HIGH-PRECISION NUMERICAL ANALYSIS
OF THE RIGID EARTH ROTATION PROBLEM
WITH USING A HIGH-PERFORMANCE COMPUTER

G.I. EROSHKIN, V.V. PASHKEVICH

Main Astronomical Observatory of RAS

Pulkovskoe chaussee, 65/1, 196140, St.Petersburg, Russia
e-mails: eroshkin@gao.spb.ru, apeks@Qgao.spb.ru

ABSTRACT. The present investigation is a development of the previous research on the rigid
Earth rotation problem (Eroshkin et al., 2002). The problem is studied numerically by using
a high-performance computer Parsytec CCe20. All the calculations are carried out with the
quadruple precision. The problem is solved both for the Newtonian case (dynamical case) and
for the relativistic case (kinematical case) in which the geodetic perturbations in the Earth
rotation are taken into account. Over the whole time interval of the numerical integration the
solutions are compared with the corresponding solutions of the semi-analytical theory SMART97
(Bretagnon et al., 1998), corrected in accordance with (Brumberg and Bretagnon, 2000). The
behaviour of the secular and periodical terms in the residuals is discussed.

1. INTRODUCTION

In the previous investigation (Eroshkin et al., 2002) a high-precision numerical solution of
the rigid Earth rotation problem, accounting for the most essential relativistic perturbations —
geodetic perturbations, was constructed by using a personal computer Pentium III 450 MHz.
All the calculations were performed with a double precision. The precision of the numerical
solution was at the level of several microarcseconds (pas) over the time interval of 1500 years.
Such precision was achieved by means of using the regularizing variables, the Rodriges-Hamilton
parameters, from which the main part of the secular variation of the angle of the proper rotation
was excluded. An important point of the algorithm was a supplementary normalization of the
values of Rodrigues-Hamilton parameters evaluated by means of the iterative procedure of the
integrator HIPPI (Eroshkin, 2000).

Nevertheless it was considered quite necessary to repeat all the calculations with a quadruple
precision in order to verify the earlier obtained results. It is also interesting to construct a
numerical solution not only for the relativistic case but also for the Newtonian one. This paper
describes the results of the numerical solution of the rigid Earth rotation problem obtained with
the use of a high-performance computer Parsytec CCe20, which is a supercomputer of massive-
parallel architecture with a separated memory at the Center for Supercomputing Applications
of the Institute for High-Performance Computing and Data Bases in St.Petersburg, Russia
(http://www.csa.ru/). All the calculations were performed with a quadruple precision. The
mathematical model of the present investigation is identical to that used in (Eroshkin et al.,
2002). The kinematical solution SMART97 was initially corrected by the change of signs of all the
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geodetic terms in the angle of the proper rotation, in accordance with (Brumberg and Bretagnon,
2000). The main purposes of the present research are the verification and improvement of
the algorithms of constructing the numerical solutions and additional testing the method of
numerical integration HIPPI. The integration of the differential equations is carried out over the
time interval from AD 1000 to 3000. It starts from the standard initial epoch January 1, 2000,
goes forward to 3000 and then backward to 1000. The numerical integration, carried out forth
and back in time, checks a reliability of the method HIPPI. It is performed with 1-day constant
step size and with 24-th degree Chebyshev polynomials approximating the right hand sides of
the differential equations of the problem.

2. RESULTS

The analysis of the problem is performed over 2000 year time interval from AD 1000 to 3000,
with the initial epoch January 1, 2000 (JD=2451545.0). The results of the numerical integration
are compared with the semi-analytical solution SMART97 in Euler angles: the longitude of the
ascending node 1 (Figures la, b), the proper rotation angle ¢ (Figures 2a, b) and the inclination
angle # (Figures 3a, b), (a — Kinematical case, b — Dynamical case). Tables 1-3 contain the
results of the least squares adjustment of the behaviours of the discrepancies of the secular
character Az, Agp, A0 and the secular terms in the corresponding angles of SMART97. In
the present paper T denotes the time expressed in thousand Julian years (tjy), counted from the
fundamental reference epoch J2000, and the coefficients are expressed in microarcseconds (uas).
The correcting polynomials of degree 6 provide the best fitting to the approximating curves.

First of all, it is necessary to notice that Figure la and Figure 3a are very similar to the
corresponding pictures of Figure 2 of the previous investigation (Eroshkin et al., 2002). How-
ever the behaviour of the residuals in the proper rotation angle, depicted in Figure 2a, differs
essentially from the corresponding picture in Figure 2 of the previous paper. It is discovered
that this discrepancy is connected with the chosen criterion determining the process of the nu-
merical integration. Namely, if HIPPI integrator is used then the convergence of the iterative
procedure at every nodal point has to be controlled by the values of the relative errors and not
of the absolute ones. The numerical experiments demonstrate that if one uses the relative error
control then the results of the quadruple precision integration and double precision integration
are quite close over one thousand year time interval.

The comparison of the secular trends in the residuals, corresponding to the kinematical and
dynamical cases, depicted in Figures 1-3, is also of interest. The behaviour of the residuals for
the angles 1 and ¢ in the kinematical case (Figure la and Figure 2a, respectively) is very similar
to that in the dynamical case (Figure 1b and Figure 2b, respectively).

From the Tables 1-2 follows that for these angles the essential part of the residuals arises
when constructing the dynamical solution SMART97. The geodetic rotations, which are used
to derive the kinematical solution of SMART97, introduce relatively small part of the residuals.
For the inclination angle # the behaviour of the residuals in the kinematical and dynamical
cases, depicted in Figure 3, differ significantly. Table 3 shows that the basic distinction in the
representation of the interpolating curves comes from the quadratic and cubic terms. There is
no satisfactory explanation of this phenomenon yet.
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Figure 1: Numerical integration minus solution SMART97 in the angle .
90 AP 90 AP
mas mas
56 56 -
22- 22-
0- 0-
-13 - -13 -
-47- -47-
-80- -80-
-115- i ‘ -115- i ‘
1000 AD 2000 AD 3000AD 1000 AD 2000 AD 3000AD

Figure 2: Numerical integration minus solution SMARTO97 in the angle ¢.

a) — Kinematical case

Table 1: Secular parts of the angle i and interpolating polynomials A .

b) — Dynamical case

a) — Kinematical case

Kinematical case Dynamical case

Yemartor(pas) | —Asp(pas) VYemartor(pas) | —Acp(pas)
T° 7.00 6.89
T 50384564881.3693 —206.50 50403763708.8052 —206.90
T° —107194853.5817 —3451.30 —107245239.9143 —3180.80
T8 —1143646.1500 1125.00 —1144400.2282 1048.00
T4 1328317.7356 —788.00 1329512.8261 —306.00
T° —9396.2895 —57.50 —9404.3004 —65.50
T° —3415.00 —3421.00

b) — Dynamical case
Table 2: Secular parts of the angle ¢ and interpolating polynomials A .
Kinematical case Dynamical case
Pemartor(p1as) | Asgp(pas) Pemartor(pas) | Asp(pas)

T° 1009658226149.3691 6.58 1009658226149.3691 6.53
T 474660027824506304.0000 99598.30 | 474660027824506304.0000 97991.40
T° —98437693.3264 | —7182.30 98382922.2808 —6934.40
T8 —1217008.3291 1066.80 —1216206.2888 1004.00
T4 1409526.4062 —750.00 1408224.6897 —226.00
T° —9175.8967 —30.30 —9168.0461 —37.80
T° —3676.00 —3682.00
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a) — Kinematical case

Figure 3: Numerical integration minus solution SMART97 in the angle 6.

b) — Dynamical case

Table 3: Secular parts of the angle # and interpolating polynomials A 6.

Several harmonics A,¥, Ap,¢p, A0 in the residuals are determined by the least squares
method with the arguments chosen from the arguments of SMART97 theory. In Tables 4-6 the
same harmonics are presented which were determined in (Eroshkin et al., 2002). The standard
errors of the coefficients shown in Tables 4-6 have the magnitude of about two orders smaller
than the coefficients themselves. The argument As+ D — F equals 2+ 180°; A, Az, Ay, A5, Ag are
the mean longitudes of Venus, the Earth, Mars, Jupiter and Saturn, respectively; D is the
difference between the mean longitudes of the Moon and the Sun; €2 is the mean longitude of

Kinematical case Dynamical case

Oemartor(pas) | Ab(pas) O emartor (pas) | A.8(pas)
T° 84381409000.0000 1.42 84381409000.0000 1.39
T —265011.2586 —96.61 —265001.7085 —96.73
T° 5127634.2488 —353.10 5129588.3567 —595.90
T8 —7727159.4229 771.50 —7731881.2221 —945.10
T4 —4916.7335 —84.50 —4930.2027 —76.50
T° 33292.5474 —86.00 33330.6301 —70.00
Tt —247.50 —247.80

the ascending node of the lunar orbit; F' is the mean argument of the Moon’s latitude.

Table 4:

The periodical terms A, and the corresponding harmonics in SMART97.

argument, Kinematical case Dynamical case
period Coefficients of | Coefficients of | Coefficients of | Coefficients of
Yemartor(pas) —App(pas) | Yemartor(pas) —Apt(pas)
cos —667.3427 10.05 —667.6674 10.02
T cos —291.6144 —5.23 —291.7531 —5.22
2X5 — 56 T2 cos 17.9597 —10.85 17.9848 —10.82
800.9 years sin —512.8209 —0.31 —513.0837 —0.32
T sin 219.7644 —4.53 219.9043 —4.56
T2 sin 98.4238 —3.25 98.4621 —3.24
cos —3.4630 —8.46 —3.4630 —8.48
T cos 0.1067 28.06 0.1067 28.06
3X2 —TAs +4As | 77 cos —41.87 —41.82
302.4 years sin 5.1808 2.29 5.1808 2.30
T sin 0.1046 6.29 0.1046 6.31
77 sin —27.87 —27.88
cos —439.4833 —0.97 —439.4833 —0.98
T cos 13416.3947 —27.28 13416.3960 —26.68
As+ D —F T2 cos 35849.0443 4.7 35842.8827 2.9
(€2 + 180%) sin | 17280773.3737 —0.08 | 17280776.3805 —0.07
18.6 years T sin 84107.0763 —0.30 84107.0745 —0.37
T2 sin —1178.0123 —5.7 —1178.3901 —5.2
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Table 5: The periodical terms A,# and the corresponding harmonics in SMART97.

argument, Kinematical case Dynamical case
period Coefficients of | Coefficients of Coefficients of | Coeflicients of
0 smartor(pas) Apf(pas) 0 smartor(pas) Apf(pas)
cos —237.8839 2.66 —237.9787 2.649
T cos 214.2387 2.35 214.3301 2.35
2X5 — 5he T2 cos 21.5893 —3.77 21.6003 —3.76
800.9 years sin 437.0537 —2.118 437.2269 —2.110
T sin 106.7941 2.86 106.8398 2.85
T2 sin —61.1330 2.94 —61.1586 2.92
cos 0.2135 —1.72 0.2135 —1.72
T cos —0.0256 —7.37 —0.0256 —7.37
3X2 —TAs +4As | T? cos 2.40 2.42
302.4 years sin 0.0549 —2.75 0.0549 —2.752
T sin —0.0729 4.19 —0.0729 4.20
T? sin 7.04 7.05
cos | —9227885.6279 0.23 | —9227886.9315 0.22
T cos —9273.2018 0.02 —9273.2018 0.05
As+ D —F T? cos 11.5998 0.95 11.5998 0.87
(€2 + 180°) sin 32.1530 —0.46 32.1530 —0.46
18.6 years T sin 4413.0849 —14.35 4413.0855 —14.02
T? sin 25501.6281 0.74 25499.8022 1.19

Table 6: The periodical terms A,¢ and the corresponding harmonics in SMART97.

argument, Kinematical case Dynamical case
period Coefficients of | Coefficients of | Coeflicients of | Coefficients of
D smartor (pas) App(pas) | demartor(pas) App(pas)
cos —618.7215 9.16 —618.3585 9.14
T cos —269.1674 —4.78 —269.0474 —4.77
2Xs5 — 5h¢ T2 cos 17.3920 —10.13 17.3622 —10.10
800.9 years sin —474.1121 —0.25 —473.8684 —0.26
T sin 204.8051 —4.05 204.6460 —4.08
T2 sin 90.6361 —3.08 90.6058 —3.07
cos —3.1772 —7.97 —3.1772 —7.98
T cos 0.0979 25.56 0.0979 25.55
3Xs — Az + 4\ | T? cos —37.34 —37.29
302.4 years sin 4.7532 2.09 4.7532 2.09
T sin 0.0959 5.71 0.0959 5.74
T? sin —25.51 —25.51
cos —403.2789 —0.92 —403.2789 —0.92
T cos 12309.0477 —24.80 12309.0462 —24.25
Aa+D—-F T2 cos 32869.9705 4.4 32875.6240 2.7
(Q + 1800) sin | 15852158.3146 0.02 | 15852155.0374 0.03
18.6 years T sin 77184.1368 —0.86 77184.1388 -0.90
T2 sin —1252.4257 —5.5 —1252.0139 —5.0

If one compares the coefficients for Kinematical case, shown in Tables 4-6, with the corre-

sponding quantities in (Eroshkin et al., 2002) then certain differences can be discovered. They
have two explanations. Firstly, the signs of all the geodetic terms in the kinematical solution
for the proper rotation angle ¢ in SMART97 were changed in accordance with (Brumberg and
Bretagnon, 2000). As a result, the coefficients of the harmonic with the argument 2A5 — 5X¢ in
Ap¢ became essentially smaller. Secondly, in the present investigation the time interval of the
adjustment is 2000 years instead of 1500 years, that is 1/3 larger than in the previous work.
As it was previously explained (Eroshkin et al., 2002), the secular and periodical terms
determined from the residuals of comparison of the numerical solution and semi-analytical so-
lution SMART97 are the corrections to the corresponding terms of SMART97. As a final step
of the present investigation, the kinematical solution SMART97 is modified by adding the sec-
ular correction terms from Tables 1-3. The numerical integration is performed anew with the
initial conditions determined by the modified kinematical solution SMART97. The results of
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Figure 4: Numerical integration minus kinematical solution SMART97 supplemented by the
secular corrections in Euler angles.

comparison of the numerical and modified semi-analytical solutions are presented in Figure 4.
The secular trend in the proper rotation angle ¢ does not change practically with respect to
that depicted in Figure 2a. In fact, there are differences which can be seen if one compares the
polynomial Ayé = 6.62499787.587 — 0.6572 — 0.397> 4+ 1.42T* 4+ 0.47T5 — 0.75T°, representing
the secular behaviour of the residuals in the proper rotation angle from the Figure 4 with the
corresponding polynomial from Table 2. This comparison shows that the corrections to the sec-
ular terms in the angle of the proper rotation are the real corrections to the second and higher
order terms, whereas the linear part of correction is a fictitious one.

It was earlier discovered that the small variation of the initial moment of the numerical
integration can change the value of the secular trend. It is quite possible that the reason for this
phenomenon is connected with the appearance of the fictitious free nutation (fictitious Euler
nutation) in the process of the numerical integration.

3. CONCLUSIONS

The results of the present investigation confirm the validity of the previous study, based
on the double precision calculations. The semi-analytical theory of the rigid Earth rotation
SMART97, corrected in accordance with the conclusions in (Brumberg and Bretagnon, 2000),
represents high-precision semi-analytical solutions of the problem over the time interval of several
centuries. The precision of this theory can be improved, for example, numerically by the method
proposed by the authors. The time interval of its validity can be also extended in this way.
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