algorithm was a supplementary normalization of thevalues of Rodrigues-Hamilton parameters evaluated by means of the iterative procedure of theintegrator HIPPI (Eroshkin, 2000).Nevertheless it was considered quite necessary to repeat all the calculations with a quadrupleprecision in order to verify the earlier obtained results. It is also interesting to construct anumerical solution not only for the relativistic case but also for the Newtonian one. This paperdescribes the results of the numerical solution of the rigid Earth rotation problem obtained withthe use of a high-performance computer Parsytec CCe20, which is a supercomputer of massive-parallel architecture with a separated memory at the Center for Supercomputing Applicationsof the Institute for High-Performance Computing and Data Bases in St.Petersburg, Russia(http://www.csa.ru/). All the calculations were performed with a quadruple precision. Themathematical model of the present investigation is identical to that used in (Eroshkin et al.,2002). The kinematical solution SMART97 was initially corrected by the change of signs of all the138



geodetic terms in the angle of the proper rotation, in accordance with (Brumberg and Bretagnon,2000). The main purposes of the present research are the veri�cation and improvement ofthe algorithms of constructing the numerical solutions and additional testing the method ofnumerical integration HIPPI. The integration of the di�erential equations is carried out over thetime interval from AD 1000 to 3000. It starts from the standard initial epoch January 1, 2000,goes forward to 3000 and then backward to 1000. The numerical integration, carried out forthand back in time, checks a reliability of the method HIPPI. It is performed with 1-day constantstep size and with 24-th degree Chebyshev polynomials approximating the right hand sides ofthe di�erential equations of the problem.2. RESULTSThe analysis of the problem is performed over 2000 year time interval from AD 1000 to 3000,with the initial epoch January 1, 2000 (JD=2451545.0). The results of the numerical integrationare compared with the semi-analytical solution SMART97 in Euler angles: the longitude of theascending node  (Figures 1a, b), the proper rotation angle � (Figures 2a, b) and the inclinationangle � (Figures 3a, b), (a | Kinematical case, b | Dynamical case). Tables 1{3 contain theresults of the least squares adjustment of the behaviours of the discrepancies of the secularcharacter �s , �s�, �s� and the secular terms in the corresponding angles of SMART97. Inthe present paper T denotes the time expressed in thousand Julian years (tjy), counted from thefundamental reference epoch J2000, and the coe�cients are expressed in microarcseconds (�as).The correcting polynomials of degree 6 provide the best �tting to the approximating curves.First of all, it is necessary to notice that Figure 1a and Figure 3a are very similar to thecorresponding pictures of Figure 2 of the previous investigation (Eroshkin et al., 2002). How-ever the behaviour of the residuals in the proper rotation angle, depicted in Figure 2a, di�ersessentially from the corresponding picture in Figure 2 of the previous paper. It is discoveredthat this discrepancy is connected with the chosen criterion determining the process of the nu-merical integration. Namely, if HIPPI integrator is used then the convergence of the iterativeprocedure at every nodal point has to be controlled by the values of the relative errors and notof the absolute ones. The numerical experiments demonstrate that if one uses the relative errorcontrol then the results of the quadruple precision integration and double precision integrationare quite close over one thousand year time interval.The comparison of the secular trends in the residuals, corresponding to the kinematical anddynamical cases, depicted in Figures 1{3, is also of interest. The behaviour of the residuals forthe angles  and � in the kinematical case (Figure 1a and Figure 2a, respectively) is very similarto that in the dynamical case (Figure 1b and Figure 2b, respectively).From the Tables 1{2 follows that for these angles the essential part of the residuals ariseswhen constructing the dynamical solution SMART97. The geodetic rotations, which are usedto derive the kinematical solution of SMART97, introduce relatively small part of the residuals.For the inclination angle � the behaviour of the residuals in the kinematical and dynamicalcases, depicted in Figure 3, di�er signi�cantly. Table 3 shows that the basic distinction in therepresentation of the interpolating curves comes from the quadratic and cubic terms. There isno satisfactory explanation of this phenomenon yet.
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Figure 1: Numerical integration minus solution SMART97 in the angle  .
Figure 2: Numerical integration minus solution SMART97 in the angle �.a) | Kinematical case b) | Dynamical caseTable 1: Secular parts of the angle  and interpolating polynomials �s .Kinematical case Dynamical case smart97(�as) ��s (�as)  smart97(�as) ��s (�as)T 0 7:00 6:89T 50384564881:3693 �206:50 50403763708:8052 �206:90T 2 �107194853:5817 �3451:30 �107245239:9143 �3180:80T 3 �1143646:1500 1125:00 �1144400:2282 1048:00T 4 1328317:7356 �788:00 1329512:8261 �306:00T 5 �9396:2895 �57:50 �9404:3004 �65:50T 6 �3415:00 �3421:00a) | Kinematical case b) | Dynamical caseTable 2: Secular parts of the angle � and interpolating polynomials �s�.Kinematical case Dynamical case�smart97(�as) �s�(�as) �smart97(�as) �s�(�as)T 0 1009658226149:3691 6:58 1009658226149:3691 6:53T 474660027824506304:0000 99598:30 474660027824506304:0000 97991:40T 2 �98437693:3264 �7182:30 98382922:2808 �6934:40T 3 �1217008:3291 1066:80 �1216206:2888 1004:00T 4 1409526:4062 �750:00 1408224:6897 �226:00T 5 �9175:8967 �30:30 �9168:0461 �37:80T 6 �3676:00 �3682:00140



Figure 3: Numerical integration minus solution SMART97 in the angle �.a) | Kinematical case b) | Dynamical caseTable 3: Secular parts of the angle � and interpolating polynomials �s�.Kinematical case Dynamical case�smart97(�as) �s�(�as) �smart97(�as) �s�(�as)T 0 84381409000:0000 1:42 84381409000:0000 1:39T �265011:2586 �96:61 �265001:7085 �96:73T 2 5127634:2488 �353:10 5129588:3567 �595:90T 3 �7727159:4229 771:50 �7731881:2221 �945:10T 4 �4916:7335 �84:50 �4930:2027 �76:50T 5 33292:5474 �86:00 33330:6301 �70:00T 6 �247:50 �247:80Several harmonics �p , �p�, �p� in the residuals are determined by the least squaresmethod with the arguments chosen from the arguments of SMART97 theory. In Tables 4{6 thesame harmonics are presented which were determined in (Eroshkin et al., 2002). The standarderrors of the coe�cients shown in Tables 4{6 have the magnitude of about two orders smallerthan the coe�cients themselves. The argument �3+D�F equals 
+180o; �2; �3; �4; �5; �6 arethe mean longitudes of Venus, the Earth, Mars, Jupiter and Saturn, respectively; D is thedi�erence between the mean longitudes of the Moon and the Sun; 
 is the mean longitude ofthe ascending node of the lunar orbit; F is the mean argument of the Moon's latitude.Table 4: The periodical terms �p and the corresponding harmonics in SMART97.argument, Kinematical case Dynamical caseperiod Coe�cients of Coe�cients of Coe�cients of Coe�cients of smart97(�as) ��p (�as)  smart97(�as) ��p (�as)cos �667:3427 10:05 �667:6674 10:02T cos �291:6144 �5:23 �291:7531 �5:222�5 � 5�6 T 2 cos 17:9597 �10:85 17:9848 �10:82800.9 years sin �512:8209 �0:31 �513:0837 �0:32T sin 219:7644 �4:53 219:9043 �4:56T 2 sin 98:4238 �3:25 98:4621 �3:24cos �3:4630 �8:46 �3:4630 �8:48T cos 0:1067 28:06 0:1067 28:063�2 � 7�3 + 4�4 T 2 cos �41:87 �41:82302.4 years sin 5:1808 2:29 5:1808 2:30T sin 0:1046 6:29 0:1046 6:31T 2 sin �27:87 �27:88cos �439:4833 �0:97 �439:4833 �0:98T cos 13416:3947 �27:28 13416:3960 �26:68�3 +D� F T 2 cos 35849:0443 4:7 35842:8827 2:9(
 + 180o) sin 17280773:3737 �0:08 17280776:3805 �0:0718.6 years T sin 84107:0763 �0:30 84107:0745 �0:37T 2 sin �1178:0123 �5:7 �1178:3901 �5:2141



Table 5: The periodical terms �p� and the corresponding harmonics in SMART97.argument, Kinematical case Dynamical caseperiod Coe�cients of Coe�cients of Coe�cients of Coe�cients of�smart97(�as) �p�(�as) �smart97(�as) �p�(�as)cos �237:8839 2:66 �237:9787 2:649T cos 214:2387 2:35 214:3301 2:352�5 � 5�6 T 2 cos 21:5893 �3:77 21:6003 �3:76800.9 years sin 437:0537 �2:118 437:2269 �2:110T sin 106:7941 2:86 106:8398 2:85T 2 sin �61:1330 2:94 �61:1586 2:92cos 0:2135 �1:72 0:2135 �1:72T cos �0:0256 �7:37 �0:0256 �7:373�2 � 7�3 + 4�4 T 2 cos 2:40 2:42302.4 years sin 0:0549 �2:75 0:0549 �2:752T sin �0:0729 4:19 �0:0729 4:20T 2 sin 7:04 7:05cos �9227885:6279 0:23 �9227886:9315 0:22T cos �9273:2018 0:02 �9273:2018 0:05�3 +D � F T 2 cos 11:5998 0:95 11:5998 0:87(
 + 180o) sin 32:1530 �0:46 32:1530 �0:4618.6 years T sin 4413:0849 �14:35 4413:0855 �14:02T 2 sin 25501:6281 0:74 25499:8022 1:19Table 6: The periodical terms �p� and the corresponding harmonics in SMART97.argument, Kinematical case Dynamical caseperiod Coe�cients of Coe�cients of Coe�cients of Coe�cients of�smart97(�as) �p�(�as) �smart97(�as) �p�(�as)cos �618:7215 9:16 �618:3585 9:14T cos �269:1674 �4:78 �269:0474 �4:772�5 � 5�6 T 2 cos 17:3920 �10:13 17:3622 �10:10800.9 years sin �474:1121 �0:25 �473:8684 �0:26T sin 204:8051 �4:05 204:6460 �4:08T 2 sin 90:6361 �3:08 90:6058 �3:07cos �3:1772 �7:97 �3:1772 �7:98T cos 0:0979 25:56 0:0979 25:553�2 � 7�3 + 4�4 T 2 cos �37:34 �37:29302.4 years sin 4:7532 2:09 4:7532 2:09T sin 0:0959 5:71 0:0959 5:74T 2 sin �25:51 �25:51cos �403:2789 �0:92 �403:2789 �0:92T cos 12309:0477 �24:80 12309:0462 �24:25�3 +D � F T 2 cos 32869:9705 4:4 32875:6240 2:7(
 + 180o) sin 15852158:3146 0:02 15852155:0374 0:0318.6 years T sin 77184:1368 �0:86 77184:1388 -0.90T 2 sin �1252:4257 �5:5 �1252:0139 �5:0If one compares the coe�cients for Kinematical case, shown in Tables 4{6, with the corre-sponding quantities in (Eroshkin et al., 2002) then certain di�erences can be discovered. Theyhave two explanations. Firstly, the signs of all the geodetic terms in the kinematical solutionfor the proper rotation angle � in SMART97 were changed in accordance with (Brumberg andBretagnon, 2000). As a result, the coe�cients of the harmonic with the argument 2�5 � 5�6 in�p� became essentially smaller. Secondly, in the present investigation the time interval of theadjustment is 2000 years instead of 1500 years, that is 1/3 larger than in the previous work.As it was previously explained (Eroshkin et al., 2002), the secular and periodical termsdetermined from the residuals of comparison of the numerical solution and semi-analytical so-lution SMART97 are the corrections to the corresponding terms of SMART97. As a �nal stepof the present investigation, the kinematical solution SMART97 is modi�ed by adding the sec-ular correction terms from Tables 1{3. The numerical integration is performed anew with theinitial conditions determined by the modi�ed kinematical solution SMART97. The results of142



Figure 4: Numerical integration minus kinematical solution SMART97 supplemented by thesecular corrections in Euler angles.comparison of the numerical and modi�ed semi-analytical solutions are presented in Figure 4.The secular trend in the proper rotation angle � does not change practically with respect tothat depicted in Figure 2a. In fact, there are di�erences which can be seen if one compares thepolynomial �s� = 6:62+99787:58T� 0:65T 2� 0:39T 3+1:42T 4+0:47T 5� 0:75T 6; representingthe secular behaviour of the residuals in the proper rotation angle from the Figure 4 with thecorresponding polynomial from Table 2. This comparison shows that the corrections to the sec-ular terms in the angle of the proper rotation are the real corrections to the second and higherorder terms, whereas the linear part of correction is a �ctitious one.It was earlier discovered that the small variation of the initial moment of the numericalintegration can change the value of the secular trend. It is quite possible that the reason for thisphenomenon is connected with the appearance of the �ctitious free nutation (�ctitious Eulernutation) in the process of the numerical integration.3. CONCLUSIONSThe results of the present investigation con�rm the validity of the previous study, basedon the double precision calculations. The semi-analytical theory of the rigid Earth rotationSMART97, corrected in accordance with the conclusions in (Brumberg and Bretagnon, 2000),represents high-precision semi-analytical solutions of the problem over the time interval of severalcenturies. The precision of this theory can be improved, for example, numerically by the methodproposed by the authors. The time interval of its validity can be also extended in this way.Acknowledgments. Financial support for this investigation was provided by Russian Foundationfor Basic Research, Grants No. 02-02-17611 and No. 03-02-06875. The technical computingsupport was provided by the Center for Supercomputing Applications at the Institute for High-Performance Computing and Data Bases in St. Petersburg, Russia.4. REFERENCESBretagnon, P., Francou, G., Rocher, P. and Simon, J. L., 1998, Astron. Astrophys., 329, No.1,329{338.Brumberg, V. A. and Bretagnon, P., 2000, Proceedings of IAU Colloquium 180, Washington,293{302.Eroshkin, G. I., 2000, Book of abstracts Astrometry, Geodynamics and Celestial Mechanics atthe turn of XXIth century, (eds. A. M. Finkelstein et al.), 229{230 (in Russian).Eroshkin, G. I., Pashkevich, V. V. and Brzezi�nski, A., 2002, Arti�cial satellites, 37, No.4,Warszawa, 169{183. 143


